第07章 汽包锅炉给水自动调节系统
- 格式:ppt
- 大小:546.50 KB
- 文档页数:30
第一章:自动调节的基本概念1)调节的常用术语:1、被调对象:被调节的生产设备或生产过程2、被调量:通过调节需要维持的物理量3、给定值:根据生产要求,被调量的规定数值4、扰动:引起被调量变化的各种原因5、调节作用量:在调节作用下,控制被调量变化的物理量6、调节机关:在调节作用下,用来改变调节作用量的装置2)按给定值信号的特点分类:1、恒值调节系统2、程序调节系统3、随机调节系统;3)按调节系统的结构分类:1、反馈调节系统2、前馈调节系统3、符合调节系统;4)自动调节的主要性能指标:稳定性、准确性、快速性5)动态偏差:在整个调节过程中被调量偏高给定值的最大偏差值6)静态偏差:指调节过程结束后被调量和给定值之间的偏差值第二章:自动调节系统的数学模型1)传递函数:线性定常系统在零初始条件下,系统输出信号的拉普拉斯变换与输入信号的拉普拉斯变换之比2)递函数具有以下性质:1、传递函数是复变量s的有理真分式函数,其分子多项式次数m低于或等于分母多项式次数n,且所有系数均为实数。
2、传递函数是描述动态特性的数学模型,它表征系统(或环节)的固有特性,和输入信号的具体形式、大小无关,且不能具体表打系统(或环节)的物理结构。
3、传递函数只能表示一个输入对一个输出的关系。
4、系统传递函数的分母就是系统的特征方程,从而能方便地判断动态过程的基本特性。
3)自动调节的基本环节:1、比例环节:输出信号能按一定比例、无延迟和无惯性的复现输入信号变化的环节。
微分方程:c(t)=Kr(t)式中:r(t)—输入信号;c(t)输出信号;K—环节的传递系数或比例系数。
传递函数:G(s)=C(s)/R(s)=K2、积分环节:输出信号和输入信号的积分成正比例。
积分环节的微分方程为:式中T1—积分时间。
积分环节的传递函数:G(s)=C(s)/R(s)=1/T1s.积分环节的阶跃响应函数为::输入信号(阶跃函数)的幅值。
3、惯性环节:惯性环节微分方程:T*dc(t)/dt+c(t)=Kr(t)式中T-惯性环节的时间常数;K—惯性环节的传递函数或静态放大系数,其值为平衡状态时输出信号与输入信号增幅值的比。
锅炉汽包水位自动调节锅炉发生爆炸事故的原因之一是由于汽包水位过高或过低所引起的,因此在锅炉中,控制汽包水位是非常关键的。
传统上,锅炉的汽包水位调节是手动完成的,而随着自动控制技术的不断发展,锅炉汽包水位的自动调节也成为了可能。
锅炉汽包水位的自动调节原理在锅炉中,汽包是水蒸气和水的混合物,由于水的密度大于水蒸气的密度,因此汽包水位的高低可以反映出锅炉内部的水位情况。
当汽包水位过高时,容易发生爆炸事故,当汽包水位过低时,会导致锅炉的正常工作受到影响。
因此,对于锅炉汽包水位的自动调节是非常重要的。
锅炉汽包水位的自动调节采用的是反馈控制系统。
该系统包括传感器、控制器和调节器三部分。
传感器主要用于测量锅炉汽包水位的值,控制器则将传感器测量的数据与预设的目标水位进行比较,得出调节量并发送给调节器。
调节器根据控制器发送的调节量来控制水位的上升或下降,从而实现锅炉汽包水位的自动调节。
锅炉汽包水位自动调节系统的优点相比于传统的手动调节方式,锅炉汽包水位自动调节系统具有以下几个优点:1.提高效率:自动化系统可以根据锅炉内部实时数据进行分析,对汽包水位进行精准调节,从而提高了锅炉工作效率。
2.减少人力成本:自动化系统的引入可以减少了锅炉操作员的劳动强度,避免由于人为操作失误所引起的事故风险。
3.提高安全性:自动化系统可以及时检测汽包水位,保持正常水位范围内,提高了锅炉工作的安全性,并可以有效地避免爆炸事故的发生。
4.提高稳定性:自动化系统可以实现连续性的自动控制,保持了稳定的工作状态,避免了频繁人工干预所引起的不稳定因素。
锅炉汽包水位自动调节的发展前景随着自动化技术的不断发展,锅炉汽包水位自动调节系统将会得到更广泛的应用。
未来的自动化系统将会更加精确、智能化,可以通过大数据分析以及人工智能技术对锅炉的运行状态进行实时监测,在锅炉发生问题时能够及时作出反应,提高锅炉的安全性和稳定性。
结论随着自动化技术的不断提高,自动化控制在锅炉行业中已经逐渐成为了趋势。
汽包炉给水控制系统参数调整学习在调整每一个自动控制系统的参数时,我们必须了解被控对象的特性以及其调整内容,例如汽包炉给水自动,它主调节器的设定值是汽包水位,被调量为汽包的实际水位;副调节器的设定值为主调节器的输出,被调量为给水流量;前馈量是主蒸汽流量。
以下是汽包炉给水自动参数调整的步骤和内容,及注意事项:1、调整步骤:(1)初参数的预设;通过扰动给水旁路调门或者是给水泵勺管的开度得到汽包水位、给水流量、主蒸汽流量、主调节器的输出以及副调节器的输出的曲线,然后通过分析曲线预设主、副调节器的初参数以及前馈的强度;(2)初参数的优化;当初参数预设完成后,我们就可以试投给水自动,在投入之前一定要做好需要监视重要变量的曲线,这样我们可以通过分析重要变量的曲线来优化调节参数以及前馈强度;另外,对于串级控制回路,先整定副调节器的参数然后再整定主调节器的参数;(3)扰动试验;通过修改汽包水位设定值来测试当前的调节器参数是否可以满足变工况以及调节品质的要求。
2、调整内容:(1)汽包水位:是整个控制系统的主被调量,同时也是闭环控制回路的反馈变量,用于校正水位的最终偏差,任何导致水位变化的扰动都会使调节器动作;(2)给水流量:是副调节器的被调量,因为给水流量信号对给水流量变化的响应很快,使调节器能够在水位还没变化时就对前馈信号的变化作出反应,消除内扰,使调节过程比较稳定,保证了调节系统的稳定运行。
(3)蒸汽流量:是系统的前馈信号,它的作用是防止“虚假水位”引起的调节器的误动,改善蒸汽流量扰动时的调节质量;3、注意事项:(1)切除自动条件、逻辑闭锁的设置以及无扰切换的实现;(2)在修改前馈的强度时必须将自动切到手动,然后再进行修改;(3)对于自己预设的初参数没有把握时,可以将输出指令进行限制在一个合理的范围内,以防系统投入自动后输出指令大幅度波动导致其他系统波动或者是机组跳闸,因为汽包水位是触发MFT的一个条件。
第五章汽包锅炉给水自动控制系统5-1 前馈--反馈调节系统一.前馈--反馈调节原理反馈调节系统特点:事后控制,反馈校正。
调节过程中被调量的动态偏差较大,且调节过程也较长。
前馈调节系统特点:直接根据扰动进行调节,减小动态偏差。
()yxW s()oxW s()bxW sxu y1.定义直接根据造成被调量偏差的原因进行调节的系统,称为前馈调节系统。
2.前馈的类型及整定前馈调节的类型:很多,因而()b SW的规律不同。
不变性原理:设计前馈补偿器,使被调量y与扰动无关。
(a)扰动有单独通道()()()()0()()yxyx b o boW sW s W s W s W sW s+=⇒=-(b) 扰动作用在对象之前补偿作用在调节器之前。
例如:喷水压力改变时对温度的影响。
()()()()()10()()1()()()o b a o b a o a W s W s W s W s Y s W s X s W s W s W s +==⇒=-+(c) 扰动有单独通道,补偿作用在调节器之后()()()()()0()()1()()()yx b o yx b a o W s W s W s W s Y s W s X s W s W s Wo s +==⇒=-+(d) 扰动有单独通道,补偿在调节之前()()()()()()0()()1()()()()yx a b o yx b a o a W s W s W s W s W s Y s W s X s W s W s W s Wo s +==⇒=-+前馈一般不能做到完全补偿。
常用静态前馈或者一些特定形式的动态前馈。
(a) 静态前馈即根据不变性原理求出()b S W ,用其静态放大系数作为补偿装置,它是一个比例环节: ()0|b b S s k W →=(b) 动态前馈直接根据不变性原理求得。
在热工过程控制中常用:211()1b bT s W s k T s +=+-----超前—滞后环节()0|b b S s k W →=当21T T >时 ,超前补偿(PD 作用) 当12T T >时,滞后补偿(PI 作用)21T T >tktk 12211(0)lim ()lim ()b b S S T y SY S SW S k S T →∞→∞===01()lim ()b b S y SW S k S→∞==3. 存在缺点:(1) 只能针对一种或者几种典型扰动设计()b W s ,然而生产过程中扰动因素很多,因而调节效果受到限制. (2) 对不可测量的扰动,无法实现补偿. (3) 不能做到完全补偿,实现复杂,采用b k 或者2111bT sk T s++近似补偿. 前馈—反馈调节系统:必须将前馈和反馈结合起来进行调节,利用前馈来减小扰动对被调量的影响,而反馈作用保障被调量等于给定值.二.前馈—反馈调节系统. 1.概念r y前馈控制:作用是有效抑制主要扰动,开环控制。
给水调节系统的类型汽包锅炉给水自动调节系统主要有三种主要的类型一.单冲量给水自动调节系统单冲量给水自动调节系统如图7-6所示。
(图7-6)这种系统只依据汽包水位一个信号进行调节,所以称为单冲量。
实际的汽包水位信号与给定值的偏差信号输入到比例积分调节器,如果存在偏差,调节器发出调节指令,通过调节机关改变给水量,直到汽包水位等于给定值为止。
单冲量给水自动调节系统是一种最基本、最简单的调节系统。
对于一些低参数、小容量的汽包锅炉,且对调节质量的要求不高,这种调节系统是适用的。
单冲量给水自动调节系统存在的缺陷也是十分明显的,主要是:1.不可能克服“虚假水位”现象造成的误动作。
在蒸汽量D变化时(如增加),汽包水位H一开始反而上升,调节系统接受的是H上升的信号,所以调节系统使给水量W下降,这是一个误动作,其调节的结果将进一步扩大了汽包流入量与流出量之间的物质不平衡,汽包水位H 大幅度波动,调节时间加长。
2.在给水流量W变化时,汽包水位H要经过一段时间τ后才能有所反应,所以调节作用也必定滞后,调节的结果也会造成汽包水位H波动较大,调节时间较长。
需要指出的是,单冲量给水调节系统的调节方案除了适用于小型汽包锅炉之外,对于大容量高参数汽包锅炉在低负荷工况时也是被采用的(详见本章第四节)。
二.单级三冲量给水自动调节系统单级三冲量给水自动调节系统是目前普遍采用的一种基本调节方案,是典型的系统类型,图7-7所示的是系统示意图。
(图7-7)调节器依据汽包水位H、给水流量W和蒸汽流量D三个信号进行调节,所以称为三冲量调节系统。
调节系统中构成有两个闭合回路,汽包水位测量装置、比例积分调节器、执行器、调节阀门和被调对象构成的闭合回路称为主回路或外回路;给水流量测量装置、比例积分调节器、执行器、调节阀门和被调对象构成的闭合回路称为副回路或内回路,所以系统也称为单级三冲量双回路调节系统。
单级是相对于串级而言,它说明在主回路中只有一个调节器。
汽包锅炉给水自动调节系统第一节给水调节任务与给水调节对象动态特性一、给水调节的任务汽包锅炉给水调节的任务是使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内。
汽包水位反映了汽包锅炉蒸汽负荷与给水量之间的平衡关系,是锅炉运行中一个非常重要的监控参数,保持汽包水位正常是保证锅炉和汽轮机安全运行的必要条件。
汽包水位过高,会影响汽包内汽水分离器的正常工作,造成出口蒸汽湿度过大(蒸汽带水)而使过热器管壁结垢,容易导致过热器烧坏。
同时,汽包出口蒸汽湿度过大(蒸汽带水)也会使过热汽温产生急剧变化,直接影响机组运行的经济性和安全性。
汽包水位过低,则可能破坏锅炉水循环,造成水冷壁管烧坏而破裂。
二、给水调节对象动态特性汽包水位是由汽包中的储水量和水面下的气泡容积所决定的,因此凡是引起汽包中储水量变化和水面下的气泡容积变化的各种因素都是给水调节的扰动。
(1)给水流量扰动。
这个扰动来自给水调节门的开度变化、省煤器可动喷嘴开关动作、给水压力变化、给水泵转速波动等引起锅炉给水量改变的一切因素。
(2)蒸汽负荷扰动。
这个扰动是指汽轮机负荷变化而引起的蒸汽流量的改变,它使水位发生变化。
(3)锅炉炉膛热负荷扰动。
这个扰动主要是由锅炉燃烧率的变化改变了蒸发强度而引起的,它影响锅炉的输出蒸汽流量和汽水容积中的气泡体积。
给水调节对象的动态特性是指由上述引起水位变化的扰动与汽包水位间的动态关系。
当给水流量扰动时,水位调节对象的动态特性表现为有惯性的无自平衡能力特征,也就是说,当给水流量改变后水位并不会立即变化。
给水流量增加,一方面使进入锅炉汽包的给水量增加;另一方面使温度较低的给水进入省煤器、汽包及水循环系统,吸收了原有饱和水中的一部分热量,致使水面下气泡体积减小。
当蒸汽流量扰动时,汽包水位将出现“虚假水位”现象。
原因是在蒸汽负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,当负荷突然减少时,水位反而先下降)。