高中物理滑块-板块模型(解析版)
- 格式:doc
- 大小:272.00 KB
- 文档页数:6
高考物理复习考点知识专题讲解专题20 滑板-滑块模型一、单选题1.(2020·四川省高三三模)如图所示,质量均为M 的物块A 、B 叠放在光滑水平桌面上,质量为m 的物块C 用跨过轻质光滑定滑轮的轻绳与B 连接,且轻绳与桌面平行,A 、B 之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,下列说法正确的是( )A.若物块A 、B 未发生相对滑动,物块A 受到的摩擦力为2f Mmg F M m=+ B.要使物块A 、B 发生相对滑动,应满足关系1M m μμ>- C.若物块A 、B 未发生相对滑动,轻绳拉力的大小为mgD.若物块A 、B 未发生相对滑动时,轻绳对定滑轮的作用力为22Mmg F M m=+ 【答案】A【解析】A .若物块A 、B 未发生相对滑动,A 、B 、C 三者加速的大小相等,由牛顿第二定律得()2mg M m a =+对A ,由牛顿第二定律得f F Ma =解得2f Mmg F M m=+,故A 正确; B .当A 、B 发生相对滑动时,A 所受的静摩擦力达到最大,根据牛顿第二定律有Mg Ma μ=解得a g μ=以A 、B 、C 系统为研究对象,由牛顿第二定律得()2mg M m a =+ 解得21M m μμ=- 故要使物块A 、B 之间发生相对滑动,则21M m μμ>-,故B 错误; C .若物块A 、B 未发生相对滑动,设轻绳拉力的大小为F ,对C 受力分析,根据牛顿第二定律有mg F ma -=解得F mg ma mg =-<,故C 错误;D .若物块A 、B 未发生相对滑动时,由A 可知,此时的加速度为2fmg M mF a M ==+ 对C 受力分析,根据牛顿第二定律有mg F ma -=解得22Mmg F M m=+ 根据力的合成法则,可得轻绳对定滑轮的作用力2222+=2Mmg N F F M m=+ 故D 错误。
素养提升微突破02 动力学中的“滑块-滑板”模型——构建模型,培养抽象思维意识“滑块-滑板”模型“滑块-滑板”模型涉及两个物体,并且物体间存在相对滑动。
叠放在一起的滑块和木板,它们之间存在着相互作用力,在其他外力作用下它们或加速度相同,或加速度不同,无论哪种情况受力分析和运动过程分析都是关键,特别是对相对运动条件的分析。
本模型深刻体现了物理运动观念、相互作用观念的核心素养。
【2019·新课标全国Ⅲ卷】如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。
t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力。
细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。
木板与实验台之间的摩擦可以忽略。
重力加速度取g=10 m/s2。
由题给数据可以得出A.木板的质量为1 kgB.2 s~4 s内,力F的大小为0.4 NC.0~2 s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为0.2【答案】AB【解析】结合两图像可判断出0~2 s物块和木板还未发生相对滑动,它们之间的摩擦力为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2~5 s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,由牛顿运动定律,对2~4 s和4~5 s列运动学方程,可解出质量m为1 kg,2~4 s内的力F 为0.4 N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误。
【素养解读】本题以木板为研究对象,通过f-t与v-t图像对运动过程进行受力分析、运动分析,体现了物理学科科学推理的核心素养。
一、水平面上的滑块—滑板模型水平面上的滑块—滑板模型是高中参考题型,一般采用三步解题法:【典例1】如图所示,质量m=1 kg 的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上。
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
高三物理专题复习:滑块一滑板模型典型例题例1.如图所示,在粗糙水平面上静止放一长L质量为M=1kg的木板B, —质量为m=1Kg的物块A以速度v。
=2.0m/s滑上长木板B的左端,物块与木板的摩擦因素卩1=0.1、木板与地面的摩擦因素为卩2=0.1,已知重力加速度为g=10m/s , 求:(假设板的长度足够长)(1)物块A、木板B的加速度;(2)物块A相对木板B静止时A运动的位移;R ---------------------B(3)物块A不滑离木板B,木板B至少多长?"TTTTTTTTTTTT/TT TTTTTT1考点:本题考查牛顿第二定律及运动学规律考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。
解析:(1)物块A的摩擦力:f A二jmg =1N-f A 2A的加速度:a i 一二-1m/ s 方向向左m木板B受到地面的摩擦力:f地二」2(M ■ m)g =2N f A故木板B静止,它的加速度a2 =02(2)物块A的位移:S二二仏二2m2a(3)木板长度:L _ S = 2m拓展1.在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素卩3=0.4,其余条件保持不变,(假设木板足够长)求:(1)物块A与木块B速度相同时,物块A的速度多大?(2)通过计算,判断AB速度相同以后的运动情况; A ______________(3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热多大?考点:牛顿第二定律、运动学、功能关系考查:木板与地的摩擦力计算、AB是否共速运动的判断方法、相对位移和摩擦热的计算。
解析:对于物块 A : f A =」4mg = 4N加速度: a A =— =-」4g - -4.0m/ s 2,方向向左。
m 对于木板:f 地-"2(m • M)g = 2N加速度:a C =卫 f 地 = 2.0m /s 2,方向向右。
M物块A 相对木板B 静止时,有:a B t^v 2 -a C t 1解得运动时间:I =1/3.s ,V A = V B = a p t r = 2 / 3m / S(2)假设AB 共速后一起做运动, a 二 J (M ―- -1m/s 2物块A 的静摩擦力:二 ma =1N :: f A所以假设成立,AB 共速后一起做匀减速直线运动。
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
高考物理超级模型专题07板块模型学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是()A.B.C.D.2.如图所示,带负电的物块A放在足够长的不带电的绝缘小车B上,两者均保持静止,置于垂直于纸面向里的匀强磁场中,在t=0时刻用水平恒力F向左推小车B。
已知地面光滑,A、B接触面粗糙,A所带电荷量保持不变。
关于A、B的v-t图像大致正确的是()A.B.C .D .二、解答题3.物体A 的质量m =1kg ,静止在光滑水平面上的平板车B 的质量为M =0.5kg 、长L =1m 。
某时刻A 以v 0=4m/s 向右的初速度滑上木板B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力。
忽略物体A 的大小,已知A 与B 之间的动摩擦因数µ=0.2,取重力加速度g =10m/s 2。
试求:(1)若F =5N ,物体A 在小车上运动时相对小车滑行的最大距离;(2)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件。
4.如图,两个滑块A 和B 的质量分别为A 1kg m =和B 5kg m =,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5μ=;木板的质量为4kg m =,与地面间的动摩擦因数为20.1μ=。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为0=3m/s v 。
A 、B 相遇时,A 与木板恰好相对静止。
设最大静摩擦力等于滑动摩擦力,取重力加速度大小2=10m /s g 。
求:(1)B 与木板相对静止时,木板的速度;(2)A 、B 开始运动时,两者之间的距离。
2023届高三物理一轮复习多维度导学与分层专练专题19 板块模型导练目标 导练内容目标1 无外力板块模型 目标2有外力板块模型滑块—木块模型的解题策略 运动状态 板块速度不相等板块速度相等瞬间板块共速运动 处理方法隔离法假设法整体法具体步骤对滑块和木板进行隔离分析,弄清每个物体的受体情况与运动过程假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体“所需要”的摩擦力F f ;比较F f 与最大静摩擦力F fm 的关系,若F f >F fm ,则发生相对滑动将滑块和木板看成一个整体,对整体进行受力分析和运动过程分析临界条件①两者速度达到相等的瞬间,摩擦力可能发生突变①当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘,二者共速是滑块滑离木板的临界条件相关知识运动学公式、牛顿运动定律、动能定理、功能关系等【例1】如图甲所示,小车B 紧靠平台边缘静止在光滑水平面上,物体A (可视为质点)以初速度0v 从光滑的平台水平滑到与平台等高的小车上,物体和小车的v t -图像如图乙所示,取重力加速度210m/s g =,则以下说法正确的是( )A .物体A 与小车B 间的动摩擦因数为0.3 B .物体A 与小车B 的质量之比为1∶2C .小车B 的最小长度为2mD .如果仅增大物体A 的质量,物体A 有可能冲出去 【答案】AC【详解】A .物体A 滑上小车B 后做匀减速直线运动,对物体分析有A A A m g m a μ=由v t -图像可得22A 14=m/s 3m/s 1v a t ∆-==∆联立解得0.3μ=所以A 正确; B .对小车B 分析有A B B m g m a μ=由v t -图像可得22B 10=m/s 1m/s 1v a t ∆-==∆联立解得A B 13m m =所以B 错误;C .小车B 的最小长度为物体A 在小车B 上的最大相对滑动位移,则有()min A B 4+10+1=11m 2m 22L s s =-⨯-⨯= 所以C 正确;D .如果仅增大物体A 的质量,物体A 的加速度保持不变,但是小车B 加速度增大,所以两者达到共速的时间减小了,则物体A 在小车B 上的相对滑动位移减小,所以物体A 不可能冲出去,则D 错误;故选AC 。
) 面的运动情况为) A 物块 拉力 B C . D . 程中 B 受到的摩擦力的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间 物块先向左运动,再向右运动方向向左,逐渐减小木板向右运动,速度逐渐变小,直到做匀速运动物块向右运动,速度逐渐增大,直到做匀速运动木板和物块的速度都逐渐变小,直到为零2. 如图,在光滑水平面上有一质量为力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平方向向右,逐渐减小木板t 增大的水平力 F=kt (k 是常数),木板和木块加 例 1. 一小圆盘静止在桌布上 与桌布间的动摩擦因数为 3.如图所示, A 、 B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过10. 如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平速度的大小分别为 a 1和 a 2,下列反映 a 1 和 a 2 变化的图线中正确的是A .方向向左,大小不变 BC .方向向右,大小不变 D位于一方桌的水平桌面的中央.桌布的一边与桌的 AB 边重合,如图.已知盘1,盘与桌面间的动摩擦因数为2.现突然以恒定加速度 a 将桌布抽离桌面,加的足够长的木板,其上叠放一质量为 m 2 的木块。
假定木块和木板之间 速度方向是水平的且垂直于 AB 边.若圆盘最后未从桌面掉下,则加速度 a 满足的条件是什么?(以 g 表示重 力加速度)14.质量为 m =1.0 kg 的小滑块 (可视为质点 )放在质量为 m =3.0 kg 的长木板的右端 , 木板上表面光滑 ,木板与地 面之间的动摩擦因数为 μ=0.2, 木板长 L=1.0 m 开始时两者都处于静止状态 , 现对木板施加水平向右的恒力 F =12 N, 如图 3-12 所示,为使小滑块不掉下木板 ,试求:( g 取 10 m/s 1 2)(1) 水平恒力 F 作用的最长时间 ; (2) 水平恒力 F 做功的最大值 .10.如图 9 所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用 水平力向右拉木板 ,当物块相对木板滑动了一段距离但仍有相对运动时, 撤掉拉力, 此后木板和物块相对于 水平 面的运动情况为17.如图 18所示,小车质量 M 为 2.0 kg m 为 0.5 kg ,物体与小车间 的动摩擦因数为 0.3 ,则:图 18(1) 小车在外力作用下以 1.2 m/s 2的加速度向右运动时,物体受摩擦力多大? (2) 欲使小车产生 a =3.5 m/s 2的加速度,需给小车提供多大的水平推力? (3) 若要使物体 m 脱离小车,则至少用多大的水平力推小车?(4) 若小车长 L =1 m ,静止小车在 8.5 N 水平推力作用下,物体由车的右端向左滑动,则滑离小车需多长时 间? ( 物体 m 看作质点 )16.如图所示,木板长 L = 1.6m ,质量 M = 4.0kg ,上表面光滑,下表面与地面间的动摩擦因数为 μ=0.4. 质量 m =1.0kg 的小滑块 (视为质点 ) 放在木板的右端, 开始时木板与物块均处于静止状态, 现给木板以向右的初2速度,取 g = 10m/s 2,求:17.如图所示,质量为 m = 1kg ,长为 L = 2.7m 的平板车,其上表面距离水平地面的高度为 h =0.2m ,以速度v 0 = 4m/s 向右做匀速直线运动, A 、 B 是其左右两个端点.从某时刻起对平板车施加一个大小为 5N 的水平向1 木板所受摩擦力的大小;2 使小滑块不从木板上掉下来,木板初速度的最大值.A .B .C .D .物块先向左运动,再向右运动物块向右运动,速度逐渐增大,直到做匀速运动 木板向右运动,速度逐渐变小,直到做匀速运动 木板和物块的速度都逐渐变小,直左的恒力 F,并同时将一个小球轻放在平板车上的 P点( 小球可视为质点,放在 P点时相对于地面的速度为零),PB=3L.经过一段时间,小球从平板车上脱离后落到地面上.不计所有摩擦力,g取10m/s2.求:(1) 小球从放到平板车上开始至落到地面所用的时间;(2) 小球落地瞬间平板车的速度.13.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量M=4kg,长 L= 1.4m,木板右端放着一个小滑块.小滑块质量为 m=1kg ,其尺寸远小于 L. 小滑块与木板间的动摩擦因数μ=0.4 ,g=10m/s2.(1) 现用恒力 F 作用于木板 M上,为使 m能从 M上滑落, F 的大小范围是多少?(2) 其他条件不变,若恒力 F=22.8N 且始终作用于 M上,最终使 m能从 M上滑落, m在 M上滑动的时间是多少?18.如图所示,一块质量为 m,长为 L 的均质长木板放在很长的光滑水平桌面上,板的左端有一质量为m′的小物体(可视为质点) ,物体上连接一根很长的细绳,细绳跨过位于桌边的定滑轮.某人以恒定的速度v 向下拉绳,物体最多只能到达板的中点,已知整个过程中板的右端都不会到达桌边定滑轮处.试求:(1) 当物体刚到达木板中点时木板的位移;(2) 若木板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面之间的动摩擦因数应满足什么条件?例 1 如图 1 所示,光滑水平面上放置质量分别为 m、2m的物块 A和木板 B, A、B间的最大静摩擦力为μmg,现用水平拉力 F拉B,使 A、B以同一加速度运动,求拉力 F的最大值。
板块(滑块木板)模型(牛顿第二定律)建议用时:50分钟考点序号考点题型分布考点1没有外力的板块模型6单选+1多选考点2受恒定外力的板块模型3单选+4多选考点3受变化外力的板块模型3单选+3多选考点01:不受外力的板块模型(6单选+1多选)一、单选题1(2023·湖北·模拟预测)如图所示,一足够长的质量为m的木板静止在水平面上,t=0时刻质量也为m的滑块从板的左端以速度v0水平向右滑行,滑块与木板,木板与地面的摩擦因数分别为μ1、μ2且最大静摩擦力等于滑动摩擦力。
滑块的v-t图像如图所示,则有()A.μ1=μ2B.μ1<μ2C.μ1>2μ2D.μ1=2μ2【答案】C【详解】由v-t图像分析可知,木板相对地面滑动,滑块与木板共速后一起减速到停止,对木板μ1mg>μ22mg则有μ1>2μ2故选C。
2(2023·湖南·统考模拟预测)如图所示,一质量为0.3kg的“L”型平板B静置在地面上,平板B的上表面O点左侧粗糙、右侧光滑,质量为0.1kg的小物块A从平板B上的O点以某一初速度沿平板B向右滑动,与平板B右侧挡板碰撞后瞬间,二者速度大小均为2m/s,速度方向相反,当小物块A速度减为零时,恰好返回到相对地面的出发位置,已知小物块A与平板B间的动摩擦因数为0.4,平板B与地面间的动摩擦因数为0.225,重力加速度g=10m/s2,整个过程中小物块A始终未滑离平板B,下列说法正确的是()A.碰撞后平板B在运动过程中加速度大小不变B.碰撞后小物块A 减速时的加速度大小为2.25m/s 2C.碰撞后小物块A 刚减速时平板B 的速度大小为1m/sD.平板B 上O 点右侧光滑部分的长度为67m【答案】C【详解】AB .碰撞后小物块A 先在平板B 的光滑部分做匀速直线运动,后在平板B 的粗糙部分做匀减速直线运动,平板B 在这两个过程中做加速度不同的匀减速直线运动;对小物块A 、平板B 分别应用牛顿第二定律得a A =μ1m A gm A=4m/s 2a B 1=μ2m A +m B g m B =3m/s 2,a B 2=μ2m A +m B g +μ1m A g m B =133m/s 2故AB 错误;C .设碰撞后小物块A 刚滑到平板B 的粗糙部分开始做减速运动时,平板B 的速度大小为v B 0,则有v B 0<v B =v A又a B 2>a A所以平板B 的速度先减为0,后小物块A 的速度再减为0。
2024年高考物理一轮大单元综合复习导学练专题19板块模型导练目标导练内容目标1无外力板块模型目标2有外力板块模型【知识导学与典例导练】滑块—木块模型的解题策略一、无外力板块模型【例1】如图甲所示,质量为M的木板静止在光滑水平面上。
一个质量为m的小滑块以初速度v0从木板的左端向右滑上木板。
滑块和木板的水平速度随时间变化的图像如图乙所示。
某同学根据图像作出如下一些判断,正确的是()A .滑块和木板始终存在相对运动B .滑块始终未离开木板C .滑块的质量大于木板的质量D .木板的长度一定为012v t 【答案】BC【详解】AB .由题图乙可知在t 1时刻滑块和木板达到共同速度,此后滑块与木板相对静止,所以滑块始终未离开木板,故A 错误,B 正确;C .滑块与木板相对滑动过程中,二者所受合外力大小均等于滑动摩擦力大小,而根据题图乙中图像的斜率情况可知此过程中滑块的加速度小于木板的加速度,则根据牛顿第二定律Fa m=可知滑块的质量大于木板的质量,故C 正确;D .根据v -t 图像与坐标轴所围面积表示位移可知,t 1时刻滑块相对木板的位移大小为012v t x ∆=但滑块在t 1时刻不一定位于木板的右端,所以木板的长度不一定为012v t ,其满足题意的最小长度为012v t,故D 错误。
故选BC 。
【例2】如图所示,质量为M 的长木板A 以速度v ,在光滑水平面上向左匀速运动,质量为m 的小滑块B 轻放在木板左端,经过一段时间恰好从木板的右端滑出,小滑块与木板间动摩擦因数为μ,下列说法中正确的是()A .若只增大m ,则小滑块不能滑离木板B .若只增大M ,则小滑块在木板上运动的时间变短C .若只增大v 0,则小滑块离开木板的速度变大D .若只减小μ,则小滑块滑离木板过程中小滑块对地的位移变大【答案】AB【详解】A .若只增大滑块质量,滑块所受的支持力变大,滑动摩擦力变大,加速度变大,所以滑块与木板共速时,小滑块没有离开木板,之后二者一起向左做匀速直线运动,故A 正确。
2024版新课标高中物理模型与方法--滑块木板模型目录【模型归纳】1模型一光滑面上外力拉板模型二光滑面上外力拉块模型三粗糙面上外力拉板模型四粗糙面上外力拉块模型五粗糙面上刹车减速【常见问题分析】问题1.板块模型中的运动学单过程问题问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题3.板块模型中的运动学多过程问题2--抽桌布问题问题4.板块模型中的运动学粗糙水平面减速问题【模型例析】5【模型演练】13【模型归纳】模型一光滑面上外力拉板加速度分离不分离m1最大加速度a1max=μgm2加速度a2=(F-μm1g) /m2条件:a2>a1max即F>μg(m1+m2)条件:a2≤a1max即F≤μg(m1+m2)整体加速度a=F/(m1+m2)内力f=m1F/(m1+m2)模型二光滑面上外力拉块加速度分离不分离m2最大加速度a2max=μm1g/m2 m1加速度a1=(F-μm1g)/m1条件:a1>a2max即F>μm1g(1+m1/m2)条件:a2≤a1max即F≤μm1g(1+m1/m2)整体加速度a=F/(m1+m2)内力f=m2F/(m1+m2)模型三粗糙面上外力拉板不分离(都静止)不分离(一起加速)分离条件:F≤μ2(m1+m2)g 条件:a2≤a1max即μ2(m1+m2)g<F≤(μ1+μ2)g(m1+m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1条件:a2>a1max=μ1g即F>(μ1+μ2)g(m1+m2)+m2)内力f=m1a外力区间范围模型四粗糙面上外力拉块μ1m1g>μ2(m1+m2)g一起静止一起加速分离条件:F≤μ2(m1+m2)g 条件:μ2(m1+m2)g<F≤(μ1-μ2)m1g(1+m1/m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1+m2)内力f1=μ2(m1+m2)g+m2a条件:a1>a2max=[μ1m1g-μ2(m1+m2)g]/m2即F>(μ1-μ2)m1g(1+m1/m2)外力区间范围模型五粗糙面上刹车减速一起减速减速分离m1最大刹车加速度:a1max=μ1g 整体刹车加速度a=μ2g条件:a≤a1max即μ2≤μ1条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2【常见问题分析】问题1.板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 20-½a 1t 20=L 分离,位移关系:x 相对=½a 1t 20-½a 2t 20=L问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:②板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv ·(t 1+t 2)/2=L ;利用相对运动Δv =(a 2-a 1)t 1、Δv =(a 2+a 1')t 2问题3.板块模型中的运动学多过程问题2--抽桌布问题抽桌布问题简化模型过程①:分离过程:②匀减速分离,位移关系:x2-x1=L10v0多过程问题,位移关系:x1+x1'=L2问题4.板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2【模型例析】1一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。
2020年高考物理专题精准突破专题动力学中的板块问题【专题诠释】1.模型特征滑块——滑板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次相互作用,属于多物体、多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.另外,常见的子弹射击滑板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块——滑板模型类似.2.两种类型【高考领航】【2019·江苏高考】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。
A与B、B与地面间的动摩擦因数均为μ。
先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。
接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。
最大静摩擦力等于滑动摩擦力,重力加速度为g。
求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′;(3)B被敲击后获得的初速度大小v B。
【答案】(1)2μgL(2)3μgμg(3)22μgL【解析】A、B的运动过程如图所示:(1)A被敲击后,B静止,A向右运动,由牛顿第二定律知,A的加速度大小a A=μgA在B上滑动时有2a A L=v2A解得:v A=2μgL。
(2)设A、B的质量均为m对齐前,A相对B滑动,B所受合外力大小F=μmg+2μmg=3μmg由牛顿第二定律得F=ma B,得a B=3μg对齐后,A、B相对静止,整体所受合外力大小F′=2μmg由牛顿第二定律得F′=2ma B′,得a B′=μg。
(3)设B被敲击后,经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A 则v=a A t,v=v B-a B tx A=12a A t2,x B=v B t-12a B t2且x B-x A=L解得:v B=22μgL。
【2017·高考全国卷Ⅲ】如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. 【答案】 见解析【解析】 (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1.在物块B 与木板达到共同速度前有f 1=μ1m A g ① f 2=μ1m B g ② f 3=μ2(m +m A +m B )g ③ 由牛顿第二定律得f 1=m A a A ④ f 2=m B a B ⑤ f 2-f 1-f 3=ma 1 ⑥设在t 1时刻,B 与木板达到共同速度,其大小为v 1.由运动学公式有v 1=v 0-a B t 1 ⑦ v 1=a 1t 1 ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得v 1=1 m/s. ⑨(2)在t 1时间间隔内,B 相对于地面移动的距离为s B =v 0t 1-12a B t 21⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2.对于B 与木板组成的体系,由牛顿第二定律有f 1+f 3=(m B +m )a 2 ⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有v 2=v 1-a 2t 2 ⑫对A 有v 2=-v 1+a A t 2 ⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为s 1=v 1t 2-12a 2t 22 ⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为s A =v 0(t 1+t 2)-12a A (t 1+t 2)2 ⑮A 和B 相遇时,A 与木板的速度也恰好相同.因此A 和B 开始运动时,两者之间的距离为s 0=s A +s 1+s B ⑯ 联立以上各式,并代入数据得s 0=1.9 m. (也可用如图的速度-时间图线求解)【技巧方法】1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
2020 年高考物理备考微专题精确打破专题 1.10 动力学中的板块问题【专题解说】1.模型特点滑块——滑板模型 ( 如图 a),波及摩擦力剖析、相对运动、摩擦生热,多次互相作用,属于多物体、多过程b)、圆问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.此外,常有的子弹射击滑板 (如图环在直杆中滑动 (如图 c)都属于滑块类问题,办理方法与滑块——滑板模型近似.2.两种种类种类图示规律剖析木板 B 带动物块A,物块恰巧不从木板上掉下的临界条件是物块恰巧滑到木板左端时二者速度相等,则位移关系为x B= x A+L物块 A 带动木板B,物块恰巧不从木板上掉下的临界条件是物块恰巧滑到木板右端时二者速度相等,则位移关系为x B+ L=x A【高考领航】【 2019·江苏高考】以下图,质量相等的物块 A 和B 叠放在水平川面上,左侧沿对齐。
A 与B、 B 与地面间的动摩擦因数均为μ。
先敲击A,A 立刻获取水平向右的初速度,在 B 上滑动距离L 后停下。
接着敲击B,B 立刻获取水平向右的初速度,A、 B 都向右运动,左侧沿再次对齐时恰巧相对静止,今后二者一起运动至停下。
最大静摩擦力等于滑动摩擦力,重力加快度为g。
求:(1) A被敲击后获取的初速度大小v A;(2)在左侧沿再次对齐的前、后, B 运动加快度的大小 a B、 a B′;(3) B 被敲击后获取的初速度大小v B。
【答案】(1) 2μgL (2)3μg μg (3)2 2μgL【分析】A 、B 的运动过程以下图:(1) A 被敲击后, B 静止, A 向右运动,由牛顿第二定律知,A 的加快度大小 a = μgAA 在B 上滑动时有 22a A L = v A解得: v A =2μ gL 。
(2) 设 A 、 B 的质量均为 m对齐前, A 相对 B 滑动, B 所受合外力大小F = μ mg + 2μ mg = 3μ mg由牛顿第二定律得F = ma B ,得 a B = 3μg对齐后, A 、 B 相对静止,整体所受合外力大小F ′= 2μmg由牛顿第二定律得F ′= 2ma B ′,得 a B ′= μg。
模型07 板块相对运动模型(解析版)两种类型 类型图示 规律分析木板B 带动物块A ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B =x A +L物块A 带动木板B ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B +L=x A此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口。
求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
【典例1】如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。
若砝码和纸板的质量分别为1m 和2m ,各接触面间的动摩擦因数均为μ。
重力加速度为g 。
(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中, 1m =0。
5kg , 2m =0。
1kg , μ=0。
2,砝码与纸板左端的距离d=0。
1m ,取g=102/m s 。
若砝码移动的距离超过l =0。
002m ,人眼就能感知。
为确保实验成功,纸板所需的拉力至少多大?【答案】(1) 12(2)f m m g μ=+ (2) 122()F m m g μ>+ (3) 22.4F N =【解析】(1)砝码对纸板的摩擦力 11f m g μ= 桌面对纸板的摩擦力 212()f m m g μ=+ 12f f f =+ 解得 12(2)f m m g μ=+(2)设砝码的加速度为1a ,纸板的加速度为2a ,则111f m a = 1222F f f m a --= 发生相对运动 21a a >解得 122()F m m g μ>+(3)纸板抽出前,砝码运动的距离121112x a t =纸板运动的距离212112d x a t += 纸板抽出后,砝码在桌面上运动的距离 223212x a t = 12l x x =+ 由题意知 131132,a a a t a t == 解得 122[(1)]d F m m g l μ=++ 代入数据得 22.4F N =【变式训练1】(多选)如图所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从木板的左端以速度v 0水平向右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦力。
第四部分重点模型与核心问题深究专题4.3 板块模型目录模型一动力学中水平面上的板块模型 (1)类型1水平面上受外力作用的板块模型 (2)类型2水平面上具有初速度的板块模型 (5)模型二斜面上的板块模型 (9)模型三板块模型与动量、能量的综合问题 (13)类型1无外力作用的板块模型 (15)类型2有外力作用的板块模型 (15)专题提升训练 (17)模型一动力学中水平面上的板块模型水平面上的板块模型是指滑块和滑板都在水平面上运动的情形,滑块和滑板之间存在摩擦力,发生相对运动,常伴有临界问题和多过程问题,对学生的综合能力要求较高。
【例1】如图所示,质量为M=4 kg的木板长L=1.4 m,静止放在光滑的水平地面上,其右端静置一质量为m=1 kg的小滑块(可视为质点),小滑块与木板间的动摩擦因数μ=0.4,今用水平力F=28 N向右拉木板。
要使小滑块从木板上掉下来,力F作用的时间至少要多长?(不计空气阻力,取g=10 m/s2)【答案】 1 s【解析】设t1时刻撤掉力F,此时滑块的速度为v2,木板的速度为v1,t2时刻木板与滑块达到最终速度v3,如图所示阴影部分的面积为板长L,则在0~t1的过程中,由牛顿第二定律有对滑块:μmg =ma 2,v 2=a 2t 1对木板:F -μmg =Ma 1,v 1=a 1t 1撤去力F 后,木板的加速度变为a 3,则μmg =Ma 3由v t 图像知L =12(v 1-v 2)t 1+12(v 1-v 2)(t 2-t 1)=12(v 1-v 2)t 2 t 2时刻木板与滑块速度相等,即v 1-a 3(t 2-t 1)=v 2+a 2(t 2-t 1)联立可得t 1=1 s 。
【方法总结】求解水平面上的板块模型的三个关键(1)两个分析:仔细审题,清楚题目的物理过程,对每一个物体进行受力分析和运动过程分析。
(2)求加速度:准确求出各个物体在各个运动过程的加速度,注意两个运动过程的连接处的加速度可能突变。
滑块—木板模型
一、模型概述
滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:
1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);
2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?
⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;
4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.
5. 计算滑块和木板的相对位移(即两者的位移差或位移和);
6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;
7. 滑块滑离木板的临界条件是什么?
当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()
【答案】 A
【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为1
2μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一
水平拉力F ,则( )
A .当F <2μmg 时,A 、
B 都相对地面静止 B .当F =52μmg 时,A 的加速度为1
3μg
C .当F >3μmg 时,A 相对B 滑动
D .无论F 为何值,B 的加速度不会超过1
2μg
【答案】 BCD
【解析】 A 、B 间的最大静摩擦力为2μmg ,B 和地面之间的最大静摩擦力为3
2μmg ,对A 、B 整体,只
要F >3
2μmg ,整体就会运动,选项A 错误;当A 对B 的摩擦力为最大静摩擦力时,A 、B 将要发生相对滑
动,故A 、B 一起运动的加速度的最大值满足2μmg -32μmg =m a m a x ,B 运动的最大加速度a m a x =1
2μg ,选项D
正确;对A 、B 整体,有F -32μmg =3m a m a x ,则F >3μmg 时两者会发生相对运动,选项C 正确;当F =5
2μmg
时,两者相对静止,一起滑动,加速度满足F -32μmg =3m a ,解得a =1
3
μg ,选项B 正确。
【典例3】 如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块。
已知木块的质量m =1 kg ,木板的质量M =4 kg ,长L =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2。
现用水平恒力F =20 N 拉木板,g 取10 m/s 2。
(1)求木板加速度的大小;
(2)要使木块能滑离木板,求水平恒力F 作用的最短时间;
(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?
(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30 N,则木块滑离木板需要多长时间?
【答案】(1)2.5 m/s2(2)1 s(3)F>25 N(4)2 s
【短训跟踪】
1. 如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的右端放着小物块A,某时刻B受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数.若物体之间的滑动摩擦力F f的大小等于最大静摩擦力,且A、B的质量相等,则下列图中可以定性地描述物块A的v -t图象的是().
【答案】 B
2. 如图所示,质量为m1的足够长的木板静止在光滑水平面上,其上放一质量为m2的木块.t=0时刻起,给木块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是().
【答案】AC
【解析】t=0时刻起,给木块施加一水平恒力F,两者可能一起加速运动,选项A正确;可能木块的加速度大于木板的加速度,选项C正确.
3. 质量为m0 =20 kg、长为L =5 m的木板放在水平面上,木板与水平面的动摩擦因数为μ1 =0.15。
将质量m =10 kg 的小木块(可视为质点),以v0 =4 m/s的速度从木板的左端被水平抛射到木板上(如图所示),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g=10 m/s2)。
则下列判断中正确的是()
A.木板一定静止不动,小木块不能滑出木板
B.木板一定静止不动,小木块能滑出木板
C.木板一定向右滑动,小木块不能滑出木板
D.木板一定向右滑动,小木块能滑出木板
【答案】A
【解析】木板与地面间的摩擦力为F f1=μ1(m0+m)g=0.15×(20+10)×10 N=45 N,小木块与木板之间的摩擦力为F f2=μ2mg=0.4×10×10 N=40 N,F f1>F f2,所以木板一定静止不动;设小木块在木板上滑行的距离为x,v20=2μ2gx,解得x=2 m<L=5 m,所以小木块不能滑出木板,A正确。
4. 如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的()
【答案】 A
5. 如图甲,水平地面上有一静止平板车,车上放一质量为m的物块,物块与平板车间的动摩擦因数为0.2,t=0时,车开始沿水平面做直线运动,其v-t图象如图乙所示。
g取10 m/s2,平板车足够长,则物块运动的v-t图象为()
【答案】 C
【解析】 小车先做匀加速直线运动,然后做匀减速直线运动,匀加速直线运动和匀减速直线运动的加速度大小相等,a 车=4 m/s 2,根据物块与车发生相对滑动时滑动摩擦力产生的加速度大小为a 物=μg =2 m/s 2。
设小车和物块在t 时刻速度相同,有24-a 车(t -6)=a 物t ,解得t =8 s ,物块以2 m/s 2的加速度减速至零也需要8 s ,故只有选项C 正确。
6. 如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为μ
3,已知最大静摩擦力与滑动摩擦力大小相
等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度大小a 可能是( ).学/科-网
A .a =μg
B .a =2μg
3
C .a =μg
3
D .a =F 2m -μg
3
【答案】 CD
7. 如图所示,物块A 、木板B 的质量均为m =10 kg ,不计A 的大小,B 板长L =3 m 。
开始时A 、B 均静止。
现使A 以某一水平初速度从B 的最左端开始运动。
已知A 与B 、B 与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g 取10 m/s 2。
(1)若物块A 刚好没有从B 上滑下来,则A 的初速度多大?
(2)若把木板B 放在光滑水平面上,让A 仍以(1)问中的初速度从B 的最左端开始运动,则A 能否与B 脱离?最终A 和B 的速度各是多大?
【答案】 (1)2 6 m/s (2)没有脱离
6 m/s
6 m/s
8. 如图所示,质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板。
从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v
-t图象分别如图中的折线acd和bcd所示,a、b、c、d点的坐标为a(0,10)、b(0,0)、c(4,4)、d(12,0)。
根据v-t图象,(g取10 m/s2),求:
(1)物块冲上木板做匀减速直线运动的加速度大小a1,木板开始做匀加速直线运动的加速度大小a2,达到相同速度后一起匀减速直线运动的加速度大小a;
(2)物块质量m与长木板质量M之比;
(3)物块相对长木板滑行的距离Δx。
【答案】(1)1.5 m/s2 1 m/s20.5 m/s2(2)3∶2 (3)20 m。