主要测井曲线含义和意义
- 格式:pdf
- 大小:109.29 KB
- 文档页数:6
测井曲线
测井曲线是石油地质学中常用的一种工具,用于评估油层中的岩石性质和流体(如原油、天然气)的分布情况。
常见的测井曲线有以下几种:
1. 自然伽马测井曲线(GR):用于评估岩石中放射性矿物质的含量,可以帮助确定岩石的类型和成分。
2. 电阻率测井曲线(SP):用于测量岩石中电流的传导能力,可用于判断岩石的孔隙度和渗透性。
3. 声波测井曲线(Sonic):用于测量地层中声波在岩石中传播的速度,可以帮助确定岩石的密度和弹性模量。
4. 密度测井曲线(Density):通过测量岩石中射线的吸收能力,可以估计岩石的密度,从而评估孔隙度和饱和度。
5. 中子测井曲线(Neutron):通过测量岩石中中子的散射情况,可以推测岩石中氢原子的含量,从而估计孔隙度和饱和度。
这些测井曲线通常以深度为横坐标,物理量为纵坐标,可以绘制成曲线图或剖面图,以便地质学家和工程师分析和解释地下油气储层的性质和分布。
各条测井曲线的原理及应用引言测井是地质勘探中不可或缺的技术手段之一。
随着勘探深度的增加和技术的进步,测井曲线的种类也逐渐增多。
本文将介绍几种常见的测井曲线,包括电阻率曲线、自然伽马曲线、声波曲线和中子曲线的原理及应用。
1. 电阻率曲线电阻率曲线是测井中最常见的曲线之一,用于反映地层的电阻率特性。
在测井时,通过测量地层对射入电流的电阻来得到电阻率曲线。
电阻率曲线的应用包括:- 地层分类:根据电阻率曲线的特征,可以将地层分为不同类型,如油层、水层和盐层等。
- 识别流体类型:通过电阻率曲线的变化,可以判断地层中的流体类型,如水、油或气体等。
- 沉积环境分析:电阻率曲线对地层的沉积环境也有一定的指示作用,如高电阻率的地层可能是砂岩,低电阻率的地层可能是页岩等。
2. 自然伽马曲线自然伽马曲线是记录地层自然伽马辐射强度的曲线,用来确定地层的物理性质和放射性岩石的含量。
自然伽马曲线的应用包括: - 确定放射性岩层:通过自然伽马曲线的变化,可以定量地确定地层中放射性岩石的含量。
- 钻井定位:自然伽马曲线常用于钻井中的测井工作,通过分析伽马辐射来确定钻头所处的位置和地层的特征。
- 地层对比:自然伽马曲线可以用于地层的对比,从而帮助地质学家更好地理解地层的时空分布。
3. 声波曲线声波曲线记录了地层中声波的传播速度和衰减特性,用于刻画地层的物理性质和孔隙度。
声波曲线的应用包括: - 地层属性分析:通过分析声波曲线的特征,可以确定地层的孔隙度、渗透率和饱和度等物理属性。
- 油气识别:声波曲线可以帮助判断地层中的油气类型和含量,对于油气勘探具有重要意义。
- 工程设计:声波曲线在工程设计中也有一定的应用,如在隧道掘进中可以通过声波曲线判断地层的稳定性。
4. 中子曲线中子曲线是记录测井装置发射的中子数与到达探测器的中子数之比的曲线。
中子曲线的应用包括: - 流体识别:通过中子曲线可以识别地层中不同类型的流体,如水、油和气体等。
测井曲线地质含义解析主要测井曲线及其含义导读:就爱阅读网友为您分享以下“主要测井曲线及其含义”的资讯,希望对您有所帮助,感谢您对的支持! 自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP 几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
一、介绍测井曲线(de)用途二、测井资料(de)综合运用一、划分岩层界面二、确定地层(de)电阻率三、确定地层(de)孔隙度四、确定地层传声速度五、确定地层(de)含泥量六、确定地层(de)含H量七、确定地层(de)密度八、综合判断地层(de)岩性九、综合判断油气水层1、⑴渗透层.⑵油气层都是高阻层,其电阻率相当于标准水层2-3倍,油层3.2-4.8Ωm.⑶标准水层其电阻率接近于同井段(de)泥岩.在所研究井段没有砂岩,可近似地以泥岩电阻率来替代标准水层(de)电阻率.2、⑴油层:高阻渗透层,电阻曲线幅度高,特别是在4m曲线必须有鼓包,4m幅度越高,油层越好,自然电位异常通常小于水层,声波为中值.⑵气层:高阻渗透层,电阻曲线幅度高,4m曲线有鼓包.声波时差大,甚至比泥岩还要大,而且有周波跳跃(de)现象,中子伽马通常幅度高.⑶水层:低阻渗透层(淡水层例外为高阻层),当地层矿化度比较高时,中子伽马幅度比较高,通常情况较低,自然电位通常比较大(与油层作比较).十、油气水界面(de)化分1、油水界面(de)划分:⑴电阻曲线上有明显幅度变化,含油部分幅度高,含水部分幅度低.⑵感应曲线上在油水界面上幅度变化特别明显.⑶自然电位曲线在油水界面上有一个不很明显(de)台阶,含油部分异常小,含水部分异常大.⑷密度曲线在油水界面上有微弱(de)台阶,含油部分密度小,含水部分密度较大.⑸声波在油水界面含油部分时差大,含水部分时差小,油层在4m曲线上一定有鼓包.2、油气界面(de)划分:⑴声波时差在油气界面有明显(de)幅度变化,气层时差大,油层时差小,气层周波跳跃,在油气界面有不太明显(de)幅度变化.⑵中子伽马在油气界面上有不太明显(de)变化,长源距气层(de)幅度高,油层(de)幅度小.3、气水界面(de)划分:⑴声波时差在气水界面上明显(de)幅变化,含水部分时差小,含气部分时差大,含气部分有周波跳跃.⑵密度曲线在气水界面上有明显(de)幅度变化,气层部分密度小,含水部分密度大.⑶中子伽马曲线在气水界面上有不明显(de)变化,短源距气层部分幅度高,水层部分幅度低,(但有例外,当水层矿化度比较高,曲线幅度变化不明显).。
一、测井曲线资料应用的意义测井资料在油、气田的勘探与开发中有广泛的的用途,大体可分为在裸眼井中的应用和套管井中的应用,及其它一些专门目的的应用。
在裸眼井中,测井资料主要用于寻找油、气层,并对储集层的孔隙性、渗透性和含油性作出评价,为油、气田的开发决策提供信息;在套管井中,测井资料主要用于开发过程中油、气层的动态分析,为油、气田开发的合理调整提供资料。
二、常用的测井曲线的类型常用的测井曲线有:自然电位曲线、自然伽玛测井曲线、微电位测井曲线、微梯度测井曲线、深感应测井曲线、中感应测井曲线、4米电阻测井曲线、声波时差测井曲线、井径测井曲线等。
三、常用测井曲线识别第一节自然电位测井在钻开岩层时,井壁附近产生的电化学活动能形成一电场,该场产生的电位就叫自然电位,其产生的原因是地层水矿化度和泥浆滤液矿化度压力不同,以及泥浆压力与地层压力不同。
在砂泥岩剖面中,自然电位曲线以泥岩为基线,只在砂质渗透性岩层处,才出现自然电位曲线异常,所以我们可以利用它来划分渗透性岩层。
纯砂岩井段出现最大的负异常,含泥质的砂岩负异常幅度较低,而且随泥质含量的增多负异常幅度下降。
此外通过自然电位曲线幅度还可判断渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。
自然电位曲线的应用仅限于淡水泥浆钻的井,因为自然电位曲线幅度(偏离泥岩基线的幅度)与地层水含盐量和井中流体含盐量之差有关。
对于淡水泥浆,纯砂岩的负向偏移幅度最大,当砂岩含泥时,幅度减小。
而当采用盐水泥浆时,含盐水地层的SP曲线,偏移很小或没有偏移,甚至出现反转。
自然电位曲线在含盐水纯砂岩部位最高,而当地层含有烃类时,自然电位幅度有所降低,当砂层厚度小于3m 或更薄时,其幅度大大降低;当砂岩胶结作用较强时,其幅度可显著降低。
应用:1、自然电位曲线,对于厚岩层可用由线半幅点划分岩层界面,对于薄岩层必须与视电阻率曲线配合,才能获得准确结果。
2、可以很清楚地划分渗透层与非渗透层。
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw 的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线1. 什么是测井曲线?测井曲线是指在地质勘探和石油工程中利用测井资料绘制出来的曲线图。
测井曲线能够反映地下地层的各种属性和特征,如岩性、含油气性、含水性、孔隙度等。
通过观察和分析测井曲线,可以判断地层的储集条件和物性参数,为地质勘探和油气开发提供重要的信息和依据。
2. 测井曲线的种类目前常见的测井曲线主要有以下几种:2.1 自然伽马测井曲线(GR)自然伽马测井曲线(Gamma Ray log)是一种常用的测井曲线。
它通过测量地下岩石自然辐射所产生的伽马射线强度,来表征地层的放射性特性。
GR曲线对比度较高,可以用于识别各种不同富含放射性矿物的地层,如砂岩、页岩、煤层等。
2.2 阻抗测井曲线(AI、RI)阻抗测井曲线(Acoustic Impedance log)是通过测量地层中声波的传播速度以及密度,来计算岩石的声阻抗。
阻抗测井曲线能够提供地层的弹性参数信息,对岩石的孔隙度、含油气性等特征有很好的反映。
常见的阻抗测井曲线有AI(Acoustic Impedance)曲线和RI(Reflection Index)曲线。
2.3 电阻率测井曲线(ILD、LLD)电阻率测井曲线(Resistivity log)是通过测量地层中岩石对电流的阻抗大小,来估算地层的电阻率。
电阻率测井曲线能够反映地层中的含水性和含油气性等特征,对于区分油层、水层和岩石层有很大的帮助。
常用的电阻率测井曲线有ILD (Induction Laterolog Deep)曲线和LLD(Laterolog Laterolog Deep)曲线。
2.4 速度测井曲线(DT、VS)速度测井曲线(Velocity log)是测量地下岩石中声波传播速度的测井曲线。
速度测井曲线可以提供地层介质的声速信息,对于预测地层的物态和孔隙度等参数有很大的帮助。
常见的速度测井曲线有DT(Delta-T)曲线和VS(Shear Wave Velocity)曲线。