钢铁分析与测定条件
- 格式:ppt
- 大小:783.00 KB
- 文档页数:116
一、钢铁化学分析方法铸铁中七元素的联合测定一、试剂(溶解样品)1、溶解混合酸:硫酸50毫升,硝酸8毫升,加入水中并稀至1升。
2、过硫酸铵:15%当天配制。
3、过氧化氢:3% 。
二、溶样方法称取试样0.5克于250毫升锥形瓶中,加溶解混合酸85毫升及过硫酸铵溶液10毫升,加热溶解完毕后(约15分钟),再加过硫酸铵溶液10毫升,煮沸2—3分钟,使锰呈褐色二氧化锰析出后,滴加过氧化氢使褐色沉淀澄清且过量一滴,继续煮沸1分钟,流水冷却至室温,将溶液稀至100亳升后仍倒入原锥形瓶中,并以快速干滤纸过滤于干的100毫升容量瓶中,供下述各元素测定之用。
注:1、日常分析中为加快溶解度可将溶解酸预热后加入。
2、加入溶解酸后应立即加入过硫酸铵,防止磷呈磷化氢逸出,使磷结果偏低。
硅的测定一、试剂1、钼酸铵溶液:5% 。
2、草酸溶液:5% 。
3、硫酸亚铁铵溶液:6% [每1升中需有(1:1)硫酸5毫升]。
4、定硅补充酸:取溶解混合酸100毫升,以水稀至1升即可。
二、分析方法于150毫升锥形瓶中预置补充酸30毫升,用1毫升刻度移液管吸取试样溶液1毫升,加入钼酸铵溶液5毫升,放置10—15分钟后,加入草酸溶液10毫升,硫酸亚铁铵5毫升。
以水为比较液,以波长650µm,0.5厘米比色皿测定消光值。
三、计算带一标准样品按同样操作后换算,或用标准样品绘制标准曲线。
注:1、加入钼酸铵溶液后的放置时间应随室温变化而变化,室温低于10℃应放置半小时,夏天则需放置5分钟即可。
2、加草酸后应立即加入硫酸亚铁铵,并边摇边加。
锰的测定一、试剂1、定锰混合酸:磷酸30毫升,硝酸60毫升,加入水中,加入硝酸银2克,溶解后以水稀至1升。
2、过硫酸铵溶液:15%当天配制。
二、分析方法于50亳升锥形瓶中预置定锰混合酸10毫升及过硫酸铵溶液5毫升,吸取试样溶液5毫升,加热煮沸1分钟,流水冷却至室温,以水稀至50毫升。
以水为参比液,以波长530 µm,2厘米比色皿测定消光值。
钢铁中钇的分析方法IC P-AES法测定钢铁中钇钇是稀土元素之一,是重要的球化元素,在球墨铸铁中较铈有更好的球化能力、抗衰退能力和反白口顷向能力;钇是良好的脱氧、脱硫剂,它与氧或硫形成的化合物作为晶核,能细化晶粒组织,没有返硫现象,进而提高钢的性能。
钇的测定,往往与其它稀土元素一起作为稀土总量用分光光度法测定[,但因其在稀土总量中的分量不同,对显色剂的灵敏度也不同,从而难以知道其准确含量。
本文采用等离子体发射光谱法测定铸铁和中低合金钢中的钇,方法快速、准确,结果满意。
一、实验部分(一)仪器和主要工作条件SⅡ-SPS8000型顺序扫描等离子体发射光谱仪(日本精工-北京海光公司)。
发射功率1200W;氩气压力0.3MPa;载气压力2Kgf/cm2;等离子气流量14L/min;辅气流量0.7L/min;观测高度15.4mm。
分析线371.030nm。
(二)试剂钇储备液1000μg/ml,用光谱纯三氧化二钇配制;钇标准溶液50μg/ml,用钇储备液稀释而成;高纯铁粉,质量分数大于99.9%;盐酸(1+1)、硝酸(1+1),均为分析纯试剂。
(三)实验方法称取0.2000g试样于100ml烧杯中,加入5ml盐酸,5ml硝酸,低温加热溶解,冒烟至近干,稍冷,加入10ml盐酸溶解盐类,冷却后定容于100ml容量瓶中,摇匀,放置澄清或过滤去除沉淀物,按选定的仪器工作条件进行测定。
(四)工作曲线称取一系列0.2000g高纯铁粉于100ml烧杯中,分别加入50μg/ml的钇标准溶液0.00ml、0.20ml、0.40ml、2.00ml、4.00ml、8.00ml,按实验方法测定,以钇质量分数为横坐标,强度为纵坐标,绘制工作曲线,相关系数大于0.9995。
二、结果与讨论(一)谱线选择和检出限从仪器提供的谱线库中,选择了6条灵敏度居前的谱线,考查了信噪比及背景干扰,选定371.030nm作分析线,不扣背景。
按实验方法制备空白溶液和浓度为1μg/ml的钇标准溶液,用仪器提供的程序测定,测得这一谱线的检出限为0.001μg/ml,取其10倍即0.01μg/ml为测定下限。
第1篇一、实验目的1. 研究钢铁在不同碰撞条件下的力学响应。
2. 验证碰撞试验的基本原理和方法。
3. 分析碰撞过程中的能量转换和材料破坏特性。
4. 为钢铁材料的应用提供实验依据。
二、实验原理碰撞试验是一种力学实验,通过模拟实际碰撞情况,研究材料在碰撞过程中的力学性能。
实验原理基于牛顿第二定律和能量守恒定律。
当两个物体发生碰撞时,它们之间的相互作用力会导致物体速度和方向的变化。
根据牛顿第二定律,碰撞过程中物体的加速度与作用力成正比,与物体质量成反比。
能量守恒定律表明,碰撞过程中系统的总能量保持不变,即碰撞前后的总动能和势能之和相等。
三、实验设备1. 碰撞试验机:用于产生碰撞力。
2. 钢铁试样:用于承受碰撞力。
3. 数据采集系统:用于实时采集碰撞过程中的数据。
4. 高速摄影系统:用于观察碰撞过程中的形变和破坏情况。
四、实验方法1. 根据实验目的,设计碰撞试验方案,包括碰撞速度、角度、碰撞次数等参数。
2. 将钢铁试样固定在碰撞试验机上,确保试样在碰撞过程中保持稳定。
3. 启动数据采集系统和高速摄影系统,开始进行碰撞试验。
4. 观察并记录碰撞过程中的形变、破坏情况以及能量转换等数据。
5. 对实验数据进行处理和分析,得出结论。
五、实验步骤1. 实验准备:将钢铁试样清洗、干燥后,用砂纸打磨表面,确保试样表面光滑。
2. 实验设置:根据实验方案,调整碰撞试验机的碰撞速度、角度等参数。
3. 数据采集:启动数据采集系统和高速摄影系统,开始进行碰撞试验。
4. 实验观察:观察碰撞过程中的形变、破坏情况以及能量转换等数据。
5. 数据整理:将实验数据整理成表格或图表,便于后续分析。
6. 实验分析:根据实验数据,分析碰撞过程中的力学响应和能量转换。
7. 结论:总结实验结果,为钢铁材料的应用提供实验依据。
六、实验结果与分析1. 碰撞速度对碰撞力的影响:实验结果表明,随着碰撞速度的增加,碰撞力也随之增大。
当碰撞速度超过一定值时,碰撞力增加幅度减小。
不锈钢验收标准编制:校对:审核:1.主题内容与适用范围本标准规定了不锈钢技术要求、检验方法等要求。
本标准适用于不锈钢材料。
2.规范性引用文件GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分GB/T 1220-2007 不锈钢棒GB/T 4226-2009 不锈钢冷加工钢棒GB/T 3280-2007 不锈钢冷轧钢板和钢带GB/T 4237-2007 不锈钢热轧钢板和钢带GB/T 3090-2000 不锈钢小直径无缝钢管GB/T 14975-2002 结构用不锈钢无缝钢管GB/T 14976-2002 流体输送用不锈钢无缝钢管GB/T 4229-84 不锈钢重量计算方法GB/T 12770-2002 机械结构用不锈钢焊接钢管GB/T 4241-2006 焊接用不锈钢盘条YB/T 5091-1993 惰性气体保护用不锈钢钢棒和钢丝YB/T 5092-205 焊接用不锈钢丝GB/T 222-1984 钢的化学分析用试样取样法及成品化学成分允许偏差GB/T 223. 5 钢铁及合金的化学分析方法还原型硅钼酸盐光度法测定酸溶硅含量GB/T 223.69-1997 钢铁及合金化学分析方法管式炉内燃烧后气体容量法测定碳含量GB/T 223. 11 钢铁及合金的化学分析方法过硫酸铁氧化容量法测定铬量GB/T 223.25 钢铁及合金的化学分析方法丁二酮肪重量法测定镍量GB/T 223.62 钢铁及合金的化学分析方法乙酸丁酣萃取光度法测定磷量GB/T 223.63 钢铁及合金的化学分析方法高碘酸钠(钾)光度法侧定锰量GB/T 223.68 钢铁及合金的化学分析方法管式炉内姗烧后碘酸钾滴定法测定硫含量3.术语和定语3.1不锈钢stainless steel以不锈、耐蚀性为主要特性,且铬含量至少为10.5%,碳含量最大不超过1.2%的钢。
L oudi Dafenghe Electric Vehicles Co.,Ltd4.技术要求3.1不锈钢管的技术要求除非在技术部提供的图文技术资料中有特殊要求,否则按下表要求执行。
文件制修订记录
试样用稀硫酸分解,高锰酸钾将磷就、氧化成为正磷酸存在于溶液内,磷酸与钒酸铵和钼酸铵反应,生成黄色的磷钒钼络合物,借此作为比色测定。
二、试剂
1.硝酸溶液:1:3
2.高锰酸钾溶液:2%
3.亚硝酸钾或亚硝酸钠溶液:10%
4.钒酸铵溶液:称取钒酸铵溶液0.25克,加50毫升温水溶解冷却后,加浓硝酸3毫升,用水稀释至刻度,摇匀备用。
5.钼酸铵溶液:5%,称钼酸铵5克,溶于100毫升水中,混浊时过滤。
三、操作方法
称取试样0.5克于100毫升烧杯中,加入1:3硝酸25毫升,在保持25-30毫升的体积下,加热煮沸2-3分钟,然后滴加亚硝酸钾溶液使析出之二氧化锰消失。
在煮沸2-3分钟,除去氮之氧化物,用定性滤纸过滤,滤液接入50毫升容量瓶中,用水洗烧杯和漏斗各3-5次,冷却后用水稀释至刻度,用20毫升移液管吸取事业2份,分别放入干燥的100毫升锥形瓶中,其中一份预加9毫升水为空白,另一份加钒酸铵溶液3毫升,钼酸铵溶液6毫升,摇匀作为着色溶液。
将空白及着色溶液的两个锥形瓶同时放置于35-50℃热水中,保持3分钟(2-5分钟),取出迅速用流水冷却。
以空白溶液作为比较液,波长480毫微米在722型分光光度计上测定其消光度。
四、注意事项
1.加热溶解试样时,应随时吹入少量水,以保持体积。
2.加高锰酸钾溶液应过量,煮沸后应有二氧化锰析出,否则应再加高锰酸钾溶液,加入亚硝酸钾溶液还原时应一边搅拌一边滴加,防止过量。
五、磷误差范围如下。
铁矿石中全铁含量测定方法分析在钢铁工业中,铁矿石是至关重要的原材料,而准确测定铁矿石中全铁的含量对于评估矿石质量、优化冶炼工艺以及控制生产成本都具有极其重要的意义。
本文将对常见的铁矿石中全铁含量测定方法进行详细分析。
一、重铬酸钾滴定法重铬酸钾滴定法是测定铁矿石中全铁含量的经典方法之一。
其基本原理是将铁矿石样品用酸溶解,使其中的铁全部转化为二价铁离子。
然后,在酸性条件下,用过量的重铬酸钾标准溶液将二价铁氧化为三价铁,最后以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准溶液滴定过量的重铬酸钾,从而计算出全铁的含量。
该方法的优点是准确度高、重现性好,适用于各种类型铁矿石中全铁含量的测定。
但也存在一些不足之处,比如操作过程较为繁琐,需要进行多次加热和滴定,耗时较长;同时,使用的重铬酸钾具有一定的毒性,对环境和操作人员的健康有一定影响。
二、氯化亚锡氯化汞重铬酸钾滴定法这种方法是在重铬酸钾滴定法的基础上进行改进的。
首先用盐酸和氟化钠溶解样品,然后加入氯化亚锡将大部分三价铁还原为二价铁。
接着,加入氯化汞氧化过量的氯化亚锡,最后用重铬酸钾标准溶液滴定二价铁,计算全铁含量。
此方法相较于传统的重铬酸钾滴定法,简化了操作步骤,缩短了分析时间。
然而,氯化汞是一种剧毒物质,对环境和人体危害极大,需要在操作过程中特别小心,严格控制其使用和排放。
三、EDTA 配位滴定法EDTA 配位滴定法也是常用的测定铁矿石中全铁含量的方法之一。
在酸性条件下,将铁矿石样品溶解,用还原剂将铁全部还原为二价铁。
然后,加入过量的 EDTA 标准溶液与二价铁配位,再以二甲酚橙为指示剂,用锌标准溶液滴定剩余的 EDTA,从而计算出全铁的含量。
EDTA 配位滴定法的优点是操作相对简便,分析速度较快,且试剂毒性较小。
但该方法的选择性相对较差,容易受到其他金属离子的干扰,因此在测定前需要对样品进行预处理,以消除干扰。
四、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长光的吸收特性来测定元素含量的方法。
溶解性铁地壳中含铁量(Fe)约为5.6%,分布很广,但天然水体中含量并不高。
实际水样中铁的存在形式是多种多样,可以在真溶液中以简单的水合离子和复杂的无机、有机络合物形式存在。
也可以存在于胶体,悬浮物和颗粒物中,可能是二价,也可能是三价的。
而且水样暴露于空气中,二价铁易被迅速氧化为三价,样品pH>3.5时,易导致高价铁的水解沉淀。
样品在保存和运输过程中,水中细菌的繁殖也会改变铁的存在形态。
样品的不稳定性和不均匀性对分析结果影响颇大,因此必须仔细进行样品的预处理。
铁及其化合物均为低毒性和微毒性,含铁量高的水往往带有黄色,有铁腥味。
如作为印染、纺织、造纸等工业用水时,则会在产品上形成黄斑,影响质量,因此这些工业用水的铁含量必须在0.1mg/L以下。
水中铁的污染来源主要是选矿、冶炼、炼铁、机械加工、工业电镀、酸洗废水等。
1.方法的选择原子吸收法操作简单、快速、结果的精密度、准确度好,适用于环境水样和废水样的分析;邻菲啰啉光度法灵敏、可靠,适用于清洁环境水样和轻度污染水的分析;污染严重,含铁量高的废水,可用EDTA络合滴定法。
避免高倍数稀释操作引起的误差。
2.水样的保存与处理测总铁,在采样后立刻用盐酸酸化至pH1保存;测过滤性铁,应在采样现场经0.45µm 的滤膜过滤,滤液用盐酸酸化至pH1;测亚铁的样品,最好在现场显色测定,或按方法(二)操作步骤处理。
(一)火焰原子吸收分光光度法GB11911--89概述1.方法原理在空气—乙炔火焰中,铁的化合物易于原子化,可于波长248.3nm处测量铁基态原子对铁空心阴极灯特征辐射的吸收进行定量。
2.干扰及消除影响铁原子吸收法准确度的主要干扰是化学干扰。
当硅的浓度大于20 mg/L时,对铁的测定产生负干扰;这些干扰的程度随着硅浓度的增加而增加。
如试样中存在200 mg/L氯化钙时,上述干扰可以消除。
一般来说,铁的火焰原子吸收法的基体干扰不太严重,由分子吸收或光散射造成的背景吸收也可忽略。
普通钢五元素分析一碳硫分析用定碳定硫仪测定二硅磷锰的分析1所需试剂硝酸(1+3) (1份硝酸+3份水)2过硫酸铵(固体)①测锰混酸:硝酸银1g溶于500ml水中,加硫酸25ml磷酸30ml,硝酸30ml,用水稀至于1升。
②钼酸铵溶液:5%③草酸溶液:5%④硫酸亚铁铵溶液:6%(每100ml溶液中滴1+1硫酸6滴)⑤钒酸铵溶液:0.25%(取钒酸铵2.5g加入500ml水加热溶解冷却,加入浓硝酸30ml用水稀至1升)操作方法称取试样和相同牌号的标样各1g,分别臵于100ml两用瓶中。
加1:3的硝酸50ml加热溶解,加固体过硫酸铵1g左右,煮沸1分钟冷却,稀至100ml两用瓶中硅的测定吸取试液和标液各2ml,分别臵于100ml两用瓶中,加(1+3)硝酸1ml,水3ml,加钼酸铵溶液(5%)5ml,在沸水溶液中加热30秒钟,流水冷却,立即加5%草酸溶液10ml,6%硫酸亚铁铵溶液10ml,在波长650mm 处用1cm比色皿进行测定,记下试样和标样的消光值E1、E21) -锰的测定分别吸取试液和标液各5ml,分别臵于50ml的两用瓶中,加测锰混酸20ml,加过硫酸铵固体1g,加热煮沸1分钟左右,冷却稀至50ml两用瓶中,在波长530nm处用1cm比色皿进行测定,记下试样和标样的消光值E2、E1E1=2) 磷的测定吸取试样和标样各20ml分别臵于两只150ml烧杯中,其中一只空白加入8ml水,另一只加入0.25%钒酸铵溶液3ml,5%钼酸铵溶液5ml,在波长470nm处用2cm比色皿进行测定。
记下试样和标样的消光值E2、E1不锈钢中九元素分析A 碳硫测定 (仪器分析)B 硅、镍、钛、磷、锰、铬。
钼测定试样溶液的制备1试剂:稀王水盐酸+硝酸 +水=1+1+12操作:称取试样和相同牌号的标样各0.1g,分别臵于100ml的两用瓶中,加入1+1+1稀王水10ml,温热溶解,注意尽量减少蒸发,冷却后稀至刻度。
(一) 钛的测定一试剂1 盐酸:1+12 抗坏血酸:4% 当天配制3 二安替比林甲烷溶液:2.5% (称取2.5克DAM溶于1+10盐酸100ml中)二操作方法吸取试液10ml两份臵于50ml两用瓶中显色液:加4%抗坏血酸5ml,放臵使Fe的黄色退尽,加1+1盐酸5ml,加DAM溶液10ml,以水稀至刻度,放臵半小时后用2cm比色皿在420nm处测定消光值,标样同时操作。
1 .红外吸收法基于红外吸收法发展出的燃烧红外吸收法是属于碳(和硫)定量分析专用方法。
其原理是将试样在氧气流中燃烧,生成C02,在一定压力下,C02吸收红外线的能量与其浓度成正比,因此测出C02气体流经红外吸收器前后的能量变化,则可计算出含碳量。
高渔炉燃烧-红外吸收法原理近年来,红外气体分析技术发展很快,各种利用高频感应加热燃烧及红外光谱吸收原理的分析仪器也迅速地出现。
对于高频燃烧红外吸收法测定碳和硫,一般应考虑以下几个因素:试样的干燥性、电磁感性、几何尺寸,试样量,助熔剂的种类、配比、加入次序及加入量,空白值的设置等。
该法优点是定量准确,干扰项较少。
适合对碳含量准确度有较高要求,且生产中有足够时间进行检测的用户。
2 .发射光谱法元素在受到热或电激发时,会由基态跃迁到激发态,而激发态会自发地返回到基态。
在由激发态返回到基态的过程中,会释放每种元素的特征谱线,根据特征谱线的强度可以测定出其含量。
发射光谱仪原理在冶金行业,由于生产的急迫性,需要在很短的时间内分析出炉水内所有主要元素的含量,而不仅仅是碳含量。
火花直读发射光谱仪由于能够快速得到稳定的结果,所以成为该行业的首选。
但该法对于样品制备有特定要求。
例如,火花光谱法分析铸铁试样时,要求分析表面的碳都以碳化物的形式存在,不能有游离石墨,否则就会影响分析结果。
有用户利用薄片样品急冷快,白口化好的特点,将样品制成薄片后,用火花光谱分析法测定铸铁中碳的含量。
火花光谱法分析碳素钢线状样品时,须严格加工处理好样品并使用小样品分析夹具将样品"直立"或"平躺"放在火花台上进行分析,以提高分析的精密度。
3 .波长色散X射线法波长色散X-射线分析仪可以对多元素进行快速同时测定。
分光鼻体与检图同同步瞥动迸行E波长色散X射线荧光光谱仪原理在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X荧光)。
波长色散型X射线荧光光谱仪(WDXRF)是用晶体分光而后由探测器接收经过衍射的特征X射线信号。