第十一章 光纤通信新技术
- 格式:ppt
- 大小:254.00 KB
- 文档页数:40
光纤通信新技术光纤通信自20世纪70年代诞生以来发展很快,在光源、检测器、光纤光缆及系统等方面取得了很大的进展,光纤通信也已经成为现代信息网络最重要的基础设施。
随着人类社会经济和科技的不断发展,许多新的应用不断出现,对于光纤通信也提出了更高的要求。
为了满足光纤通信向着高速化、智能化、网络化发展的要求,许多新技术不断涌现,有的已经取得了相当的成果。
本章主要介绍光纤通信领域内的一些有代表性的新技术。
2第十一章光纤通信新技术11.1 色散补偿技术11.2 相干光通信11.3 光交换技术11.4 光孤子通信技术11.5 自由空间光通信FSO310.1 色散补偿技术高速光纤通信系统中,光纤损耗、色散和非线性效应是限制系统传输性能的主要因素。
光放大器的普遍采用解决了光纤损耗补偿问题。
随着光纤通信单信道传输速率的不断增大,色散补偿就成为高速光纤通信的关键技术之一。
国内、外已对色散补偿技术进行了广泛的理论和实验研究,提出了许多各具特色的色散补偿技术方案。
4511.1.1 色散补偿光纤DCF对光纤一阶群速度色散(GVD )完全补偿的条件为(11-1)式中——传输光纤在波长处的色散系数;——色散补偿光纤在波长处的色散系数;——传输光纤的长度;——色散补偿光纤的长度。
0)()(=+c c t t L D L D λλ)(λt D )(λc D t L c L1. 色散补偿光纤的基本结构和补偿原理采用双模DCF的色散补偿技术,是由C.D.Poole等人提出来的,它是利用双模光纤的第1高阶模(LP11)在截止波长附近具有很大负波导色散的特点来实现色散补偿的。
基于LP01模的单模DCF在设计时采用较小的光纤内径,得到较高的相对折射率差Δ,从而实现在1550nm处较大的负色散。
672. DCF 的品质因数DCF 的品质因数FOM (Figure of Merit )定义为(11-3)式中FOM 为品质因数,单位(ps/nm ·dB );D ——色散系数,单位(ps/nm ·km )α——衰减系数,单位(dB/km )。
光纤通信最新技术对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标。
目前主要的光纤通信技术有以下几种:一:波分复用技术波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再至[|2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。
人们在一种技术进行迅速的时候很少去关注另外的技术。
1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。
随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM 应运而生。
CWDM的波长间隔一般为20nm,以超大容量、短传输距离和低成本的优势,广泛应用于城域光传送网中。
目前为了进一步提高光通信系统的传输速率和容量,还提出了将波分复用和光时分复用OTDM相结合的方式。
把多个OTDM信号进行波分复用。
从而大大提高传输容量。
只要WDM和OTDM两者适当的结合,就可以实现Tbit/s以上的传输,并且也应该是一种最佳的传输方式,因此它也成为未来高速、大容量光纤通信系统的发展方向。
实际上大多数超过3bit/s的传输实验都采用WDM和OTDM相结合的传输方式。
二:光纤接入技术随着通信业务量的增加,业务种类也不断丰富,人们不仅需要传统的话音服务,而对高速数据、高保真音乐、互动视像等业务的需求越来越迫切。
光纤通信技术发展趋势和新技术突破光纤通信技术作为信息传输的重要方式,已经在现代化社会中扮演着不可或缺的角色。
随着云计算、物联网和5G等新兴技术的推动,光纤通信技术也在不断发展和突破。
本文将从发展趋势和新技术突破两个方面进行探讨。
一、光纤通信技术发展趋势1. 高速和大容量:随着人们对于高速网络的需求日益增长,光纤通信技术也要求能以更高的速度进行数据传输。
目前,光纤通信技术已经实现了T级别的传输速率,未来将向更高的速率发展。
同时,随着信息量的不断增加,光纤通信技术也要求提供更大的容量,以满足数据传输需求。
2. 低延迟:随着云计算、物联网和实时应用等的不断普及,对网络的低延迟要求越来越高。
光纤通信技术的传输速度虽然已经非常快,但仍然存在一定的传输延迟。
为了满足低延迟的需求,光纤通信技术需要进一步提升传输速度和减少传输延迟,在保证高速和大容量的同时,提供更低的延迟。
3. 网络安全:随着网络攻击日益猖獗,网络安全已经成为一个全球性的重要议题。
光纤通信技术作为信息传输的基础,需要更加注重网络安全。
未来,光纤通信技术需要进一步加强数据的加密和安全传输,以确保用户的数据不被未授权访问和篡改。
4. 绿色环保:光纤通信技术相较于传统的电信传输方式更加环保。
光通信不需要大量的电源来支持传输信号,同时也不会产生电磁辐射。
未来,光纤通信技术需要进一步提高能效,减少能耗,以推动绿色环保的发展。
二、新技术突破1. 高密度纤芯:高密度纤芯技术是目前光纤通信技术的一个重要突破。
传统的单模光纤通常具有一个纤芯,而高密度纤芯技术可以在一个纤芯中传输多个模式的光信号,从而提高光纤的传输容量。
高密度纤芯技术利用了光信号的多个自由度,可以显著提高数据传输速率和容量。
2. 弯曲光纤:传统的光纤在弯曲时会有较大的光功率损耗,限制了其应用范围。
然而,新的弯曲光纤技术可以在光纤弯曲的情况下保持较低的光功率损耗,拓展了光纤在现实世界中的应用空间。
弯曲光纤技术的突破将有助于在复杂环境中部署光纤网络,并提高光纤通信技术的适用性。
光纤通信发展新技术之SDH11通信一班陈伦尧随着时代的不断进步,我们的生活也在不断地丰富起来。
在这个信息爆炸的时代,我们除了要充分的吸取外界的信息,同时也希望及时的得到外界最新的信息,于是乎光纤通信技术便应运而生了。
在这个先进的技术领域之中,我们除了得到了许多的方便之外,更多的是对这门新兴学科的研究和周边的开发。
就拿互联网来说,如今的网络信息量非常庞大,如果仍旧沿用以前的技术来管理网络资源变得不太实际,除了浪费许多时间还有可能会造成经济利益的损失。
于是乎,一个新的技术SDH(Synchronous Digital Hierarchy,同步数字体系)诞生了。
SDH的概念和原理:SDH光端机容量较大,一般是16E1到4032E1,是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,SDH采用的信息结构等级称为同步传送模块STM-N(Synchronous Transport,N=1,4, 16 ,64),最基本的模块为STM-1,四个STM-1同步复用构成STM-4,16个STM-1或四个 STM-4同步复用构成STM-16,四个STM-16同步复用构成STM-64,甚至四个STM-64同步复用构成STM-256;SDH采用块状的帧结构来承载信息,每帧由纵向9行和横向270×N列字节组成,每个字节含8bit,整个帧结构分成段开销(Section OverHead,SOH)区、STM-N净负荷区和管理单元指针(AU PTR)区三个区域,其中段开销区主要用于网络的运行、管理、维护及指配以保证信息能够正常灵活地传送,它又分为再生段开销(Regenerator Section OverHead,RSOH)和复用段开销(Multiplex Section OverHead, MSOH);净负荷区用于存放真正用于信息业务的比特和少量的用于通道维护管理的通道开销字节;管理单元指针用来指示净负荷区内的信息首字节在STM-N 帧内的准确位置以便接收时能正确分离净负荷。
第10章光纤通信新技术20世纪90年代以来,光纤通信得到了迅速的发展,新技术不断涌现。
关于光波分复用技术、通信网、全光网络技术已在前面相关章节中介绍。
本章主要介绍光放大技术、光纤色散补偿技术、光交换技术、相干通信、光孤子通信等一些已经实用或有应用前景的新技术。
10.1 光纤放大器光信号在光纤中传输时,不可避免会在存在着一定的损耗和色散,损耗导致光信号能量的降低,色散使信号展宽,从而限制了通信传输距离与码速的提高。
因此,隔一定的距离就需设立一个中继器,以便对信号进行放大和再生。
解决这问题的常规方法是目前采用的光电中继器。
光电中继器采用的是光/电/光的变换和处理方式,这种方式已经满足不了现代电信传输的要求。
补偿光纤损耗的最有效方法是用光放大器直接对光信号进行放大。
至今已经研究出的光放大器有两大类:半导体光放大器和光纤放大器。
每种又有几种不同的应用结构和形式,如图10.1所示。
相比之下,波长为1550nm的掺铒光纤放大器(EDFA,Erbium Doped Fiber Amplifier 得到了最为广泛的应用。
10.1.1 EDFA的工作原理EDFA主要由掺铒光纤(EDF)、泵浦光源、耦合器、隔离器等组成,如图10.2所示。
光耦合器的作用是将信号光和泵浦光合在一起;光隔离器的作用是抑止光反射,以确保光放大器工作稳定,对它的要求是插入损耗低、与偏振无关、隔离度优于40dB。
当较弱的信号光和较强的泵浦光一起输入进EDF时,泵浦光激活EDF中的铒粒子,在信号光子的感应下,铒粒子产生受激辐射,跃迁到基态,将一粒一粒的光子注入进信号光中,完成放大作用。
在铒粒子受激辐射过程中,有少部分粒子以自发辐射形式自己跃迁到基态,产生带宽极宽而且杂乱无章的光子,并在传播中不断扩大,从而形成了自发辐射噪声,并消耗了部分泵浦功率。
因此,需设光滤波器,以降低噪声对系统的影响。
目前应用的光滤波器带宽一般为1~3nm。
10.1.2 EDFA特性EDFA的基本特性有增益特性、输出功率特性和噪声特性。
光纤通信系统的新型技术与应用随着科技的不断进步,光纤通信系统在现代通信领域中发挥着至关重要的作用。
光纤通信的快速发展,离不开新型技术的不断涌现和应用。
本文将探讨光纤通信系统的新型技术及其应用,旨在为读者提供对光纤通信系统的深入了解。
第一部分:光纤通信系统的基本原理光纤通信系统是利用光纤传输光信号进行通信的系统。
在光纤通信系统中,光源将电信号转换为光信号,通过光纤传输,再通过接收器将光信号转换回电信号。
光纤通信系统的基本原理是基于光的全内反射现象。
第二部分:新型技术与应用2.1 光纤放大器技术光纤放大器技术是一种用于放大光信号的技术,可以增强光信号的传输距离和质量。
其中,掺铥光纤放大器(EDFA)是目前应用最广泛的光纤放大器。
它具有高增益、宽带宽和稳定性好等特点,在长距离通信中有着重要的应用。
2.2 光时域反射技术(OTDR)光时域反射技术是一种通过测量反射光信号来检测光纤中的缺陷和故障的技术。
OTDR可以定位光纤中的断点、弯曲、损伤等问题,对于维护和排除故障具有重要意义。
这项技术被广泛应用于光网络的建设和维护。
2.3 光传感技术光传感技术是一种利用光信号进行测量和监测的技术。
通过将传感器与光纤相结合,可以实现对温度、应变、压力等物理量的测量和监测。
光传感技术具有高灵敏度、抗干扰性好等特点,在石油、环境监测、安全监控等领域有广泛的应用。
2.4 光波分复用技术光波分复用技术是一种将多个光信号通过不同的波长进行复用发送的技术。
通过利用不同波长的光信号共享光纤资源,可以大大提高光纤通信系统的传输容量和利用率。
光波分复用技术是目前光纤通信系统中常用的技术之一。
第三部分:光纤通信系统的应用3.1 高速宽带接入光纤通信系统的高带宽特性使其在宽带接入领域具有重要应用。
通过光纤通信系统提供的高速宽带接入,人们可以享受到更快的上网速度和更稳定的连接质量,满足多媒体传输、在线游戏等高带宽需求。
3.2 光纤传感网络光纤传感网络利用光传感技术,实现对环境的实时监测和测量。