减速器设计(传动方案设计)解析
- 格式:ppt
- 大小:1.54 MB
- 文档页数:14
设计计算及说明主要结果1 引言(1)运输带工作拉力:NF1900=;(2)运输带工作速度:smv/4.1=(5%)±;(3)滚筒直径:mmD300=;(4)工作寿命:10年单班制工作;(5)工作条件:连续单向运转,工作时有轻微振动。
2 传动装置设计2.1 传动方案展开式二级圆柱齿轮减速器,如图1所示。
图1 减速器传动方案展开式二级圆柱齿轮减速器传动路线如下:采用二级圆柱齿轮设计,其效率高,工作耐久,且维修简便。
高,低速级均采用直齿齿轮,传动较平稳,动载荷也较小,可以胜任工作要求。
但其齿轮相对于支承位置不对称,当轴产生弯扭变形时,载荷在齿宽上分布不均匀,因此在设计时应将轴设计的具有较大的刚度。
同时由于减速传动,使输出端扭矩较大,在选择轴和轴承的时候要特别注意。
电动机联轴器减速器联轴器带式运输取a aa a功率kw P 79.23= 转速min /175.893r n = 转矩mm N T ⋅=29916034.1.2 初步确定轴的最小直径mm mm n P A d 29.35175.8979.211233330min =⨯== 输出轴的最小直径是安装联轴器处的直径。
选取轴的材料为45钢调质处理。
为使所选轴的直径1d 与联轴器的孔径相适应,故需同时选取联轴器型号。
联轴器计算转矩3T K T A ca =由文献[1]表14-1,考虑到转矩变化很小,取3.1=A Kmm N mm N T K T A ca ⋅=⋅⨯==3889082991603.13转矩 ca T 应小于联轴器公称转矩,选用LT7型弹性套柱销联轴器,其 mm N ⋅⨯310988.388,半联轴器孔径mm d 401= ,故取mm d 401= ,半联轴器长度mm L 112= ,半联轴器与轴配合的毂孔长度mm L 841=。
4.1.3 轴的结构设计(1)拟定方案如下图所示(2)根据轴向定位的要求确定轴的各段直径和长度mm d 29.35min =mmN T ca ⋅=388908LT7转矩 ca T 应小于联轴器公称转矩,选用LT3型弹性套柱销联轴器,其 mm N ⋅⨯31065.26,半联轴器孔径mm d 161= ,故取mm d 161= ,半联轴器长度mm L 42= ,半联轴器与轴配合的毂孔长度mm L 301=。
减速器结构设计及传动尺寸设计计算一、运动简图图11—电动机2—V带3—齿轮减速器4—联轴器5—滚筒6—输送带二、工作条件该装置单向传送,载荷稍有波动,多灰尘,小批量,两班制工作,使用期限10年(每年按300天计算)。
三、原始数据滚筒直径D (mm ):450 运输带速度V (m/s ):0.28 滚筒周围力F (N ):12000 滚筒长度L(mm):800 四、设计说明书内容 1 电动机选择 2 主要参数计算 3 V 带传动的设计计算4 减速器斜齿圆柱齿轮传动的设计计算5 轴的设计计算及校核 6.箱体结构的设计 7. 润滑密封设计 8 参考文献1 电动机选择 (1)选择电动机类型按工作要求和条件,选用Y 系列全封闭自扇冷式笼型三相异步电动机,电压380V.(2)选用电动机容量n w =(60×1000)v/πD=11.89r/min P w =FV/1000=3.36kwV 带传动效率η1=0.96滚动轴承效率η2=0.99 , 闭式齿轮传动效率η3=0.97 ,联轴器效率η4=0.99 , 传功滚筒效率η5=0.96,其中总效率为32320.960.990.970.990.960.833v ηηηηηη=⨯⨯⨯⨯=⨯⨯⨯⨯=带轴承齿轮联轴滚筒P d =P w /η=4.034kw 选用电动机额定功率为4kw 通常,V 带传动的传动比范围为2到4,二级圆柱齿轮减速器为8到40,则总传动比的范围为16到160,故电动机转速可选范围为:n 1d =(16~160)×11.89=190~1900r/min.符合这一范围的同步转速有750 r/min 、 1000 r/min 、 1500 r/min 现以这三种对比查表可得Y132M-6符合要求,故选用它。
Y132M-6 (同步转速1000r/min)的相关参数表12. 主要参数的计算(1)确定总传动比和分配各级传动比传动装置的总传动比i a=n m/n w=960/11.89=80.74取V带传动单级传动比i01=2.8,减速器的总传动比i为:i=i a/i01=28.836 i12=(1.4i)1/2=6.354 i23=i/i12=4.538初分传动比为i 1=2.8,i2=6.354,i v带=4.538(2)计算传动装置的运动和动力参数本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则1、各轴转速n1=n m/i w=343 r/minn2=n1/i1=54 r/minn3=n2/i2= 11.9 r/min2、各轴功率P1=P dη01=P d×ηv带= 4.0 × 0.96=3.84kwP2=P1η12=P1×η轴承×η齿轮=3.84× 0.99×0.97=3.69 kwP3=P2η23=P2×η轴承×η齿轮= 3.69× 0.99×0.97=3.54kw3、各轴转矩T d=9550P d/n d=40.1N.mT1=T d i带η01=107.79 N.m187.542 4.2430.990.97356.695T T i N m η==⨯⨯⨯=⋅ⅡⅠⅠⅡT 2=T 1i 1η12=657.7 N.m2356.695 3.0310.990.971038.221T T i N mη==⨯⨯⨯=⋅ⅢⅡⅡⅢT 3=T 2i 2η23=2866.15 N.m表2传动比3. V 带传动的设计计算(1)确定计算功率ca P查表可得工作情况系数 1.2A k = 故P ca =k A ×P= 1.2×4.0=4.8 kw(2)选择V 带的带型根据ca P n 、,由图可得选用A 型带。
机械设计课程设计计算说明书设计题目:带式运输机上的单级圆柱齿轮减速器系别:测试工程系专业:测控技术与仪器班级:09测控一班设计者:叶身武指导老师:傅师伟老师2011年1月20日华侨大学测控教研室目录一、传动方案的分析与拟定 (4)二、选择电动机: (4)三、确定总传动比、分配传动比: (5)四、计算各轴功率、转速和扭矩: (6)五、带传动计算 (7)六、齿轮传动计算 (8)七、轴的设计计算 (10)八、键的选择、计算; (16)九、减速器结构设计 (16)十、减速器的润滑 (18)十一、参考资料索引 (18)一、传动方案的分析与拟定1、工作条件:两班制连续工作,工作时有轻度振动,使用年限6年,每年按300天计,轴承寿命为齿轮寿命的三分之一以上。
2、原始数据:传动带滚动转速n=120r/min;减速器输入功率P W=3.8kw;单机圆柱齿轮减速器3、方案拟定:如上图所示,采用带传动传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。
二、选择电动机:①、电动机类型和结构的选择:选择Y系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。
②、确定电动机功率P dP d=P w∕ηa,其中P w=3.8kw为减速器输入功率,ηa为V带传递效率,其取值范围为0.94~0.97,经综合考虑取ηa=0.95。
所以有P d=P w∕ηa=3.8kw∕0.95=4kw③确定电动机转速n a已知传动带转速n=120r∕min,查表得传动比合理范围,取V带传动比=2~4,一级圆柱齿轮减速器传动比=3~6,则总传动比合理范围为=6~24,故电动机转速可选范围为=•n=(6~24)×120=720~2880r∕min符合这一范围的同步转速器有750、1000和1500r∕min。
目录一、设计任务书-----------------------------------------2二、传动方案分析---------------------------------------3三、电动机的选择计算-----------------------------------3四、总传动比的确定和各级传动比的分配-------------------4五、运动和动力参数的计算-------------------------------4六、传动零件的设计-------------------------------------5七、轴的设计和计算------------------------------------13八、滚动轴承的选择和计算------------------------------27九、键连接的选择和计算--------------------------------28十、联轴器的选择和计算--------------------------------29十一、润滑和密封的说明--------------------------------30十二、减速箱体的附件的说明----------------------------30十三、设计小节----------------------------------------30十四、参考资料----------------------------------------31一、设计任务书课程设计的题目:减速器的设计(1)输送带的工作拉力kN F 7=输送带工作速度s m v /1.1= 滚筒直径mm D 400=工作情况:两班制,连续单向运转,载荷较平稳 使用折旧期:10年工作环境:室内,灰尘较大,环境最高温度35o C动力来源:电力,三相交流,电压380/220V检修间隔期:四年一次大修,两年一次中修,半年一次小修 制造条件及生产批量:一般机械厂制造,小批量生产 二、传动方案分析 ①方案设计方案一:带传动+单级传动方案二: 齿轮传动+二级传动+带传动方案三: 带传动+链传动+单级传动②方案比较方案一:带传动具有结构简单、传动平稳、价格低廉和缓冲吸振等特点。
课程论文主减速器的设计指导教师学院名称专业名称摘要汽车主减速器作为汽车驱动桥中重要的传力部件,是汽车最关键的部件之一。
它承担着在汽车传动系中减小转速、增大扭矩的作用,同时在动力向左右驱动轮分流的差速器之前设置一个主减速器,可以使主减速器前面的传动部件,如变速箱、分动器、万向传动装置等传递的扭矩减小,同时也减小了变速箱的尺寸和质量,而且操控灵敏省力。
汽车主减速器结构多种多样,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。
按照主减速器齿轮的类型分为:螺旋锥齿轮和双曲面齿轮;按照主减速器主动锥齿轮的支承型式及安置方法分为:悬臂式和跨置式;按照主减速器减速形式分为:单级减速、双级减速、双速减速、贯通式主减速器和轮边减速等。
主减速器设计的好坏关系到汽车的动力性、经济性以及噪声、寿命等诸多方面。
如何协调好各方关系、合理匹配设计参数,以达到满足使用要求的最优目标,是主减速器设计中最重要的问题。
关键词:中型客车主减速器圆锥齿轮主减速器的设计1、汽车的主要参数车型 中型货车驱动形式 FR4×2发动机位置 前置、纵置最高车速 U max =90km/h最大爬坡度 i max ≥28%汽车总质量 m a =9290kg满载时前轴负荷率 25.4%外形尺寸 总长L a ×总宽B a ×总高H a =6910×2470×2455mm 3轴距 L=3950mm前轮距 B 1=1810mm后轮距 B 2=1800mm迎风面积 A ≈B 1×H a空气阻力系数 C D =0.9轮胎规格 9.00—20或9.0R20离合器 单片干式摩擦离合器变速器 中间轴式、五挡下面参数为参考资料所得:发动机最大功率及转速 114Kw-2600r/min;发动机最大转矩及转速 539Nm-1600r/min ;主减速比 0i =4.44;变速器传动比抵挡/高档 6.3/1轮胎半径:型号为9.0R20,轮胎胎体直径为9.0英尺,轮辋直径为20英尺,所以半径为()m 48.024.522020.9≈⨯+⨯=r r汽车满载时质量 14t 2、主减速器结构形式的确定主减速器可以根据其齿轮类型、减速形式以及主、从动齿轮的支承形式的不同而分类。
1.概述减速器是一种机械传动装置,其主要作用是将高速、低扭矩的电机转速降低为低速、高扭矩的输出轴的转速。
减速器被广泛应用于工业生产中,在重工业、轻工业、化工、冶金、采矿、电力、交通等行业都有使用。
因此,减速器的设计与制造对于现代工业的发展有着重要的意义。
2.减速器的类型常见的减速器有齿轮减速器、行星减速器、摆线减速器、圆锥齿轮减速器等。
不同类型的减速器对应不同的传动需求,各有优缺点,因此在设计减速器时需要根据实际需求选择合适的类型。
3.减速器的设计步骤减速器的设计一般包括以下步骤:(1) 传动参数的确定在设计减速器前,需要根据实际需求确定传动参数,如输入轴转速、输出轴转速、所需扭矩、传动效率等。
(2) 传动方案的选择根据传动参数和所需使用条件,选择适合的减速器类型和传动方案。
(3) 基本结构的设计设计减速器基本结构,包括传动方式、总传动比、传动元件的型号规格、基座结构等。
(4) 元件细节的布置根据基本结构,对传动元件的细节进行布置,包括各元件之间的位置、角度、间隙等。
(5) 传动系统的分析和计算对设计的传动系统进行力学分析和计算,确定各传动元件的尺寸、材料、强度等参数。
(6) 精度分析和校核对设计的减速器进行精度分析和校核,包括传动误差、齿面接触、轴承负荷等。
(7) 试制和调试将设计好的减速器进行试制和调试,确保能够正常运转并满足设计参数和要求。
4.注意事项在设计减速器时需要注意以下问题:(1) 确定传动参数时需要充分考虑实际使用情况和制造成本,避免设计超标或不足的情况。
(2) 在选择传动方案和设计基本结构时,需要根据传动要求和负载特点选择合适的减速器类型和传动方案。
(3) 在元件细节的布置和传动系统的分析和计算中,需要根据实际需求采用合适的计算方法、工具和标准进行计算,并注意偏差修正。
(4) 在精度分析和校核中,需要充分考虑装配误差和使用寿命,确保减速器的可靠性和性能。
(5) 在试制和调试中,需要充分测试和检查每个传动元件和组件的安装和连接,确保减速器的正常运转和使用寿命。