盖铸造工艺设计说明书
- 格式:doc
- 大小:168.50 KB
- 文档页数:7
铸造⼯艺设计说明书铸造⼯艺设计说明书课程设计:机械⼯艺课程设计设计题⽬:底座铸造⼯艺设计班级:机⾃1103设计⼈:学号:指导教师:张锁梅、贾志新前⾔学⽣通过设计能获得综合运⽤过去所学过的全部课程进⾏机械制造⼯艺及结构设计的基本能⼒,为以后做好毕业设计、⾛上⼯作岗位进⾏⼀次综合训练和准备。
它要求学⽣全⾯地综合运⽤本课程及有关选修课程的理论和实践知识,进⾏零件加⼯⼯艺规程的设计和机床夹具的设计。
其⽬的是:(1)培养学⽣综合运⽤机械制造⼯程原理课程及专业课程的理论知识,结合⾦⼯实习、⽣产实习中学到的实践知识,独⽴地分析和解决机械加⼯⼯艺问题,初步具备设计中等复杂程度零件⼯艺规程的能⼒。
(2)培养学⽣能根据被加⼯零件的技术要求,运⽤夹具设计的基本原理和⽅法,学会拟订夹具设计⽅案,完成夹具结构设计,进⼀步提⾼结构设计能⼒。
(3)培养学⽣熟悉并运⽤有关⼿册、图表、规范等有关技术资料的能⼒。
(4)进⼀步培养学⽣识图、制图、运算和编写技术⽂件的基本技能。
(5)培养学⽣独⽴思考和独⽴⼯作的能⼒,为毕业后⾛向社会从事相关技术⼯作打下良好的基础。
⽬录⼀、⼯艺审核 (1)1.数量与材料 (1)2.图样 (1)3.零件的结构性 (1)⼆、成形⼯艺设计 (1)1.确定⼯艺⽅案 (1)(1)浇注位置的选择 (2)(2)分型⾯的选择 (2)2.确定铸造⼯艺参数 (4)(1)机械加⼯余量和铸出孔 (4)(2)浇注位置的选择 (5)(3)拔模斜度 (5)(4)铸造收缩率 (6)3.砂芯设计 (6)4.浇注系统的设计 (6)5. 冷铁的设置 (6)三、⼼得体会 (7)⼀、⼯艺审核1、数量与材料由零件图可知,该零件结构⽐较简单,但是形状不是很规则,⼯作条件⼀般以承受压⼒为主,故要求该零件有良好的刚性和强度。
另外,根据零件图的要求,该底座零件为单件⼩批量⽣产,另外材料选⽤灰铸铁HT200,流动性较好,适于铸造。
2、图样该零件图给出了主视图、左视图、俯视图3个视图。
铸造⼯艺设计说明书铸造⼯艺设计说明书⽬录1. 零件结构分析 (3)1.1. 零件信息 (3)1.2. 技术要求 (3)2. 铸造⼯艺⽅案分析 (5)2.1. 铸造⽅法的确定 (5)2.2. 分型⾯的选择 (5)2.3. 铸件浇注位置的确定 (7)3. 铸造⼯艺参数 (9)3.1. 铸件尺⼨公差 (9)3.2. 铸件重量公差 (9)3.3. 机械加⼯余量 (9)3.4. 铸造收缩率 (9)3.5. 起模斜度 (9)3.6. 最⼩铸出孔及槽 (10)3.7. ⼯艺补正量 (10)3.8. 分型负数 (10)3.9. 反变形量 (10)3.10. 砂芯负数 (11)3.11. ⾮加⼯壁厚的负余量 (11)3.12. 分型负数 (11)4. 砂芯设计 (12)4.1. 砂芯的概念 (12)4.2. 芯头设计 (12)5. 浇注系统设计 (16)5.1. 浇注系统设计原则 (16)5.2. 浇注系统位置确定 (17)5.3. 浇注系统类型确定 (17)5.4. 浇注系统尺⼨计算 (17)6. 冒⼝及冷铁 (22)6.1. 冒⼝补缩原则 (22)6.2. 冒⼝及冷铁位置个数的选择 (22)6.3. 冒⼝种类选择及参数计算 (23)6.4. 铸件成品率 (25)1. 零件结构分析1.1. 零件信息产品名称:⽀架材料:铸钢外形尺⼨:91×42×66cm 3 质量:463Kg g 463000cm 58983cm g 85.7v m 33=≈?=?=ρ⽣产批量:成批⼤量⽣产。
造型⽅法:⼿⼯造型其零件⽰意图如下图1.2. 技术要求铸件重要的⼯作表⾯,在铸造是不允许有⽓孔、砂眼、渣孔等缺陷。
2.铸造⼯艺⽅案分析2.1.铸造⼯艺的确定铸造⼯艺包括:造型⽅法、造芯⽅法、铸造⽅法及铸型种类的选择2.1.1.造型⽅法、造芯⽅法的选择根据⼿⼯造型和机器造型的特点,选择⼿⼯造型2.1.2.铸造⽅法的选择根据零件的各参数,对照表格中的项⽬⽐较,选择砂型铸造。
轮毂的铸造工艺及其热芯盒模具设计摘要随着社会的发展,机动车辆在生产和生活中的越来越广泛。
缸盖是机动车辆中的重要部件,其壳体的结构及加工精度直接影响轮毂的正常工作,因此研究轮毂的加工方法和工艺的编制是十分必要和有意义的。
本设计是对前轮毂零件进行铸造毛坯工艺设计。
根据零件的使用条件、结构特点、生产批量,结合工厂现有设备等进行铸造工艺分析,确定了铸造方法、造型及造芯方法、凝固原则及浇注位置、分型面、砂箱中铸件数量、砂型数量等,完成了砂芯、浇注系统、冒口及冷铁、相关工装设备等设计。
本设计采用壳芯盒法制芯,根据芯子的形状及重量选用763射芯机进行射芯,采用酚醛树脂砂作为制芯材料。
接着对壳芯盒本体进行设计,芯盒本体的设计主要包括芯盒的结构及分盒面的选择,射砂口的设计,芯盒材料的选择,芯盒中砂芯的数目,排气装置的设计以及芯盒顶出机构的设计。
关键字:砂型铸造,工艺分析,工艺设计,壳芯工装设计The Casting Technology and Hot Core BoxMold Design of HubABSTRACTAlong with social development, motor vehicle used in production and life is increasingly wide. Hub is an important vehicle component and its interior structure and processing precision directly affect the hub normal work. Study hub cast processing methods and techniques of preparation is necessary and meaningful.This design is the casting technology design for front hub in vehicle. According to the application conditions, structural features, production batch and existing equipment, it determines the method of casting, modeling, core making, solidification principles and pouring position, parting surface, the quantity of casting and mold etc. It completes the design of sand core, pouring system, riser, chill and related equipment etc.This design uses the shell core box making core. According to the shape and weight it choose 763 shoot core machine shoot core and use phenolic resin sand as the core making material. Then design the shell core box body, the core box body design mainly includes the core box structure and box surface selection, sand jetting port core box design, choice of materials, core box of sand core in number, exhaust design and installation of the core box lifting mechanism design.KEY WORDS:sand casting,technology analysis,technology design,Shell core fixture design目录前言 (1)第一章铸造工艺设计 (2)§1.1 零件概述 (2)§1.1.1 零件信息 (2)§1.1.2 技术要求 (2)§1.2 铸造工艺方案的确定 (3)§1.2.1 造型、造芯方法及铸型种类的确定 (3)§1.2.2 浇注位置和分型面的确定 (3)§1.2.3 砂箱中铸件数目的确定 (6)§1.3 工艺参数的选择 (6)§1.3.1 铸造收缩率 (6)§1.3.2 机械加工余量、铸件的尺寸和重量偏差 (7)§1.3.3 拔模斜度的确定 (8)§1.3.4 铸造圆角的确定 (8)§1.3.5 最小铸出口及槽 (8)§1.4 浇注系统的设计 (8)§1.4.1 浇注系统的概述 (8)§1.4.2 浇注系统类型的选择 (9)§1.4.3 浇注系统的设计与计算 (10)§1.4.4 出气孔的设计 (13)§1.5 砂芯的设计 (13)§1.5.1 砂芯的概述 (13)§1.5.2 砂芯数量的确定 (13)§1.5.3 芯头的设计 (13)§1.5.4 壳芯的制备 (14)§1.6 冒口及冷铁的设计 (15)§1.6.1 冒口的设计 (15)§1.6.2 冷铁的设计 (15)第二章铸造工艺装备设计 (16)§2.1 模板 (16)§2.1.1 模样的设计 (16)§2.1.2 模底板的设计 (16)§2.2 壳芯工装设计 (17)§2.2.1 壳芯的概述 (17)§2.2.2 壳芯工艺 (17)§2.2.3 壳芯盒的材料 (18)§2.2.4 壳芯工装设计 (19)结论 (23)参考文献 (24)致谢 (25)前言近年来,能源,环境和安全问题受到普遍关注,汽车行业尤为突出。
目录摘要Abstract1.序言2.压铸模设计概述3设计任务及要求4压铸件的工艺性分析5分型面的选择6压铸机设备的选择和校核7浇注系统及排溢系统的设计8推出机构的设计9模具成型零件的设计10模架及其零件的设计11 模具零件的机加工工艺设计12心得体会参考文献文献综述摘要压铸是制造业的一种工艺,能够成型复杂的高精度的金属制品,多用于汽车制造,机械制造等。
本课题是对端盖进行模具设计并分析加工工艺。
本文介绍了现代模具制造技术的现状及其发展方向,重点说明了铝合金零件压铸模具的设计过程。
它主要从产品左端盖的工艺分析(主要包括脱模斜度、壁厚、孔、尺寸精度和表面粗糙度、收缩率等),成型方案的确定,压铸机的选用与确定,有色金属压铸模具的几大系统(浇注系统、成型零部件、冷却系统、排气系统、导向系统等)的分析与设计,各种技术数据的校核等方面出发,详细的介绍了压铸模具设计过程中的若干问题,并简要的介绍了压铸模具零件加工过程中的相关问题。
关键词:压铸工艺分析压铸成型设备模具结构加工1序言近年,模具增长十分迅速,高效率、自动化、大型、微型、精密、高寿命的模具在整个模具产量中所占的比重越来越大。
模具是利用其特定形状去成型具有一定的形状和尺寸制品的工具。
在各种材料加工工业中广泛的使用着各种模具。
例如金属铸造成型使用的砂型或压铸模具、金属压力加工使用的锻压模具、冷压模具等各种模具。
对模具的全面要求是:能生产出在尺寸精度、外观、物理性能等各方面都满足使用要求的公有制制品。
以模具使用的角度,要求高效率、自动化操作简便;从模具制造的角度,要求结构合理、制造容易、成本低廉。
作为模具专业的学生,综合检测理论在实际应用中的能力,除了平时的考试、实验测试外,更重要的是理论联系实际,即此次设计的课题为左端盖压铸模具。
本次毕业设计课题来源于生活,应用广泛,但成型难度大,模具结构较为复杂,对模具工作人员是一个很好的考验。
它能加强对压铸模具成型原理的理解,同时锻炼对压铸成型模具的设计和制造能力。
材料成型过程控制院系:材料科学与工程学院专业:材料成型与控制工程姓名:学号:指导老师:日期:2012.9.19至2012.10.15目录一、铸造工艺分析 (1)二、砂芯设计 (3)三、冒口设计 (5)四、浇注系统的设计及计算 (7)五、沙箱铸件数量的确定 (10)六、参考数目、资料 (11)图1所示的事U型座,主要用于拆卸主轴上的皮带轮。
材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。
技术要求:①未标示的铸造圆角半径R=3~5。
②未标铸造倾斜度按工厂规格H59~21。
③铸件应仔细地清理去掉毛刺及不平处。
图1一、铸造工艺分析1.确定铸型种类和造型、制芯方法此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。
2.确定浇注位置和分型面方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。
容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。
方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。
综合以上两种方案考虑,选择方案2较为合理。
图2 图3 铸件全部位于上箱,下表面为分型面上下上下原料供应,芯砂的流动性好,硬化速度快,硬化温度范围较宽,热态砂芯强度和常温机械强度都很好,浇注后型芯的退让性能好,故选择呋喃树脂热芯盒射芯法造芯,2. 确定砂芯的芯头个数、形状、尺寸、间隙和谐度根据砂芯及型腔形状,确定芯头个数为1,芯头为自硬型,由表1—31查得:间隙S=1.0mm ,芯头高度为36mm ,芯头斜度由表1—33查得α=7°,a=5mm 。
铸造工艺课程设计说明书目录1 前言 (4)1。
1本设计的意义 (4)1.1.1 本设计的目的 (4)1.1。
2 本设计的意义 (5)1.2本设计的技术要求 (5)1。
3本课题的发展现状 (5)1.4本领域存在的问题 (6)1.5本设计的指导思想 (6)1。
6本设计拟解决的关键问题 (7)2 设计方案 (7)2。
1零件的材质分析 (8)2.2支座工艺设计的内容和要求 (9)2.3造型造芯方法的选择 (11)2。
4浇注位置的选择与分型面的选择 (12)2。
4.1 浇注位置的选择 (12)2.4.2 分型面的确定 (14)2.4.3 砂箱中铸件数目的确定 (15)3 设计说明 (17)3。
1工艺设计参数确定 (17)3。
1.1 最小铸出的孔和槽 (17)3.1.2 铸件的尺寸公差 (18)3。
1.3 机械加工余量 (19)3。
2铸造收缩率 (19)3。
2。
1 起模斜度 (20)3.2。
2 浇注温度和冷却时间 (21)3。
3砂芯设计 (22)3.3。
1 芯头的设计 (22)3。
3。
2 砂芯的定位结构 (23)3。
3.3 芯骨设计 (23)3.3.4 砂芯的排气 (23)3。
4浇注系统及冒口,冷铁,出气孔的设计 (24)3。
4.1 浇注系统的类型和应用范围 (24)3。
4。
2 确定内浇道在铸件上的位置、数目、金属引入方向 (24)3.5决定直浇道的位置和高度 (25)3.5.1 计算内浇道截面积 (25)3.5.2 计算横浇道截面积 (26)3。
5。
3 计算直浇道截面积 (27)3。
5.4 冒口的设计 (27)4 铸造工艺装备设计 (28)4。
1模样的设计 (28)4。
1.1 模样材料的选用 (28)4.1。
2 金属模样尺寸的确定 (29)4。
1。
3 壁厚与加强筋的设计 (29)4。
1。
4 金属模样的技术要求 (29)4.1。
5 金属模样的生产方法 (29)4.2模板的设计 (30)4。
2。
1 模底板材料的选用 (30)4.2。
课程设计说明书(论文)课程名称:成型工艺及模具课程设计II设计题目:端盖零件铸造工艺设计院系:班级:设计者:学号:指导教师:设计时间:1、设计任务1.1、设计零件的铸造工艺图1.2、设计绘制模板装配图1.3、设计并绘制所需芯盒装配图1.4、编写铸造工艺设计说明书2、生产条件和技术要求2.1、生产性质:大批量生产2.2、材料:HT2002.3、零件加工方法:零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。
造型方法:机器造型造芯方法:手工制芯2.4、主要技术要求:满足HT200的机械性能要求,去毛刺及锐边,未注明圆角为R3-R5,未注明的筋和壁厚为8,铸造拔模斜度不大于2度,铸造表面不允取有缺陷。
3、零件图及立体图结构分析3.1、零件图如下:图1.零件主视图图2.零件左视图3.2三维立体图如下:图3.三维图(1)图4.三维图(2)4、工艺设计过程4.1、铸造工艺设计方法及分析4.1.1铸件壁厚为了避免浇不到、冷隔等缺陷,铸件不应太薄。
铸件的最小允许壁厚与铸造的流动性密切相关。
在普通砂型铸造的条件下,铸件最小允许壁厚见表1。
表1. 铸件最小允许壁厚引【1,表1-3】查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。
由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。
4.1.2造型、制芯方法造型方法:该零件需批量生产,为中小型铸件,应创造条件采用技术先进的机器造型,暂选取水平分型顶杆范围可调节的造型机,型号为Z145A。
制芯方法:由生产条件决定,采用手工制芯。
4.1.3砂箱中铸件数目的确定当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。
一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。
本铸件在一砂箱中高约52mm,长约130mm,宽约100mm,重约2.75Kg。
目录1 设计任务 (2)1.1设计任务 (2)1.2设计的技术要求 (2)2 铸造工艺方案的确定 (4)2.1铸造工艺方案分析与论证 (4)2.1.1 零件结构分析 (4)2.1.2 分型面的确定 (4)2.1.3 浇注系统(包括冒口)的选择 (5)2.1.4 工艺参数的确定 (8)2.1.5 铸造工艺简图 (2)2.2芯盒的设计 (11)2.2.1 制芯方法的确定 (11)2.2.2 芯盒选材 (12)2.2.3 芯盒简图 (13)2.3模板的设计 (13)2.3.1 模板类型 (13)2.3.2 模板的选材 (13)2.3.3 模板的定位装置 (13)2.3.4 模板简图 (13)2.4合箱图 (15)2.4.1 砂箱的选择 (15)2.4.2 砂箱的定位 (15)2.4.3 砂箱的其它工艺参数(包括压铁、起吊等) (15)2.4.4 合箱图 (15)3 铸造工艺卡 (16)4 参考文献 (15)1设计任务1.1设计任务泵盖铸造工艺设计图11.2设计的技术要求设计应达到的技术要求:实际主要用于零件的外部,起密封,阻挡灰尘的作用,故其在机器中只是起辅助作用,对机器的稳定运行影响不是很大,其在具体加工的时候,精度要求也不是很高,加工起来也十分容易。
依据图纸要满足下列要求:1、材质灰铁150、未注铸造圆角均为R3;2、铸件表面不得有沙眼、缩孔等缺陷;3、泵盖底部Φ132表面Ra为3.2,Φ100表面Ra为6.3,二者之间台阶Ra1.6。
Φ14中心孔内表面Ra为 1.6,Φ25中心孔内表面Ra为6.3,其余为Ra12.5;4、两个圆柱孔分别为中心大圆柱Φ25H9基本尺寸为Φ25mm,公差带为H8的孔;中心小圆柱Φ14H92铸造工艺方案的确定2.1铸造工艺方案分析与论证2.1.1零件结构分析名称:泵盖材料: HT150外形尺寸:132×12×40mm 体积: 2.21×102cm3质量: 1.59kg 生产批量:中大批量生产(自定)表面积:3.97×102cm2 密度:7.2g/cm3a b图2 泵盖:三维零件图2.1.2分型面的确定在生产中考虑选择分型面时应注意以下原则:1、应使铸件全部或大部置于同一半型内,以保证铸件精度。
课程设计说明书泵盖铸造工艺设计院系:机械工程学院专业:材料成型及控制工程班级:姓名:学号:指导老师:时间:目录1.铸造工艺分析 (1)1.1零件介绍 (1)1.2零件生产方式选择 (1)1.3技术要求分析 (1)1.4 合金铸造性能分析 (2)2.确定铸造工艺方案 (2)2.1确定铸造方法 (2)2.2确定浇注位置和分型面 (2)2.3确定型内铸件数目 (3)2.4不铸出孔及槽的确定 (3)2.5机械加工余量和铸造圆角的确定 (3)2.6起模斜度和分型负数的确定 (5)2.7砂芯的确定 (7)2.8铸造收缩率的确定 (7)2.9冒口的确定 (7)2.10浇注系统的确定 (8)3.芯盒的设计 (9)3.1芯盒材质和分盒方式的确定 (9)4.总结 (9)参考资料 (10)1.铸造工艺分析零件简介:1.1零件介绍:零件名称:泵盖零件材料:HT2001.2零件生产方式选择:大批量生产,零件图如下:1.3技术要求分析按照国家标准,对于HT200,其抗拉强度应达到200Mpa。
铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。
另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。
除此外无特殊技术要求。
注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。
1.4 合金铸造性能分析灰铸铁具有良好的铸造性能:(1)流动性。
灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。
(2)收缩性。
灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。
(3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。
2.确定铸造工艺方案2.1确定铸造方法铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。
目录一、零件的技术要求和材质 (2)二、铸件结构的工艺性分析 (2)三、零件铸造工艺方案 (5)四、砂芯设计 (8)五、芯盒设计 (10)六、金属型设计 (12)七、铸件缺陷分析及解决方案 (16)八、设计小结 (17)九、参考文献 (19)设计内容、设计步骤、公式及计算备注一、零件的技术要求及材质零件名称:盖1.1、零件的技术要求铸件尺寸公差按GB6414 - 86 CT41.2零件的材质分析铸件成型材料为ZL102,其化学成分如下:表一 ZL102化学成分Si Cu Mg Mn Al10.0-13.0 ≤0.30(杂质) ≤0.10 ≤0.5(杂质)余量由于ZL102成分在共晶点左右,故在铝硅二元系中,铸造性能最好强度也较高,致密度较好,但塑性较低。
具有良好的抗蚀性,耐磨性和耐热性。
必须进行热处理,提高力学性能。
适用于薄壁复杂铸件及对气密性要求较高的铸件以及压铸件。
二.铸件结构的工艺性分析从铸造工艺角度,结合零件结构特征对铸造生产方法进行选择。
本零件因中大批量生产,采用金属型。
材料:ZL102中大批量生产金属型铸造2.1、铸件壁厚铸件的壁厚要力求均匀,壁的后、薄不宜相差悬殊,在保证能浇注成型的条件下尽量采用最小壁厚;尽量避免采用大的薄壁平面,若必需采用大的薄壁平面时,则设有铸孔或加强筋。
ZL102砂型铸造中的最小壁厚为3mm。
盖的零件图如图所示,壁厚基本均匀,主要壁厚3mm,最小壁厚3mm,最大壁厚21mm,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。
2.2、壁的连接铸件的连接应圆滑过度,并应尽量避免铸件有厚大的热节点,尤其是三个以上断面集结于一点或一根线上,都是比较难于铸造的。
零件如图2-1:图2-1零件图2.3、铸件三维实体图三.铸造工艺方案的设计铸造工艺方案设计的内容主要有铸造工艺方法的选择,铸件浇注位置及分型面的选择,铸件初加工基准面的选择,铸造工艺设计有关工艺参数的选择等。
阀盖铸造工艺设计说明书
1. 工艺流程
开始>模具制造>材料准备>熔炼铸造>去毛刺>抛光>喷涂>质检>包装>完成
2. 模具制造
制作阀盖铸造所需模具,包括上、下模和中心柱。
模具要求精度高,尤其是中心柱的精度需要准确。
3. 材料准备
选用优质的高温合金材料,按照合适的比例混合,并进行称重和计量。
4. 熔炼铸造
将混合好的合金材料放入电弧炉中进行熔炼。
进行熔炼时需要加入合适的合金元素,以提高合金的性能和耐用性。
5. 去毛刺
将阀盖从模具中取出,去除表面的毛刺和凸起。
6. 抛光
对阀盖的表面进行抛光,使用不同颜色的研磨材料进行多次抛光,直到达到合适的表面光洁度。
7. 喷涂
将阀盖进行喷涂处理,使用合适的涂料,并按照要求进行喷涂厚度和油漆的颜色。
8. 质检
对阀盖进行质检,包括尺寸、表面光洁度、颜色、材料性能等方面的检查。
9. 包装
对质量合格的阀盖进行包装打包,以便运输和使用。
10. 完成
工艺流程结束,产品正式完成,准备投入使用。
端盖零件铸造工艺课程设计说明书Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT课程设计说明书(论文)课程名称:成型工艺及模具课程设计II设计题目:端盖零件铸造工艺设计院系:班级:设计者:学号:指导教师:设计时间:1、设计任务、设计零件的铸造工艺图、设计绘制模板装配图、设计并绘制所需芯盒装配图、编写铸造工艺设计说明书2、生产条件和技术要求、生产性质:大批量生产、材料:HT200、零件加工方法:零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。
造型方法:机器造型造芯方法:手工制芯、主要技术要求:满足HT200的机械性能要求,去毛刺及锐边,未注明圆角为R3-R5,未注明的筋和壁厚为8,铸造拔模斜度不大于2度,铸造表面不允取有缺陷。
3、零件图及立体图结构分析、零件图如下:图1.零件主视图图2.零件左视图三维立体图如下:图3.三维图(1)图4.三维图(2)4、工艺设计过程、铸造工艺设计方法及分析铸件壁厚为了避免浇不到、冷隔等缺陷,铸件不应太薄。
铸件的最小允许壁厚与铸造的流动性密切相关。
在普通砂型铸造的条件下,铸件最小允许壁厚见表1。
表1. 铸件最小允许壁厚引【1,表1-3】查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。
由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。
造型、制芯方法造型方法:该零件需批量生产,为中小型铸件,应创造条件采用技术先进的机器造型,暂选取水平分型顶杆范围可调节的造型机,型号为Z145A。
制芯方法:由生产条件决定,采用手工制芯。
砂箱中铸件数目的确定当铸件的造型方法、浇注位置和分型面确定后,应当初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。
一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。
本铸件在一砂箱中高约52mm,长约130mm,宽约100mm,重约。
锻造工艺设计说明书全套图纸加153893706设计题目:端盖铸造工艺设计目录一.绪论 (1)二.绘制铸造工艺图 (1)三.参考文献 (5)一.绪论铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。
铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了制作时间.铸造是现代装置制造工业的基础工艺之一。
铸造分类主要有砂型铸造和特种铸造2大类。
其中,普通砂型铸造,利用砂作为铸模材料,又称砂铸,翻砂,包括湿砂型、干砂型和化学硬化砂型3类,但并非所有砂均可用以铸造。
好处是成本较低,因为铸模所使用的沙可重复使用;缺点是铸模制作耗时,铸模本身不能被重复使用,须破坏后才能取得成品。
此次机械工艺课程设计,齿轮零件的加工也采用砂型铸造的方式,与此同时,还要完成对端盖零件的工艺审核、成形工艺设计、机械加工工艺设计、经济成本核算等一系列工作。
与金工实习不同的是,这次我们不再是单纯的学习加工方法,我们要从毛坯件开始,对一个零件进行加工工艺设计。
这是对我们之前所学的《工程材料》、《机械设计》、《机械制图》等课程的实际应用与检验,也是对我们对知识应用能力的检验。
二.绘制铸造工艺图铸件图是铸件验收和冷加工车间进行铸件加工工装设计的重要依据。
它在零件的基础上考虑了加工余量、锻造公差、锻造余块检验式样及操作夹头等因素。
浇注位置与分型面、加工余量、拔模斜度、收缩率和铸造圆角、型芯、冷铁和芯头确定、浇注系统(冒口)等因素。
根据零件图的基本图样,结合砂型铸造工艺特点考虑上述因素绘制而成。
1.浇注位置的选择:1)重要加工面或要求高的面,置于铸型下部或侧立;2)将大平面朝下,以免出现气孔和夹砂。
3)大面积薄壁件,将薄壁放在下部或处于侧立。
根据以上原则选取如图浇注位置。
2.铸型分型面的选择:1)将重要加工面或大部分加工或加工基准面置于同一砂箱以保证尺寸精度。
铸造工艺设计说明书一、铸造工艺设计的目的和意义铸造是将液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法。
铸造工艺设计则是根据零件的结构特点、技术要求、生产批量等因素,确定铸造方法、铸型分型面、浇注系统、冒口和冷铁等工艺参数,以保证获得高质量的铸件,并提高生产效率、降低成本。
良好的铸造工艺设计具有重要意义。
首先,它能够保证铸件的质量,减少铸造缺陷的产生,如气孔、缩孔、夹渣等。
其次,合理的工艺设计可以提高生产效率,降低生产成本,缩短生产周期。
此外,还能为后续的机械加工提供良好的基础,减少加工余量,提高材料利用率。
二、零件分析1、零件结构对需要铸造的零件进行结构分析,包括形状、尺寸、壁厚均匀性等。
例如,形状复杂的零件可能需要采用复杂的分型面和浇注系统;壁厚不均匀的零件容易产生缩孔、缩松等缺陷,需要合理设置冒口和冷铁。
2、技术要求明确零件的技术要求,如材质、力学性能、表面质量等。
不同的材质和性能要求会影响铸造工艺的选择和参数的确定。
3、生产批量生产批量的大小直接影响铸造方法的选择。
大批量生产时,通常采用金属型铸造、压力铸造等高效率的铸造方法;小批量生产则多采用砂型铸造。
三、铸造方法的选择1、砂型铸造砂型铸造是应用最广泛的铸造方法,其优点是成本低、适应性强,可生产各种形状和尺寸的铸件。
但砂型铸造的生产效率较低,铸件的表面质量相对较差。
2、金属型铸造金属型铸造的生产效率高,铸件的精度和表面质量好,但模具成本高,适用于大批量生产形状简单、尺寸较小的铸件。
3、压力铸造压力铸造能生产出形状复杂、薄壁的高精度铸件,但设备投资大,主要用于生产大批量的有色金属铸件。
4、熔模铸造熔模铸造适用于生产形状复杂、精度要求高、难以机械加工的小型零件。
根据零件的结构、技术要求和生产批量,综合考虑选择合适的铸造方法。
四、铸型分型面的选择分型面的选择直接影响铸型的制造、造型操作的难易程度以及铸件的质量。
盖铸造工艺设计说明书1铸件构造工艺性分析1.1铸件根本情况:铸件材料为ZG310—570,铸件属半圆环厚壁零件,最大直径780mm,最小直径490mm,加工后最大壁厚210mm,最小145mm,加工后净重238Kg,铸件尺寸精度CT14,质量需符合GB/T6414—1999标准,允许深度不大的短小裂纹补焊,加工面不允许有肉眼看见的缩孔、缩松和裂纹等缺陷。
铸件属于中型铸件,属单件小批量生产性质类型。
根据零件三视图,画出铸件三维图如图1-1所示。
图1-1 铸件三维图1.2铸件构造工艺性分析铸件壁厚的适宜性分析铸件壁过薄,铸件将产生浇缺乏、冷隔、浇注流痕等铸造缺陷,铸件壁过厚,将使铸件由于冷却过慢晶粒粗大,也影响铸件的机械性能,因此对于一个具体的铸件,根据其材料与铸造方法,必须有一个最小临界壁厚才能保证其铸造工艺的实施。
由于零件属单件小批量生产类型,因此适宜的铸造方法为砂型铸造,根据材料的类型与铸件最大尺寸,查阅资料[1],从铸件尺寸来看,临界壁厚必须小于39mm,而本铸件最小壁厚为145mm,远远大于临界壁厚,所以本铸件属厚壁件,因此在铸造过程中应想法使金属液快速冷却。
铸件壁的连接过渡圆角铸件的过渡圆角过小,将使连接处产生较大的铸造应力,并有可能造成铸件开裂,对于本铸件来说,铸件尺寸大,铸件收缩亦大,从而铸造应力更大,铸件壁连接转角更易开裂,因此对铸造圆角的大小进展分析具有重要意义。
从图1-2可知,其过渡圆角查阅资料[2]可知,铸造适宜的圆角应在R50较为适宜,本铸件的过渡圆角在图中为R20,此处圆角过小,易在此处产生较大的铸造应力,导致铸件在此处开裂,因此,与厂家协商后,铸造工艺设计中按铸造圆角R50进展设计模样与芯盒。
1.3铸件可能产生的铸造缺陷本铸件属于中型半圆环厚壁铸件,对于此类铸件,铸件由于壁太厚,铸造完成后容易使晶粒粗大,以至于达不到厂家所要求的力学性能,为消除与防止这些缺陷的产生,铸件除快速浇注外,还需采用加冷铁等方法方法。
毕业设计(论文)题目:球墨铸铁轴承盖铸造工艺设计学生:王XX指导老师:XXX系别:材料科学与工程系专业:材料科学与工程班级:学号:2010年6月本科毕业设计(论文)作者承诺保证书本人重承诺:本篇毕业设计(论文)的容真实、可靠。
如果存在弄虚作假、抄袭的情况,本人愿承担全部责任。
学生签名:年月日工程学院本科毕业设计(论文)指导教师承诺保证书本人重承诺:我已按有关规定对本篇毕业设计(论文)的选题与容进行了指导和审核,该同学的毕业设计(论文)中未发现弄虚作假、抄袭的现象,本人愿承担指导教师的相关责任。
指导教师签名:年月日目录摘要 (I)Abstract (II)第一章绪论 (1)1.1铸造的定义 (1)1.2铸造行业的现状 (1)1.3铸造的发展趋势 (1)第二章轴承盖的工艺结构分析 (3)2.1铸件壁的合理结构 (3)2.1.1铸件的最小壁厚 (3)2.1.2铸件的临界壁厚 (3)2.1.3铸件壁的联接 (3)2.2铸件加强肋 (3)2.3铸件的结构圆角 (4)2.4避免水平方向出现较大平面 (4)2.5利于补缩和实现顺序凝固 (4)第三章轴承盖整个铸造设计流程 (5)3.1造型材料的选择 (5)3.1.1造型材料的定义 (5)3.1.2造型材料的分类及其特点 (5)3.1.3造型材料的选择 (6)3.2铸件浇注位置的选择 (7)3.3分型面的选择 (8)3.4 砂芯设计 (10)3.4.1砂芯分块 (10)3.4.2芯头设计 (10)3.5铸造工艺设计 (12)3.5.1铸件机械加工余量 (12)3.5.2机械加工余量 (13)3.5.3铸造斜度 (14)3.5.4铸件收缩率 (14)3.5.5最小铸出孔和槽 (16)3.5.6分型负数 (17)3.6浇注系统设计 (17)3.6.1浇口杯选择 (17)3.6.2浇注系统类型 (17)3.6.3浇注系统的尺寸计算 (18)3.6.4冒口的选择 (20)3.7合箱 (20)第四章结论 (22)4.1结论 (22)4.2 研究方向和展望 (22)致 (23)参考文献 (24)球墨铸铁轴承盖铸造工艺设计摘要随着科学技术的发展,我国的铸件水平有了很大提高,为了提高铸件质量,降低成本,对某球墨铸铁轴承盖进行了铸造工艺设计。
轴承压盖铸造工艺设计说明书
1、铸造工艺课程设计说明书设计题目轴承压盖铸造工艺设计学院年级专业学生姓名学号指导教师In铸造工艺课程设计说明书名目1前言11.1本设计的目的、意义11.1.1本设计的目的11.1.2本设计的意义11.2本设计的技术要求11.3本课题的进展现状21.4本事域存在的问题21.5本设计拟解决的关键问题32设计方案42.1轴承压盖的工艺结构分析42.1.1零件基本信息42.1.2轴承压盖铸件结构分析52.2砂型铸造方法52.3浇注位置的选择52.4分型面的选择73铸造工艺参数及砂芯设计93.1铸造工艺参数确实定93.1.1铸件尺寸公差与铸件重量公差93.1.2机
2、械加工余量103.1.3起模斜度113.1.4铸造收缩率113.1.5最小铸出孔及槽123.2砂芯设计123.2.1砂芯确实定133.2.2芯头尺寸设计134浇注系统的设计154.1浇注系统类型的选择154.2浇注时间计算154.3浇注系统尺寸确实定164.3.1平均压力头计算164.3.2核算剩余压力头164.3.3阻流截面积计算1627n铸造工艺课程设计说明书4.3.4直浇道174.3.5横浇道174.3.6内浇道174.4冒口及冷铁设计184.4.1铸件结构分体与补缩区划分184.4.2铸件模数计算184.4.3冒口颈模数计算184.4.4冒口的
3、尺寸确实定185铸造砂箱、模样的设计205.1模样205.2砂箱的设计215.3芯盒236结论25致谢26
第1页。
盖铸造工艺设计说明书1铸件结构工艺性分析1.1铸件基本情况:铸件材料为ZG310—570,铸件属半圆环厚壁零件,最大直径780mm,最小直径490mm,加工后最大壁厚210mm,最小145mm,加工后净重238Kg,铸件尺寸精度CT14,质量需符合GB/T6414—1999标准,允许深度不大的短小裂纹补焊,加工面不允许有肉眼看见的缩孔、缩松和裂纹等缺陷。
铸件属于中型铸件,属单件小批量生产性质类型。
根据零件三视图,画出铸件三维图如图1-1所示。
图1-1 铸件三维图1.2铸件结构工艺性分析1.2.1铸件壁厚的合适性分析铸件壁过薄,铸件将产生浇不足、冷隔、浇注流痕等铸造缺陷,铸件壁过厚,将使铸件由于冷却过慢晶粒粗大,也影响铸件的机械性能,因此对于一个具体的铸件,根据其材料与铸造方法,必须有一个最小临界壁厚才能保证其铸造工艺的实施。
由于零件属单件小批量生产类型,因此适宜的铸造方法为砂型铸造,根据材料的类型与铸件最大尺寸,查阅资料[1],从铸件尺寸来看,临界壁厚必须小于39mm,而本铸件最小壁厚为145mm,远远大于临界壁厚,所以本铸件属厚壁件,因此在铸造过程中应想法使金属液快速冷却。
1.2.4铸件壁的连接过渡圆角铸件的过渡圆角过小,将使连接处产生较大的铸造应力,并有可能造成铸件开裂,对于本铸件来说,铸件尺寸大,铸件收缩亦大,从而铸造应力更大,铸件壁连接转角更易开裂,因此对铸造圆角的大小进行分析具有重要意义。
从图1-2可知,其过渡圆角查阅资料[2]可知,铸造合适的圆角应在R50较为合适,本铸件的过渡圆角在图中为R20,此处圆角过小,易在此处产生较大的铸造应力,导致铸件在此处开裂,因此,与厂家协商后,铸造工艺设计中按铸造圆角R50进行设计模样与芯盒。
1.3铸件可能产生的铸造缺陷本铸件属于中型半圆环厚壁铸件,对于此类铸件,铸件由于壁太厚,铸造完成后容易使晶粒粗大,以至于达不到厂家所要求的力学性能,为消除与防止这些缺陷的产生,铸件除快速浇注外,还需采用加冷铁等方法方法。
二.铸件整体工艺方案设计1.铸造工艺方法选择本铸件为中型铸钢件,属于单件小批量,因而只能采用砂型铸造,因水玻璃砂无论从环保、成本及铸件质量来说,在所有砂型种类中综合性能比较好,并且对铸钢件来说,抗粘砂性能也很好,因此本铸件整体采用水玻砂造型最为合适,考虑到铸件属于中型铸件,厚壁也比较大,型砂与金属液接触的时间较长,粘砂趋向严重,因此铸型表面浸涂锆英粉酒精涂料2mm左右。
2.铸件浇注位置本铸件采用滴注式浇筑。
图2-1 铸件浇注位置3.分型面确定根据分型面选择原则,尽可能使铸件处于全部一个砂箱考虑,将分型面设置在下表面,这样设置不仅分型面为平面,而且铸件全部处在上砂箱,铸件精度定位高,这样造型、合箱等均较为方便。
分型面设计如图2-2。
图2-2 铸件分型面4.砂箱中铸件数量及排列本铸件尺寸较大,质量也大,浇注过程中所需铁水多,如再考虑一箱多件,不仅铸造生产操作不便,生产也不经济,铸造过程报废风险也大,因此本铸件采取一箱一件原则,吃砂量根据铸件重量及铸件大小考虑,查表[4]确定吃砂量为400mm。
三、铸造工艺参数确定1.铸件尺寸公差本铸件属于单件小批量生产的砂型铸造,对于单件手工造型的铸钢件生产,国家标准规定铸造精度在CT13—15范围内,本铸件要求铸造精度在CT14级,精度要求合适,为提高铸件精度,除了精确考虑铸件收缩外,但为了提高铸件精度,应重点考虑模具结构及模具材料,同时铸型要用高强度型砂,为此本铸件采用整体模样,呋喃树脂自硬砂造型。
2.铸件重量公差本铸件重量不影响其质量及使用功能,重量公差不考虑,只要其尺寸在范围内即可,因此重量公差根据按MT14控制。
3.机械加工余量根据GB/T6414-1999机械加工余量标准规定,本铸件加工余量等级为G~K范围,考虑到铸件铸造精度不是太高,精度按J控制,铸件加工后最大尺寸210mm,查表[5]加工余量为10mm,因此铸件的下表面加工余量为10mm,上表面由于有冒口及其它铸造缺陷存在,精度降低一级,按K级考虑,加工余量为14mm,铸件上的孔都处于侧壁,考虑到孔尺寸小,实际定位尺寸也小,铸造工艺又处于高精度控制思想控制,因处孔的加工余量按G级最高精度确定加工余量较为合理,其加工余量为8mm。
孔的台阶面虽也为加工面,但其实只需表面平整利于拧紧螺帽就行,如图3-1为孔的螺母拧紧面。
这个面的尺寸精度要求不高,只需加工后平整就行,因此孔的拧紧面确定3mm加工余量。
4.铸件收缩率本铸件属于自由收缩,这里查表得收缩率为2.0%5.模样起模斜度由于铸件是单件小批生产,模样采用木模结构,根据铸件浇注位置与分型面设置,铸件全部处于上箱,因而模样全部在上箱,铸件高度为210mm,模样高度比铸件高度加放一个收缩量,因此模样高度为252mm,按自硬砂木模造型查表[7],起模斜度为0°30′,即0.5°。
起模斜度方向为加大法7.不铸出结构根据铸造工艺理论,需要加工的孔与槽只有在尺寸大于一定值时才铸出,其最小铸出尺寸根据铸造工艺类型,铸造合金种类,铸件壁厚大小及孔、槽的深度或长度有关,根据孔长度及壁厚查找碳钢件的最小铸出孔[9],可知最小铸出孔为100mm,本铸件的加工孔在放置加工余量后小于这个尺寸,因此本铸件的孔全部不铸出,本铸件的槽,也不铸出。
8.反变形量因铸件为不易变形结构,不考虑反变形量9.工艺补正量铸件的理论收缩与实际收缩的不同,可能影响铸件孔之间的毛坯距离与加工距离不同,因此铸件孔的的台阶面需加一个工艺补正量,根据孔的定位距离与孔台阶半径,查表[10],当孔距离在501~1000,凸台半径为>25时,工艺补正量为3.5,本铸件的螺孔台阶直径为39,,因此工艺补正量按3.5mm计,即将孔台阶的半径尺寸在制作模样时根据原有尺寸加大3.5mm 的半径。
10.分型负数本铸件全部在上箱,铸件分型面的大小不对其它尺寸造成影响,只影响铸件下表面的厚度,铸件下表面为加工面,分面面间隙越大,铸件上表面加工余量越大,因此在模样上不考虑铸件的分型负数。
11.收缩筋的设计本铸件工艺筋设计如图所示为一薄板连接铸件两脚补着补正量为10~15 取15 板厚36 如图3-1 所示图3-1 拉筋四、砂芯设计本铸件为简单铸件,不需要砂芯!五·浇注系统设计5.1浇注系统类型的选择铸件材料为ZG310—570,铸件属半圆环厚壁零件,最大直径780mm,最小直径490mm,加工后最大壁厚210mm,最小145mm,加工后净重238Kg,因为铸件采用两箱造型,铸件结构简单,结合铸件要求及铸件结构及分型面设置,底注式浇注系统较为合适,故本设计采用底注式浇注系统。
根据资料[6],厚壁球墨铸铁采用开放式浇注系统,其浇注比为:∑A内:∑A横:∑A直﹦1.0:(0.8~0.9):(1.1~1.2)参照教材及其它资料,确定浇注系统截面计算比例为:∑A内:∑A横:∑A直﹦1.0: 0.9: 1.25.2浇注系统形式及内浇口位置根据根据浇注系统设计原则以及浇注系统的类型,内浇口开设在铸件底面,开设薄片式内浇口,内浇口尽量分散,以减少铸造应力,内浇口不对正砂芯等,本铸件开设1个直浇道,1个总横浇道,2个分横浇道,2个内浇口。
考虑到本铸件是小型件,且浇注高度比较低,直浇道、横浇道及内浇道均采用木模造型,内浇口采用楔形式,造型时也由木模成型。
铸件浇注的布置形式如图5.2所示。
5.3 浇注载面比计算浇注系统的计算根据铸造工艺手册第三版中引入的大口出流理论计算公式,其内浇口计算公式为:A =内 (5-3)公式中:L G ——铸件重量(Kg )t ——铸件浇注时间(秒)p h ——内浇品出口处的平均压头(cm )内浇口出口处的平均压头与传统计算平均压头的关系为:2222121p k h H k k =++p (5-4)公式中:1k ——直浇道断面与横浇道断面之比,则为4/32k ——直浇道断面与内浇道断面之比,则为6/5 传统平均压头的计算公式为:202p P H H C =- (5-5)式中:0H ——内浇口到浇口杯的高度,也就是直浇道+浇口杯的高度P ——内浇口到型腔顶面的距离C ——型腔高度由于铸件高度为210mm ,所以C=21cm ,由于铸件为底注式,P=C 。
浇注最小剩余压头根据铸件的大小、壁厚及合金种类查资料[6]计算,根据直浇道到离铸件最远距离及压力角计算tan M H L α≥ (5-6)式中:L ——直浇道到铸件最远水平距离,根据浇注系统布置与铸件长度,按60cm 计 算α——压力角,查表为6~7°计算得到H M ≥L tan α﹦60tan 7﹦7.36(cm),取整数,得H M ﹦8(cm)则:70o M H H =+=型腔高度H 0﹦型腔高度+H M ﹦29(cm )代入公式(5-5)计算得到:47.5p H =H p ﹦18.5(cm )代入公式(5-5)得到35p h =h p ﹦6.35(cm )根据铸件重量查铸钢浇注时间[6]为15秒,根据型腔高度45及浇注时间得到型腔中液面平均上升高度为:45/35 1.28(/)V cm s ==V ﹦21/15﹦1.5(cm/s)根据资料[6],液面上升速度与铸件壁厚的关系,得本铸件最小液面上升速度为0.8~1.0/cm s 0.8~2.0cm/s ,因此浇注时间合适。
根据铸件三维零件图,铸件毛重为238Kg ,将浇注时间与内浇口平均压头代入公式(5-3)得内浇道总面积为:250A cm ≈∑内∑A 内﹦7.56cm2根据截面比计算,直浇道与横浇道总截面积为:225A cm =∑直9.1 275A cm =∑横 6.9。