新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)
- 格式:doc
- 大小:1.40 MB
- 文档页数:20
第七章平面直角坐标系7.1 平面直角坐标系 (1)7.1.1 有序数对 (1)7.1.2 平面直角坐标系 (4)7.2 坐标方法的简单应用 (8)7.2.1 用坐标表示地理位置 (8)7.2.2 用坐标表示平移 (9)7.1 平面直角坐标系7.1.1 有序数对【教学目标】1. 知道表示平面上的点的位置需要两个数.这样的两个数叫做数对.为了方便,通常先约定这两个数的顺序,所以这样的数对叫有序数对.2. 能用有序数对表示平面上点的位置,也能根据有序数对找到它所表示的点.3. 锻炼用数学解决实际问题的能力,培养学习数学的兴趣.【教学重点】有序数对的意义.运用有序数对表示平面上的点或根据有序数对找到它所表示的点.【教学难点】用不同的有序数对表示平面上的同一个点.【新课导入】问题1 去影剧院看电影,影剧票上怎样表示你的座位?问题 2 当教师告诉你某页书上的某个字是关键字,要你将这个字打上着重号,老师怎样告诉你这个字的具体位置?问题3 在教室里,怎样确定每个同学的座位?【教学说明】学生分组讨论,然后交流成果,最后形成共识.【教学过程】思考 1.怎样较简单地表示平面上点的位置?2.在平面上表示一个点的位置只有一种方法吗?3.有序数对的顺序是怎样规定的?【归纳结论】1.通常用有序数对(a,b)表示平面上点的位置,这种表示法非常简明,人们一般都喜欢运用它,是公认的较简单的方法.2.在平面上表示一个点的位置有很多方法,如表示点A的位置(如图),可用(0,3)表示,也可用(3,90°)表示;表示点B的位置可用(7,0)表示,也可用(7,0°)表示.(后一种表示方法,教师可根据实际情况进行拓展)3.有序数对:为了表示平面上点的位置,需要用两个有顺序的数a与b表示,这种有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b).4.有序数对的顺序是人为规定的,但为了方便,往往大家都遵循一种特定的顺序,这样,在大的范围内,人们使用起来就方便多了。
《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动, 根据课程标准, 教学大纲和教科书要求及学生的实际情况, 以课时或课题为单位, 对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案, 仅供参考, 欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书, 七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁, 有了它我们便可以把几何问题转化为代数问题, 也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容, 对学生以后的学习起到铺垫作用, 6.1.2节平面坐标系主要是介绍如何建立平面坐标系, 如何确定点的坐标和由点的坐标寻找点的位置, 以及平面坐标系中特殊部位点的坐标特征, 根据学生的接受能力, 我把本内容分为2课时, 这是第一课时, 主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求, 数学的教学不仅要传授知识, 更要注重学生在学习中所表现出来的情感态度, 帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系, 了解点与坐标的对应系;②在给定的直角坐标系中, 能由点的位置写出点坐标。
数学思考:①通过寻找确定位置, 发展初步的空间观念;②通过学习用坐标的位置, 渗透数形结合思想解决问题:通过运用确定点坐标, 发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标, 培养学生合作交流与探索精神;②通过介绍数学家的故事, 渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误, 确定本节重难点为:重点: 认识平面坐标系难点: 根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征, 以及他们现有知识水平, 通过科学家发现点的坐标形成的经过启迪学生思维, 通过小组合作与交流及尝试练习, 促进学生共同进步, 并用肯定和激励的言语鼓舞、激励学生。
平面直角坐标系课题主备人执教者课型!新授课课时1时间教学目标情感态度培养学生用数学的意识,激发学生的学习兴趣.通过导入部分的视频激发学生爱国热情。
知识与技能理解有序数对的意义,能利用有序数对表示物体的位置。
过程与方法结合用有序数对表示物体的位置的内容,体会数形结合的思想.教学重难点。
重点有序数对的概念,用有序数对来表示物体的位置是重点;难点用有序数对表示平面内的点是难点。
教法与学法小组合作自主探究,讲授法,练习法教具准备<多媒体课件教学过程教学环节及时间分配教师活动学生活动(一)问题导入(3分钟)、;(二)提出问题,尝试解决(15分钟)…问题12009年60周年国庆庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置请3组5号起来回答。
这些都说的是用两个数确定一个物体的位置,那么怎样用两个数来确定一个物体的位置呢今天我们学习了有序数对就会表示了。
〔问题2〕下面是根据教室平面图写的通知:请以下座位的同学:(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论.观看视频(~·]#`》(三)巩固训练(5分钟)(四)归纳总结,布置作业(5分钟)(五)检测反馈(101234567654321纵排横排怎样确定教室里座位的位置^教师追问:排数和列数的先后顺序对位置有影响吗举例说明。
这就是说用两个数表示物体的位置是有顺序的。
假设我们约定“列数在前,排数在后”,请你在课本图上标出被邀请参加讨论的同学的座位。
上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
$利用有序数对,可以很准确地表示出一个位置。
生活中利用有序数对表示位置的情况是很常见的。
7.1.1有序数对
设计
教学过程
例3:图中五角星五个顶点的位置如何表示?已知(2,1)
例4:“怪兽吃豆豆”是一种计算机游戏,图中的●标志表示“怪兽”先后经过的几个位置,如果用
位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
:右图:若黑马的位置用(3,7)表示,请你用有序数对表示黑马可以走到的哪几个位置。
:如右图,方块中有25个汉字,用
7.1.2 平面直角坐标系(第一课时)
教学过程设计
7.1.2 平面直角坐标系(第二课时)
教学过程设计
(1)如果以点A为原点,
那么y轴在什么位置?写出正方形的顶点
(2)另建立一个平面直角坐标系,此时正方形的顶点
(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联
7.2.1用坐标表示地理位置
教学过程设计
7.2.2用坐标表示平移
教学过程设计
第六章小结与复习
教学过程设计
4. 在如图所示的正方形网格中,每个小正方形的边长为
在直角坐标系
点、一边平行于
.。
备课时间()周星期()教出时间()周星期()2020年上学期总第()课时
问题2如图,平面上有A,B,C三点,怎样用类似于数轴确定直线上点的位置的方法,确定A,B,C的位置.
【教学说明】可提示学生在直线上确定出正方向、原点和单位长度,建立数轴,于是可用一个数表示A,B两点的位置了.
基础上,用类似的方法确定问题2中A,B,C三点的位置.由前节可知,要表示平面上的点,必须用有序数对表示,所以想到要画两条数轴才能表示A,B,C三点的位置.
我们可以在平面内画两条互相垂直,原点重合的数轴,这样我们就可以用有序数对表示A,B,C的位置了.
二、思考探究,获取新知
思考.坐标平面内各象限及坐标轴上点的坐标特征.
【归纳结论】坐标:若点A在坐标平面内,过A作x轴的垂线,垂足在x轴上的坐标是a,过A作y轴的垂线,垂足在y轴上的坐标是b,那么A的坐标就是(a,b).
三、运用新知,深化理解
1.坐标平面上,在第二象限内有一点P,且P到x轴的距离是4,到y轴的距离是5,则P点坐标为()
A.(-5,4)
B.(-4,5)
C.(4,5)
D.(5,-4)
2.在平面直角坐标系中,点P(-3,4)到x轴的距离为()
A.3
B.-3
C.4
D.-4
【答案】1.A 2.C
四、师生互动,课堂小结
请学生口头总结,最后用课件在屏幕上出示小结.
教学后记。
第七章平面直角坐标系1.在直角坐标系内,能够根据坐标描出点的位置;根据坐标系内点的位置,写出点的坐标.2.能够通过建立坐标系或者其他方法说明事物的位置.3.在直角坐标系内,感受图形平移后点的坐标变化,并能够根据坐标的变化说明图形的平移.1.通过知识的整合构建知识体系,形成系统性知识.2.通过习题的演练,提高分析问题、解决问题的能力.强化用数学知识解决生活中问题的意识,养成认真思考、细心操作的习惯.【重点】在直角坐标系内点和坐标的对应关系.【难点】领会图形的平移实际就是图形点的坐标的变化.一、平面直角坐标系中的点与坐标的对应关系平面直角坐标系中,坐标与点是一一对应的关系,即平面内一点有唯一的有序实数对(x,y)和它相对应;反过来对于任意一个有序实数对(x,y),在坐标平面内都有唯一的点和它对应.平面内点的坐标由横坐标和纵坐标确定,横、纵坐标的符号决定点所在的象限,横坐标为0或纵坐标为0,说明点在y轴上或x轴上.二、图形的平移在平面直角坐标系内,如果把一个点的横坐标都加上(或减去)一个正数a,相应的对应点就是把原来的点向右(或向左)平移a个单位长度;如果把这个点的纵坐标都加上(或减去)一个正数a,相应的对应点就是把原来的点向上(或向下)平移a个单位长度.在平面直角坐标系中,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.反之亦然.专题一平面直角坐标系中的点与坐标的对应关系【专题分析】平面直角坐标系是函数学习的重要基础,在中考数学中占有重要的地位,是多年中考命题的常考点.本专题知识在中考中重点考查确定点的坐标、点所处的象限,以及根据坐标描点或根据要求确定点的坐标.中考命题中多以选择、填空等题型考查基本知识和基本技能.在平面直角坐标系中,点P(m2+1,-2)关于x轴对称的点在第象限;关于y轴对称的点在第象限.〔解析〕因为P(m2+1,-2)中,m2+1>0,-2<0,所以P(m2+1,-2)在第四象限,所以点P关于x轴对称的点在第一象限,关于y轴对称的点在第三象限.〔答案〕一三【针对训练1】若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限〔解析〕本题主要考查点的坐标与代数知识的综合运用.x轴上点的纵坐标等于0,所以n=0,则n-1=-1,n+1=1,所以点B的坐标为(-1,1),在第二象限.故选B.[规律方法]一、三象限内的点横、纵坐标同号;二、四象限内的点横、纵坐标异号;平面内点到x轴的距离是它纵坐标的绝对值,到y轴的距离是它横坐标的绝对值;横坐标不同,纵坐标相同的两个点的连线平行于x轴,横坐标相同、纵坐标不同的两个点的连线平行于y轴.等腰梯形的各点坐标为B(-1,0),A(0,2),C(4,0),求点D的坐标.〔解析〕求一个点的坐标,首先求出它到x轴与y轴的距离,然后再看它所在的象限,确定其横、纵坐标的符号.解:如图所示,过D点作DE⊥x轴,因为四边形ABCD为等腰梯形.所以CE=BO=1.又因为C点坐标为(4,0),所以OC=4.所以OE=4-1=3.因为AD∥BC,所以D点的纵坐标与A点纵坐标相等,为2.所以D点坐标为(3,2).【针对训练2】如图所示,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)〔解析〕因为A(1,1),B(-1,1),C(-1,-2),D(1,-2),所以AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,所以绕四边形ABCD一周的细线长度为2+3+2+3=10,2012÷10=201……2,所以细线另一端在绕四边形第202圈的第2个单位长度的位置,即点B的位置,点B的坐标为(-1,1).故选B.专题二图形的平移【专题分析】平移问题一直以来都是中考的热点,掌握好“用坐标表示平移”的变换规律是关键,即“右加左减,上加下减”;平移过程中各对应点的坐标变换规律是相同的.在中考命题中经常和对称、旋转等知识结合在一起考查.考查的方式较为灵活,多种题型中均有出现.如图所示,将四边形ABCD先向左平移3个单位长度,再向上平移2个单位长度,那么点A的对应点A'的坐标是 ()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)〔解析〕因为四边形ABCD先向左平移3个单位长度,再向上平移2个单位长度,所以点A也先向左平移3个单位长度,再向上平移2个单位长度,所以由图可知A'的坐标为(0,1).故选B.【针对训练3】在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1),B(1,3),将线段AB通过平移后得到线段A'B',若点A的对应点为A'(3,2),则点B的对应点B'的坐标是.〔解析〕由于图形平移过程中,对应点的平移规律相同,由点A到点A'可知,点的横坐标加5,纵坐标加1,故点B'的坐标为(1+5,3+1),即(6,4).故填(6,4).专题三数形结合思想【专题分析】平面直角坐标系的建立使平面内的点与有序实数对之间建立了一一对应关系,是实现数与形的结合.由点找坐标,由坐标确定点的位置,通过坐标的变化呈现图形变换,也促进了数形之间的相互转化.数与形的结合,直观形象,为分析问题和解决问题提供了新的方法.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示,可是她忘记了在图中标出原点和x轴、y轴.只知道游乐园D 的坐标为(2,-2),你能帮她写出其他各景点的坐标吗?〔解析〕由游乐园D的坐标为(2,-2),可以确定平面直角坐标系中原点的位置,以及坐标轴的位置,从而可以确定其他景点的坐标.解:如图,由题意可知本题是以点O为坐标原点,即O(0,0),OA为y轴的正半轴,建立平面直角坐标系的,则A(0,4),B(-3,2),C(-2,-1),E(3,3).【针对训练4】已知在平面直角坐标系中,A(3,4),B(4,1),求△AOB的面积.〔解析〕△AOB的三边均不与坐标轴平行,不能直接求面积,需通过作辅助线,用“添补”法间接计算.解:分别过A,B作x轴和y轴的平行线,交y轴于E,交x轴于F,AE,BF交于C点.由A ,B 的坐标可知AE =3,AC =1,BC =3,BF =1,所以S △AOB =S 长方形OECF -S △OAE -S △ABC -S △BOF=4×4-12×4×3-12×3×1-12×4×1=16-6-32-2 =6.5.本章质量评估(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.根据下列表述,能确定具体位置的是 ( )A.瑞安光大电影院第2排B.瑞安市虹桥路C.北偏东45°D.东经119°,北纬42°2.纪念馆的位置如图所示,则其所覆盖的坐标可能是 ( )A.(-5,3)B.(4,3)C.(5,-3)D.(-5,-3)3.若点A (2,n )在x 轴上,则点B (n -2,n +1)在 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图所示,将△PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是 ( )A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)5.如图所示,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的1,则点A的对应点的坐标是()2A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)6.如图所示,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D7.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)8.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()9.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:f(a,b)=(-a,b).如:f(1,3)=(-1,3);g(a,b)=(b,a).如:g(1,3)=(3,1);h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).按照以上变换有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于()A.(-5,-3)B.(5,3)C.(5,-3)D.(-5,3)10.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按下图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒跳动一个单位长度,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)二、填空题(每小题4分,共32分)11.小凡在教室中的座位是3排4列,记为(3,4),那么若小豪的座位为(2,3),则所表示的位置是.12.在平面直角坐标系中,点A(2,m2+1)一定在第象限.13.在平面直角坐标系中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为.14.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A'处,则点A'的坐标为.15.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是.18.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将数对(-2,3)放入其中得到数m,再将数对(m,1)放入其中后,得到的实数是.三、解答题(共58分)19.(9分)如图.(1)正门北偏东30°的方向上有哪些动物景点?要想确定蝴蝶馆的位置,还需要有什么数据?(2)距正门图上距离为1个单位长度的景点又有哪些?(3)要确定每个景点的位置,各需要几个数据?20.(7分)在直角坐标系中,依次连接点(1,0),(1,3),(7,3),(7,0),(1,0)和点(0,3),(8,3),(4,5),(0,3)两组图形共同组成了一个什么图形?如果将上面各点的横坐标都加上1,纵坐标都减1,那么用同样方式连接相应各点所得的图形发生了哪些变化?21.(8分)如图是某公园的平面图(每个方格的边长表示100个单位长度).(1)写出任意五个景点的坐标.(2)某星期天的上午,苗苗在公园沿(-500,0),(-200,-100),(300,200),(500,0)的路线游玩了半天,请你写出她路上经过的地方.22.(12分)如图所示,在正方形ABCD中,已知A,B,C三个顶点的坐标分别为(-4,2),(-1,2),(-1,5),请回答下列问题.(1)推算D点的坐标,并说明理由;(2)观察正方形各个顶点的坐标,你发现了什么?(3)若在直角坐标系中作一线段与x轴平行,则这条线段上每个点的坐标有什么共同的特点?23.(12分)下图中标明了李明同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿着(-2,-1),(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1),(-2,-1)的路线转了一下,写出他路上经过的地方.(3)连接他在(2)中经过的地点,你能得到什么图形?24.(10分)某城市的街道恰好呈东西与南北横纵交错格局.一次,警察局电子监控器屏幕上发现一辆作案后的小轿车A正在点A(3,1)处以每分钟0.5个单位长的速度向北逃窜,根据各街道的交通状况进行分析,逃犯很可能逃到点B(3,6)后改为向东逃窜.此时正在点C(5,-1)处巡逻的警车接到指令后立即以每分钟0.7个单位长的速度进行追捕,那么逃犯最快将在什么地方被追捕到?【答案与解析】1.D(解析:A.瑞安光大电影院第2排,没有明确第几号,所以位置不确定,故本选项错误;B.瑞安市虹桥路,没有明确第几号,所以位置不确定,故本选项错误;C.北偏东45°,位置不明确,故本选项错误;D.东经119°,北纬42°,有序数对,位置明确,故本选项正确.故选D.)2.C(解析:因为第四象限内点的坐标,横坐标为正数,纵坐标为负数,结合各选项符合条件的只有C(5,-3).故选C.)3.B(解析:由于点A(2,n)在x轴上,则n=0,那么点B的坐标为(-2,1),所以点B在第二象限.故选B.)4.A(解析:P(-4,-1)向右平移2个单位长度,再向下平移3个单位长度后,坐标为(-4+2,-1-3),即为(-2,-4).故应选A.),则点A的5.A(解析:点A变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的12对应点的坐标是(-4,3).故选A.)6.B(解析:由点M的位置用(-40,-30)表示可以知道,表格中每个单位长度表示10米,所以结合各坐标系中点的特征,可知(10,20)表示的位置是点B.)7.C(解析:因为点P在第二象限内,所以点的横坐标小于0,纵坐标大于0,又因为P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是-3,所以点P的坐标为(-3,4).故选C.)8.C(解析:到l1的距离是2的点,在与l1平行且与l1的距离是2的两条直线上;到l2的距离是3的点,在与l2平行且与l2的距离是3的两条直线上.以上四条直线有四个交点,故“距离坐标”是(2,3)的点共有4个.故选C.)9.B(解析:按照本题的规定可知:h(5,-3)=(-5,3),则f(-5,3)=(5,3),所以f(h(5,-3))=(5,3).故选B.)10.B(解析:质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).故选B.)11.2排3列(解析:根据题意可知,排数在前,列数在后,所以若小豪的座位为(2,3),则小豪的座位为2排3列.)12.一(解析:因为m2≥0,1>0,所以纵坐标m2+1>0,因为点A的横坐标2>0,所以点A一定在第一象限.)13.3(解析:因为点A到x轴的距离为|y|=3,而OB=2,所以S=1×2×3=3.)214.(1,2)(解析:根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.点A(-1,0)向右跳2个单位长度,即-1+2=1,向上跳2个单位,即0+2=2,所以点A'的坐标为(1,2).)15.(D,6)(解析:由题意可知白棋⑨在纵线对应D,横线对应6的位置,故记作(D,6).)16.答案不唯一,如(0,0)(解析:因为点P(x,y)的坐标满足x+y=xy,所以x,y符号相同,代入数字进行验证,符合条件的点的坐标有(0,0),(2,2)等.)17.-4或6(解析:因为点M(1,3)与点N(x,3)之间的距离是5,所以|x-1|=5,解得x=-4或6.)18.66(解析:根据新定义的规则,将(-2,3)放入魔术盒会得到(-2)2+3+1=8,再将(m,1)也就是(8,1)放入魔术盒,得到实数82+1+1=66.)19.解:(1)观察图形知,正门北偏东30°的方向上的动物景点有蝴蝶馆、大象馆.要想确定蝴蝶馆的位置,还需知道蝴蝶馆与原点(正门)的距离或蝴蝶馆所在点的横坐标和纵坐标. (2)距正门图上距离为1个单位长度的景点是长颈鹿馆. (3)要确定每个景点的位置,需要知道各景点的横、纵坐标.20.解:如图,在直角坐标系中,依次连接点(1,0),(1,3),(7,3),(7,0),(1,0)和点(0,3),(8,3),(4,5),(0,3),则共同组成的图形是“小房子”.若将上面各点的横坐标都加上1,纵坐标都减1,再连接相应各点,所得图形的形状、大小都不变,只是位置沿水平方向向右平移一个单位长度,再向下平移一个单位长度.21.解:(1)答案不唯一,如湖心亭(-300,200),望春亭(-200,-100),音乐台(0,400),牡丹园(300,200),游乐园(200,-200). (2)西门→望春亭→牡丹园→东门.22.解:(1)设另一个顶点D的坐标为(a,b).因为AB∥CD∥x轴,所以点D的纵坐标与点C的纵坐标相同,即b=5.又因为AD∥BC∥y轴,所以点D的横坐标与点A的横坐标相同,即a=-4.故点D的坐标为(-4,5). (2)观察可知,纵坐标相同的各点的连线平行于x轴,横坐标相同的各点的连线平行于y轴. (3)平行于x轴的直线上的点的纵坐标相等.23.解:(1)学校的坐标为(1,3);邮局的坐标为(0,-1). (2)李明家-商店-公园-汽车站-水果店-学校-游乐场-邮局-李明家. (3)连接他在(2)中经过的地点,得到的图形如图,是一艘帆船.24.解:第一种情况:警车向正西行驶到点(3,-1),然后尾随逃犯,这样也可以追上,但这一条路从直观上来看显然需要追捕较长的时间才能追上,也就是说需要20分钟才能追上,此时在点(8,6)处追上;第二种情况:警车直接向正北方向行驶到点(5,6),这时再看逃犯是否通过点(5,6)来决定进一步追捕的方向.显然,警车到达点(5,6)需要的时间是10分钟,此时逃犯到达点(3,6),警车应改为向西行驶,只需再过2÷1.2≈1.7(分钟)就可以追捕到逃犯,其地点大约是(3.85,6).。
第七章平面直角坐标系1.认识有序数对,感受它在确定点的位置中的作用.2.认识平面直角坐标系,能根据点的位置写出点的坐标,根据点的坐标描出点的位置.3.掌握点的坐标变化与点的左右或上下平移间的关系,并能解决与平移有关的问题.4.能够建立适当的坐标系表示地理位置.1.要正确理解有序实数对的含义,熟悉平面直角坐标系的组成.对于平面内点的表示和直线上的点的表示要正确区别,在用有序实数对表示点时,要注意数的先后顺序.2.用坐标表示地理位置,注重平面直角坐标系与生产、生活的联系,确定坐标原点是解决此类问题的关键.体验和领悟数学与生活的密切联系.本章是研究函数及其图象的入门篇,介绍了平面直角坐标系以及相关知识.直角坐标系是由两个互相垂直的数轴组成的,它不但是联系有序实数对和平面内点的对应关系的桥梁,也是解决数学问题经常运用的工具.在本章将学到用坐标的方法表示地理位置和平移,通过用有序实数对确定位置,从中体会位置的确定与坐标变换之间的关系,探索在平移、轴对称、旋转等变换过程中,相应的点的坐标的变化规律.【重点】1.掌握平面内点的坐标的表示方法及求法.2.能够建立适当的坐标系来描述点所处的位置.【难点】用坐标表示平面内的点的位置及判断坐标平面上点的坐标.1.复习数轴的有关知识,加深对实数与数轴上的点一一对应的认识,要注意弄清有序实数对的概念.2.突出识记各象限内点的坐标和坐标轴上点的坐标的特征.增强空间意识,掌握图形的基本规律.3.有关平面直角坐标系的概念比较多,指导学生学习时,要注意运用数形结合的思想,紧密结合图形帮助学生理解这些概念,不要死记硬背定义.7.1平面直角坐标系2课时7.1.1有序数对(1课时)7.1.2平面直角坐标系(1课时)7.2坐标方法的简单应用7.2.1用坐标表示地理位置(12课时课时)7.2.2用坐标表示平移(1课时)单元概括整合1课时7.1平面直角坐标系1.了解有序实数对的含义及其在确定点的位置中的作用.2.了解平面直角坐标系,感受点和坐标一一对应的关系.通过生活实例领会有序实数在生活中的作用.认识数学与生活的密切联系,培养学生用数学知识解决生活问题的意识.【重点】1.有序实数对对确定点的位置的作用.2.借助于直角坐标系描述点的位置.3.根据位置关系建立适当的直角坐标系描述事物位置.【难点】1.理解有序实数对和点的一一对应.2.根据事物的位置建立直角坐标系.7.1.1有序数对了解有序数对,感受它在确定点的位置中的作用.通过对实际问题的分析,经历建立数学模型解决实际问题的过程.体验有序数对在现实生活中应用的广泛性.逐步建立数学的应用意识.【重点】理解有序数对的意义和作用.【难点】有序数对表示点的位置的唯一性.【教师准备】课堂教学所用的教学图片.【学生准备】复习小学数学学过的有关数对的知识.导入一:出示围棋棋盘图片,提出问题:怎么说明各个棋子的位置呢?[设计意图]帮助学生领会引入“有序数对”的必要,初步领会怎样用实数去描述事物的位置.导入二:出示飞行员方队图片,提出问题:方队内的每位队员,怎样准确找到自己的位置呢?[设计意图]学生在想各种办法的时候,会联想到小学学过的“数对”,再次感受“数对”对于说明位置的准确性.[过渡语]刚才我们体验了怎样明确确定事物的位置,接下来我们就研究一下具体的办法吧!..生活体验问题1:如果你持有这张电影票,怎样找到自己的位置呢?处理方式:学生观察后可以随意说出,肯定学生根据座位号找到位置的回答.问题2:出示教材图7.1-1,根据要求做活动.活动一假如这是班级的座位图,请你任意选择一个位置当做自己的座位,怎样向同学说明你的位置?处理方式:学生在“选定”自己的位置后,根据学习经验会用“横排”“竖排”的概念描述自己的位置,可是这种描述还是文字性的,不是用数字的抽象描述,需要提示学生用“数字”的方式描述自己的位置.活动二教材第65页思考中的问题提示:可以利用排、列的方式确定教室里座位的位置;排数和列数的先后顺序对位置是有影响的;图略.(1,5)表示的位置是第1列第5排,(2,4)表示的位置是第2列第4排,(4,2)表示的位置是第4列第2排,(3,3)表示的位置是第3列第3排,(5,6)表示的位置是第5列第6排.总结:上面的问题都是通过像“9排7号”“第1列第5排”这样含有两个数的表达方式来表示一个确定的位置,其中两个数各自表示不同的含义,例如前边的表示“排数”,后边的表示“号数”.我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).2.例题讲解.(补充)如图所示,在A处观察B物体,横着相距3格,竖着相距2格,B点表示为(4,3),在A处观察C物体,横着相距格,竖着相距格,C点表示为.〔解析〕从A点看C点,横着相距6格,竖着相距1格,要确定C点的表示方法,应以B为标准,从B点数,向右数3个格,向下数1个格,故C点可表示为(7,2).〔答案〕61(7,2)[知识拓展]对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.当a=b时,它们表示同一有序数对,当a≠b时,它们表示不同的有序数对.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).1.如图所示,已知某城市A在地图上的位置如图所示,则城市A的位置在()A.东经120°,北纬30°B.东经30°,北纬120°C.东经110°,北纬30°D.东经20°,北纬120°解析:地图上是通过用经度和纬度来表示城市的位置的,由图可知城市A所在的位置是东经120°,北纬30°.故选A.2.如图所示,观察小岛A相对于灯塔O的位置,描述准确的是()A.北偏东60°B.距灯塔20 km处C.北偏东30°且距灯塔20 km处D.北偏东60°且距灯塔20 km处解析:由题意可知,观察小岛A相对于灯塔O的位置,需要方位角大小和小岛与O点的距离两个量.所以小岛A可以表示为北偏东60°且距灯塔20 km处.故选D.3.如图所示,进行“找宝”游戏,如果宝藏藏在(3,2)字母牌的下面,那么应该在字母L 的下面寻找,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母的下面寻找.解析:先理解(4,5)表示4排5列,然后在图中找出对应的字母即可.因为(4,5)表示4排5列,而图中4排5列的字母为J,所以宝藏藏在J字母牌的下面.故填J.4.在电影票上,将“7排6号”简记作(7,6).(1)6排7号可表示为.(2)(8,6)表示的意义是.解析:本题考查如何用有序数对表示位置.将“7排6号”表示为(7,6),对比看出前数表示排号,后数表示位号,用小括号括起来,中间用“,”隔开.所以6排7号可表示为(6,7).(8,6)表示的意义是8排6号.答案:(6,7)8排6号7.1.1有序数对1.有序数对2.例题讲解例题一、教材作业【选做题】教材第65页练习.【选做题】教材68页习题7.1第1题.二、课后作业【基础巩固】1.在平面内,下列数据不能确定物体位置的是()A.3楼5号B.北偏西40°C.解放路30号D.东经120°,北纬30°2.如图所示的为一方队的示意图,A的位置为三列四行,表示为(3,4),那么B的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)3.如果电影票上的“3排4号”记作(3,4),那么(4,3)表示排号.4.用有序数对(2,9)表示某住户住2单元9号房,那么(3,11)表示住户住几单元几号房?5.如图所示,小海龟位于图中点A(2,1)处,按下述路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).用粗线将小海龟经过的路线描出来,看一看像什么图形.【能力提升】6.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置不同C.(3,2)与(2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置7.如图所示,将正整数按下图所示的规律排列下去,若用有序数对(n,m)表示n排从左到右第m个数.如(4,3)表示9,则(10,3)表示()A.46B.47C.48D.498.如图所示,A表示三经路与一纬路的十字路口,B表示一经路与三纬路的十字路口,如果用(3,1)⇒(3,2)⇒(3,3)⇒(2,3)⇒(1,3)表示由A到B的一条路径,用同样的方式写出一条由A到B的路径:(3,1)⇒()⇒()⇒()⇒(1,3).9.小明和小亮同去市科技馆参加科技报告会,小明的入场券写着5排6号,而小亮的入场券写着6排5号,若小明的座位记作(5,6),那么小亮的座位记作.10.如图所示,点M表示王昊的座位,点N表示李乐的座位,点F表示赵明的座位.(1)王昊的座位是第5组第3个,表示为M(5,3);(2)点C表示班上年龄最小的同学的座位,表示为C(,);(3)把李乐的座位向左平移3个座位后,表示为(,);(4)赵明西面相邻同学的座位表示为(,);赵明南面相邻同学的座位表示为(,).【拓展探究】11.如图所示,从2街4巷到4街2巷,走最短的路线的走法共有多少种?请写出来.利用方格图和有序实数对表示出所有最短的路线的走法.12.如图所示的为某城市的街道平面图,图中的线段表示道路.(1)若A点所在的2街5大道的十字路口的位置可用(2,5)表示,那么B点可用什么方式表示?(2)找出从A点到B点的一条最短线路,并用适当的方式表示这条最短线路.(3)想一想,从A到B的最短线路共有多少条?【答案与解析】1.B(解析:A.3楼5号,物体的位置明确,故本选项错误;B.北偏西40°,无法确定物体的具体位置,故本选项正确;C.解放路30号,物体的位置明确,故本选项错误;D.东经120°,北纬30°,物体的位置明确,故本选项错误.故选B.)2.A(解析:根据A的位置为三列四行,表示为(3,4)可知列写在前面,行写在后面,据此可以得到B的位置.由图形可以看出:B点的位置为四列五行,故知B点可以表示为(4,5).故选A.)3.43(解析:根据题意知前一个数表示排数,后一个数表示号数,所以(4,3)表示的座位是4排3号.)4.解:(3,11)表示住户住3单元11号房.5.解:如图所示,小海龟经过的路线图形像一面小旗.6.C(解析:本题考查了有序数对.由有序数对的定义知:A.(3,2)与(2,3)是表示不同位置的两个有序数对,故此项错误;B.(a,b)与(b,a)当a≠b时是表示不同位置的两个有序数对,故此项错误;C.(3,2)与(2,3)是表示不同位置的两个有序数对,故此项正确;D.(4,4)与(4,4)是表示相同位置的两个有序数对,故此项错误.故选C.)7.C(解析:从图中可以发现,第n排的最后的数为n(n+1),所以第9排最后的数为×9×(9+1)=45,(10,3)表示第10排第3个数,则第10排第3个数为45+3=48.故选C.) 8.(2,1)(2,2)(2,3)(解析:此题首先根据题意明确横坐标表示经路,纵坐标表示纬路.然后结合图形画出路线,写出对应的坐标即可.根据题意,答案不唯一,可依次填(2,1)⇒(2,2)⇒(2,3)等.)9.(6,5)(解析:因为小明的入场券写着5排6号用(5,6)表示,即排数在前,列数在后,所以小亮的入场券写着6排5号,就可以表示为(6,5).)10.(2)(2,1)(3)(2,4)(4)(2,6)(3,5)(解析:根据数对表示位置的方法观察图形可知王昊的座位是第5组第3个,表示为M(5,3),则(2)点C表示班上年龄最小的同学的座位,表示为C(2,1),(3)把李乐的座位向左平移3个座位后,表示为(2,4),(4)赵明西面相邻同学的座位表示为(2,6);赵明南面相邻同学的座位表示为(3,5).)11.解:从2街4巷到4街2巷,走最短的路线的走法有:①(2,4)→(4,4)→(4,2);②(2,4)→(3,4)→(3,2)→(4,2);③(2,4)→(3,4)→(3,3)→(4,3)→(4,2);④(2,4)→(2,3)→(4,3)→(4,2);⑤(2,4)→(2,2)→(4,2);⑥(2,4)→(2,3)→(3,3)→(3,2)→(4,2).12.解:(1)因为B点所在的位置是5街3大道的十字路口,所以B点可用(5,3)表示. (2)答案不唯一,如(2,5)→(5,5)→(5,3). (3)从A到B的最短线路共有10条.本课时通过生活实例帮助学生领会了“有序数对”对于描述事物位置的重要作用,使学生认识到仅靠语言描述事物位置还是不够的,并且初步学会了用“数对”描述事物的位置.对于有序实数对的作用的准确性和唯一性没有做出特别重点的强调,在交代了有序数对定义后,没有让学生进行举例,少了生活体验这个环节.有针对性地纠正本课时的不足之处,重点强调有序数对的准确性和唯一性,让学生从生活经验的角度体验有序数对的重要作用.可以再补充一个例题,强化学生对知识的掌握.练习(教材第65页)解:“(2,5)→(2,4)→(2,3)→(2,2)→(3,2)→(4,2)→(5,2)”,“(2,5)→(2,4)→(3,4)→(3,3)→(3,2)→(4,2)→(5,2)”,“(2,5)→(3,5)→(4,5)→(4,4)→(4,3)→(4,2)→(5,2)”等,答案不唯一.如图所示的是中国象棋一次对局时的部分示意图,若“帅”所在的位置用有序数对(5,1)表示,请你用有序数对表示其他棋子的位置.〔解析〕由示例可知,有序数对(a,b)中a代表棋子所处的纵列数,b表示棋子所处的横排数.解:兵(2,5),车(3,1),仕(5,2),马(6,4),炮(8,3),相(9,3).7.1.2平面直角坐标系认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位置.渗透对应关系,提高学生的数感.体验数、符号是对描述现实生活的重要手段.【重点】平面直角坐标系和点的坐标.【难点】根据点的位置写出点的坐标,根据点的坐标描出点的位置.【教师准备】教材图7.1-3,7.1-4,7.1-5,7.1-6的投影图片.【学生准备】复习有序数对的定义和表示方法.导入一:如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标为-4,点B在数轴上的坐标为2.反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如,数轴上坐标为5的点是点C.导入二:数学家笛卡儿潜心研究能否用代数中的计算来代替几何中的证明.有一天,在梦中他用金钥匙打开了数学宫殿的大门,遍地的珠子光彩夺目,他看见窗框角上有一只蜘蛛正忙着结网,顺着吐出的丝在空中飘动,一个念头闪过脑际:眼前这一条条的横线和竖线不正是自己全力研究的直线和曲线吗?由此笛卡儿发明了直角坐标系,你是不是很想知道什么是直角坐标系呢?就让我们一起进入本节课的学习吧![过渡语]数轴上的点是与实数一一对应的,但这种对应有个弊端,就是无法准确确定点的位置.直角坐标系就很好地解决了这个问题.1.建立直角坐标系.出示教材图7.1-3,回答问题:(1)你如何表示A,B,C,D这四个点的位置?(2)用一条数轴能否表示这四个点的位置?(3)用两个原点互相重合、垂直的数轴,能表示这四个点的位置吗?活动方式:学生交流、讨论、动手操作.问题预设:第(1)问学生可能会想到用上个课时的“有序数对”的知识进行说明,采取横纵标上数字的办法.对于学生的这种做法要给予积极的肯定,鼓励学生再去尝试其他的方法.第(2)问,从A,B,C,D这四个点的位置看都不在同一条直线上,用一个数轴只能表示出两个点的位置.第(3)问首先介绍了利用两条数轴的方法,也就是原点重合、互相垂直,这也是直角坐标系建立的基本条件.两个这样的坐标轴放到图7.1-3上,注意相应的横线和竖线分别与坐标轴重合,这样就可以读出A,B,C,D四个点的坐标.2.平面直角坐标系的相关概念.(1)建立直角坐标系.在平面内,两条互相垂直、原点重合的数轴,组成平面直角坐标系,如图所示.水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.(2)平面直角坐标系的点.把直角坐标系如下图建立起来,就可以读出A,B,C,D四个点的坐标.问题1:由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).类似地,请你写出点B,C,D的坐标:B(,),C(,),D(,).处理方式:学生交流讨论完成,老师巡视指导.问题2:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?提示:原点O的坐标为(0,0);x轴上的点的纵坐标为0,例如(1,0),(-1,0),…;y轴上的点的横坐标为0,例如(0,1),(0,-1),….(3)平面直角坐标系的象限.问题:什么是象限?坐标原点属于哪个象限?提示:建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分(图7.1-5),每个部分称为象限,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.3.例题讲解.(补充)如图所示,其中所画的平面直角坐标系符合要求的是()〔解析〕A选项中x轴与y轴不互相垂直,故此选项不正确,B选项中两数轴的交点不对,故B选项也不正确;D选项中没有标明坐标原点及x轴与y轴,故也排除.故选C.(教材例题)在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4).解:先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点A.类似地,在图上描出点B,C,D,E.4.坐标平面内的点与有序实数对的一一对应.数轴上的点与实数是一一对应的.坐标平面内的点与一对有序实数是一一对应的吗?对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y)(即点M的坐标)和它对应;反过来,对于任意一对有序实数(x,y),在坐标平面内的点与有序实数对是一一对应的.[知识拓展](1)求点的坐标时,横坐标要写在前面,纵坐标写在后面,中间用逗号隔开,再把它们括起来.(2)坐标轴上点的坐标:x轴上到原点的距离为|a|的点的坐标为(±a,0),y轴上到原点的距离为|b|的点的坐标为(0,±b).可类比数轴上的点与实数的关系来研究.(3)建立直角坐标系的方法不同,同一个点在不同的直角坐标系中的坐标是不同的.1.平面直角坐标系的相关概念:横轴、纵轴、原点、象限.2.坐标平面内的点与有序实数对是一一对应的.1.点(-2,1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:点(-2,1)的横坐标在x轴的负半轴上,纵坐标在y的正半轴上,所以点(-2,1)在第二象限.故选B.2.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-4解析:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.因为|4|=4,所以点P(-3,4)到x轴距离为4.故选C.3.如图所示,点A关于y轴的对称点的坐标是.解析:首先根据平面直角坐标系可知点A的坐标为(-5,3),再由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标相等,可得点A关于y轴的对称点的坐标是(5,3).故填(5,3).4.如图所示,根据坐标平面内点的位置,分别写出图中点A,B,E的坐标.解:点的坐标分别为:A(2,4),B(1,3),E(3,3).7.2.2平面直角坐标系1.建立直角坐标系2.平面直角坐标系的相关概念3.例题讲解例1例24.坐标平面内的点与有序实数对的一一对应一、教材作业【必做题】教材第68页练习第1,2题.【选做题】教材第68页习题7.1第14题.二、课后作业【基础巩固】1.有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限.其中错误的是()A.只有①B.只有②C.只有③D.①②③2.在平面直角坐标系中,位于第三象限的点是()A.(0,-1)B.(1,-2)C.(-1,-2)D.(-1,2)3.若点A(2,n)在x轴上,则点B(n-2,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2014·张家界中考)若点A(m+2,3)与点B(-4,n+5)关于y轴对称,则m+n=.5.如果点A的坐标为(-a2-3,b2+3),那么点A在第几象限?说说你的理由.【能力提升】6.若点P(x,y)满足xy=0,则点P在()A.原点处B.四个象限中的某一个C.y轴上D.x轴上或y轴上或原点处7.若点P(m,1-2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.点A在y轴的左侧,到x轴,y轴的距离分别是2和3,则点A的坐标是()A.(-3,2)B.(-3,-2)C.(3,2)或(-3,2)D.(-3,2)或(-3,-2)9.已知点P在第四象限,它的横坐标与纵坐标的和为-3,则点P的坐标是.(写出符合条件的一个点即可)10.如图所示,平面直角坐标系中,已知点A(-3,-2),B(0,3),C(-3,2),求△ABC的面积.【拓展探究】11.如图所示,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过2015次运动后,动点P的坐标是.12.如图所示.(1)写出五边形ABCDEF的顶点A,B,C,D,E,F的坐标;(2)C,E两点的坐标有什么特征?(3)直线CE与两条坐标轴有怎样的位置关系?【答案与解析】1.C(解析:说法①②正确,说法③错误,因为平面直角坐标系把坐标平面分成四个部分,即把坐标平面分为四个不同象限,而在坐标轴上的点是不属于任何象限的.故选C.)2.C(解析:因为第三象限点的坐标特点是横纵坐标均为负数,所以只有选项C符合条件.故选C.)3.B(解析:由于点A(2,n)在x轴上,则n=0,那么点B的坐标为(-2,1),所以点B在第二象限.故选B.)4.0(解析:因为点A(m+2,3)与点B(-4,n+5)关于y轴对称,所以m+2=4,3=n+5,解得m=2,n=-2,所以m+n=0,故答案为0.)5.解:因为-a2≤0,所以-a2-3≤-3,而b2≥0,所以b2+3≥3,即点A的横坐标一定小于零,而纵坐标一定大于零,所以点A一定在第二象限.6.D(解析:由xy=0可知x=0或y=0或x=y=0,所以该点位于x轴上或y轴上或原点处.)7.D(解析:因为点P(m,1-2m)的横坐标与纵坐标互为相反数,所以m=-(1-2m),解得m=1,即1-2m=-1,所以点P的坐标是(1,-1),所以点P在第四象限.故选D.)8.D(解析:因为点A在y轴的左侧,所以该点位于第二或第四象限,又因为该点到x轴,y轴的距离分别是2和3,所以其坐标为(-3,2)或(-3,-2).)9.答案不唯一,如(1,-4)(解析:点P在第四象限,横坐标大于0,纵坐标小于0.先确定一个坐标的值,进而根据和为-3求解.设点P的坐标是(x,y),则x>0,y<0,又因为横坐标与纵坐标的和为-3,所以当x=1时,就可以求出y=-4,就得到满足条件的一个坐标.)10.解:AC=2-(-2)=4,过点B作AC边上的高BD,垂线段BD的长与点A到y轴的距离相等.因为点A的坐标是(-3,-2),所以BD=|-3|=3,所以△ABC的面积S=×4×3=6.11.(2015,2)(解析:因为动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),所以第4次运动到点(4,0),第5次运动到点(5,1),…,所以横坐标为运动次数,经过第2015次运动后,动点P的横坐标为2015,纵坐标为1,0,2,0,每4次一循环,2015÷4=503……3,所以经过第2015次运动后,动点P的纵坐标为四个数中的第三个,即为2,所以经过第2015次运动后,动点P 的坐标是(2015,2).)12.解:(1)A(-2,0),B(0,3),C(3,3),D(4,0),E(3,-3),F(0,-3). (2)横坐标相等,纵坐标互为相反数. (3)直线CE与x轴垂直,与y轴平行.本课时的知识容量大、描述性概念多,需要做到抓住重点知识,条理清晰地把知识呈现给学生.在教学设计的过程中,紧紧把握了有序数对这个核心,围绕建立坐标系而展开的.通过建立坐标系的活动,学生体验到了建立坐标系的好处和方法,为后续的知识进行做了扎实的准备.在课时的教学过程中,注重学生的动手操作,强化了学生对知识的理解.建立坐标系之后,如何读点的坐标和描出坐标所对应的点,只借助于例题对学生指导是不够的,没有做到更为具体和细化.对有序实数对与坐标平面内的点的一一对应关系,没有让学生动手操作来体验.部分概念的理解交给学生自读完成,如平面直角坐标系、横轴、纵轴、原点、象限等概念.总结坐标在各象限中的特点由学生课后列表完成.练习(教材第68页)1.解:A(-2,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).2.解:如图所示.习题7.1(教材第68页)1.A(3,3);C(7,3);D(10,3);E(10,5);F(7,7);G(5,7);H(3,6);I(4,8).2.从左往右,从上到下依次为:-+--+-3.解:横坐标纵坐标A(-5,4) -5 4B(-2,2) -2 2C(3,4) 3 4D(2,1) 2 1E(5,-3) 5 -3F(-1,-2) -1 -2G(-5,-3) -5 -3H(-4,-1) -4 -14.解:如图所示,得到“W5.解:如图所示,A,B,C,D,E各点在它们所在象限(原点F除外)的角平分线上,它们到两个坐标轴的距离相等.类似的点有G(-4,4),H(-1,1),M(2,-2),N(5,-5)等.6.解:以B为原点,以直线BC为x轴,向右为正,以垂直于BC的直线为y轴,向上为正,建立坐标系(以一个方格的边长为单位长度),则A(-2,3),D(6,1),E(5,3),F(3,2),G(1,5).A点在第二象限,D,E,F,G点在第一象限.7.解:如图所示.(1)像“小山”,面积为6. (2)像粮仓,面积为17.8.解:如图所示.点C的纵坐标为4.(1)平行于x轴的直线上的点的纵坐标相等. (2)平行于y轴的直线上的点的横坐标相等.9.解:如图所示.。
7.1第二课时平面直角坐标系课型新授单位主备人教学目标:1.知识与技能:(1)理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;能在给定的直角坐标系中,由点的位置写出它的坐标(2)能说出平面直角坐标系,以及横轴、纵轴、原点、坐标的概念。
会画平面直角坐标并能在给定的平面直角坐标系中由点的位置写出它的坐标,以及能根据坐标描出点的位置2.过程与方法:培养学生操作、观察、分析、猜测和概括等能力,同时渗透数形结合的思想3.情感、价值观:养成学生积极主动的学习态度和自主学习的方式重点、难点:教学重点:理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;教学难点:能在给定的直角坐标系中,由点的位置写出它的坐标教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课我们已经学过数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2。
反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了那么,如何确定平面内点的位置呢?二、自主学习、合作探究法国数学家笛卡儿----法国数学家、解析几何的创始人笛卡尔受到了经纬度的启发,引入坐标系,用代数方法解决几何问题。
探究点一:认识平面直角坐标系与平面内点的坐标课件展示平面直角坐标系与平面内的点在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系(简称直角坐标系)。
正方向:数轴向右与向上的方向坐标轴: x轴或横轴:水平的数轴.y轴或纵轴:竖直的数轴.原点:两条数轴的公共原点O.平面上两条互相垂直,原点重合的两条数轴组成平面直角坐标系,水平的数轴叫x轴(横轴),取向右为正方向,竖直的数轴叫y轴(纵轴),取向上为正方向。
两坐标轴的交点是平面直角坐标系的原点。
象限:两条坐标轴把平面分成如图所示的四个部分注意:坐标轴上的点不属于任何象限。
7.1.2平面直角坐标系时间年月日第周第课时课题7.1.2平面直角坐标系(2)课型新授教学目标1.对给定的简单图形,会选择合适的平面直角坐标系,写出它的顶点坐标2.体会可以用坐标刻画一个简单图形,体会数形结合的思想,提高学生将实际问题转换成数学问题的能力3.通过探究在方格纸中建立适当的平面直角坐标系描述物体的位置,让学生获得成功的体验,锻炼克服困难的意志,建立解题信心。
重点建立适当的平面直角坐标系,确定图形上点的坐标.难点能根据实际的条件建立适当的平面直角坐标系。
教学设计问题与情境师生活动情景引入【复习旧知】1.什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2.平面直角坐标系内点与坐标之间有什么关系?3.象限内的点和坐标轴上的点有什么特征?学生独立口答合作探究【提出问题】探究一:如图,正方形ABCD的边长6.(1)如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A,B,C,D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系学生动手实践,教师从旁指导,学会画平面直角坐标系。
以C为原点建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4)观察:点B和点C坐标之间有什么联系?点B和点D坐标之间呢?【师生归纳】设P点坐标为(a,b),则点P到x轴的距离是___;点P到y轴的距离__平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联系?(2)点A与点C关于哪一条直线对称?它们的坐标之间有什么联系?(3)点B与点C呢?【师生归纳】关于x轴对称的点的______相同,______互为相反数;关于y轴对称的点的______相同,______互为相反数;关于原点对称的点的______、______都互为相反数;探究三:建立一个平面直角坐标系,描出下列各组点:1.(1,1);(2,2);(-3,-3);(-4,-4)2.(1,-1);(-2,2);(3,-3);(-4,4);思考:1.这些点有什么特征?2.经过这两组点得到的直线有什么特征?【师生归纳】第一、三象限角平分线上的点的横纵坐标相同;以正方形对角线的交点为原点建立平面直角坐标系平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同小组讨论,老师从旁指导,让学生自己归纳总结。
人教版七年级数学下册教案第七章平面直角坐标系7 . 1 .1 有序数对【教学目标】1、通过丰富的实例认识有序数对,感受它在确定点的位置中的作用;2、了解有序数对的概念,学会用有序数刘表示点的位置;3、通过用有序数对来表示实际问题的情境,经历建立数学模型解决实际问题的过程;4、体验有序数对在现实生活中应用的广泛性.【重点难点】重点:理解有序数对的意义和作用难点:用有序数对表示点的位置【教学过程】一、创设情境,唤起共鸣情境一:先让学生观看一段有关国庆节庆典活动中,天安门广场上壮观的游行队伍中出现的图案,然后问学生:你知道这些背景图案是怎么组成的吗?情境二:我们到电影院看电影时,每个人都需要一张电影票,你是怎么根据电影票上的数字找到位置的?二、分析问题,渗透概念在天安门参加庆典的队伍(或大型的文艺、庆典活动)中,每一个人都有一个确定的编号,无论队伍怎样移动,他在整个队伍中的位置是固定的(如图1中甲是在第3排第5列的位置).随着指挥员的信号,不同位置的人按指定的要求举起不同颜色的花束,整个方阵显示的背景图案就能达到设计的要求.在电影院中,每一个座位都编了号码,每一张电影票都对应一个位置,我们应该对号人座.电影票上的两个数字一般是怎样排列的?如果电影票上只有一个数字,结果将会怎样?如果将两个数字的顺序调换,结果又会怎样?请仔细观察教材的插图,手上拿着“7排9号”的同学能坐到“9排7号”的位置上吗?设计意图:通过对两个实际问题的分析,可以使学生更加明确在现实生活中有序数对的作用,渗透“有序”和“数对如的含义,体现概念建立的过程.对于两个事例的分析,可以引导学生参与,发挥学生的积极性.三、联系生活,建立概念用两个数来确定某个点的位置,这种办法在我们的生活中是常用的.(还可以举:学校要开家长会,你如何让家长准确地找到你的座位?)1、在学生充分举例的基础上,教师提出“有序数对”的概念,并记作(a,b).有序:是指(a, b)与(b, a)是两个不同的数对;数对:是指必须由两个数才能确定.再让学生举例说明(a,b)与(b, a)的不同含义设计意图:概念是建立在现实生活情境中,并不是枯燥的,无味的.这样的教学设计体现新的教学理念.让学生自己联系实际来理解“有序”的含义.四、应用概念,加深理解1、例题:请以下座位的同学今天放学后参加数学问题讨论:(1,5),(2,4),(4,2),(5,6),(3,3),(6,2).括号内的第一个数表示列数,第二个数表示排数,请你根据上述通知,用“√”在图上标出参加讨论的同学的位子(图见教材图7. 1-1).处理方法:先让学生对照上述数对在教材图上打上“√”,然后再在自己班级里找到相应的同学,最后请对应的几位同学起立示意.注意:在这里再次强调(2,4)和(4,2)是表示不同的两个位置.2、练习:教材练习题.五、归纳小结1、在现实生活中,为了确定点的位置,常常要用两个数来表示.2、有序数对的含义,特别要注意“有序”两字.3、用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的地点.阅读教材的“用经纬度表示地理位置”一文.4、你有没有见过用其他的方式来表示位置的?如有的电影院分楼上楼下两层,这时就要在电影票上写明是楼上几排几号了;又如在一些大型会场,往往把场地分为A、B、C等区,这时就要在座位票上写明是哪个区、几排几号了.设计意图:教材上的《阅读与思考》也可以根据不同的情况放在课外解决.用其他的方式来表示点的位置更应根据学生的情况进行处理,这里只是提供一种参考.六、布置作业1、必做题:教材习题7. 1第1题(口答题改为笔答题);变换甲乙的位置后,要求既在图上画出从甲到乙的路线,又用教材的方法表示出从甲到乙的路线.2、选做题:在下图中,甲从(4,2)的位置出发,按(2,2)->(2,6)->(5,6) ->(5,1)->(8,1)->(8,4)->(2,4)的路线行走,请你在图2中画出这条路线.7.1.2平面直角坐标系教学目标:1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位渗透对应关系,提高学生的数感.重点:平面直角坐标系和点的坐标.难点:正确画坐标和找对应点.一.利用已有知识,引入1.如图,怎样说明数轴上点A 和点B 的位置,2.根据下图,你能正确说出各个象棋子的位置吗?二.明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴为y 轴或纵轴,正方向;两个坐标轴的交点为平面直角坐标系的原点。
教材简析本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等.实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来.用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成,体现了直角坐标系在实际生活中的应用.用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移.本章在中考中,平面直角坐标系是必考内容,主要考查平面直角坐标系的特点.教学指导【本章重点】1.建立适当的直角坐标系描述物体的位置,知道在坐标系中点的位置与它的坐标之间的关系.2.探索图形上点的坐标的平移规律.【本章难点】图形平移时点的坐标变化规律.【本章思想方法】1.体会数形结合思想,如在有关图形变换的问题中,通过对图形的观察找出坐标变化的规律,体现了数形结合思想.2.体会转化思想,如计算平面直角坐标系中图形的面积时,往往要利用转化的数学思想将图形的面积转化为常见图形面积的和或差.课时计划7.1平面直角坐标系2课时7.2坐标方法的简单应用2课时7.1.1 有序数对(第1课时)教学目标一、基本目标【知识与技能】1.了解有序数对的概念,并能用有序数对确定平面内点的位置.2.理解在平面内确定一个物体的位置一般需要两个数据.【过程与方法】通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体——抽象——具体”的数学学习过程.【情感态度与价值观】培养学生的合作交流意识、探索精神和创造性思维,体会数学来源于生活并应用于生活,更好的激发学习兴趣.二、重难点目标【教学重点】有序数对的概念及平面内确定点的方法.【教学难点】对有序数对中的有序的理解,利用有序数对表示平面内的点.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.在平面内,确定一个物体的位置一般需要两个数据.2.有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).3.阅读教材P64~P65内容,并思考:(1)怎样确定教室里座位的位置?(2)排数和列数的先后顺序对位置有影响吗?(3)假设约定“列数在前,排数在后”,请在教材P64图7.1-1上标出被邀请参加讨论的同学的座位.略4.电影院的第3排第6座表示为(3,6),如果某人的座位号为(4,2),那么此人所坐的位置是(B)A.第2排第4座B.第4排第2座C.第4排第4座D.第2排第2座环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.【互动探索】(引发学生思考)根据棋子B在(2,1)处,如何确定B所在行与列的顺序?由此怎样表示出其他棋子的位置?【解答】A(0,0)、C(3,3)、D(1,2)、E(4,1)、F(2,4)、G(5,4).【互动总结】(学生总结,老师点评)利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.活动2巩固练习(学生独学)1.下列数据中,不能确定物体位置的是(D)A.某市新华书店位于人民路18号B.吴刚家位于某小区6号楼603号C.某渔船位于东经116.2°,北纬31.5°D.电影票的座位号是15排2.如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在A3区,阳光中学在D5区.3.板桥中学举办“校园文化”建设,主题鲜明新颖:“国学引领,孝老敬亲,家校一体,爱满乡村”.如图所示,若用“C4”表示“孝”,则“A5-B4-C3-C5”表示(D)5板国学引领4亲桥孝老敬3一体中家校A.爱满乡村 C .国学引领D .板桥中学活动3 拓展延伸(学生对学)【例2】如下图,把一组数据进行蛇形排列.1 32 4 5 6 10 9 8 7…观察并回答:若第4行第3个数记作(4,3),则(4,3)表示的数是8,那么(10,3)表示的数是________________________________________________________________________.【互动探索】先找到数的排列规律,求出第(n -1)行结束的时候一共出现的数的个数,进一步根据偶数行是从大到小排列,即可求得答案.【分析】由排列的规律,得第(n -1)行结束的时候排了1+2+3+…+n -1=n (n -1)2(个)数.因为10是偶数,所以第10行的第1个数是12×10×(10-1)=45,所以(10,3)表示的数是45-3+1=43. 【答案】43【互动总结】(学生总结,老师点评)解决探索规律的问题应从简单或特殊情形着手,通过观察、比较和归纳找出其中蕴含的规律,并将此规律进行合理的推广和应用.对于数的规律的探索,关键是找到“突破口”,从而找出各数之间的联系.环节3 课堂小结,当堂达标 (学生总结,老师点评) 有序数对→确定位置 练习设计请完成本课时对应练习!7.1.2 平面直角坐标系(第2课时) 教学目标一、基本目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.能在给定的直角坐标系中,由点的位置写出它的坐标.【过程与方法】经历坐标概念的形成,培养学生的观察、归纳能力,领会数形结合的思想.【情感态度与价值观】通过介绍数学家的故事,渗透理想和情感的教育.二、重难点目标【教学重点】平面直角坐标系和点的坐标;描出点的位置和建立坐标系.【教学难点】根据点的坐标在平面直角坐标系中找出点的位置.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P65~P68的内容,完成下面练习.【3 min反馈】1.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.2.在平面直角坐标系中,两条坐标轴将坐标平面分成四部分,每个部分称为象限,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的点与它对应.4.各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.5.如图,直角坐标系中的五角星在(B)A.第一象限B.第二象限C.第三象限D.第四象限6.小明建立了如图的直角坐标系,则点A的坐标是(1,2).环节2合作探究,解决问题活动1小组讨论(师生互学)(一)平面直角坐标系的有关概念给出严格的平面直角坐标系的概念、画法以及象限的规定.强调由点的位置如何确定点的坐标以及坐标的表示形式.教师提出问题:①点在各个象限的坐标有什么特点?②坐标轴上的点有什么特点?③坐标轴上的点属于第几象限?【教师点拨】“平面直角坐标系,两条数轴来唱戏.一个点,两个数,先横后纵再括号,最后隔开用逗号.”将任意点A放入直角坐标系,由其所处位置让学生确定点A的坐标.在此过程中,学生将对由点确定坐标的方法不断深化,逐渐接受并掌握点的坐标是一对有序的实数.同时,通过观察,学生能够比较容易地发现,点在各个象限内以及点在坐标轴上的坐标特点.(二)探究各象限点的特征写出下列各点的坐标,并观察它们的特点.【教师点拨】观察各点横、纵坐标的符号.点在坐标系中的象限点的横、纵坐标的符号特征第一象限(+,+)第二象限(-,+)第三象限(-,-)第四象限(+,-)(1)x轴上的点的纵坐标为0;(2)y轴上的点的横坐标为0【例1】写出图中的多边形ABCDEF各顶点的坐标.【互动探索】(引发学生思考)平面直角坐标系中点的坐标如何用有序数对确定?【解答】A(-4,3)、B(-4,0)、C(0,-2)、D(5,0)、E(5,3)、F(0,5).【互动总结】(学生总结,老师点评)在平面直角坐标系中,一般用有序数对(a,b)表示点的坐标,其中a、b分别叫做点的横坐标、纵坐标.活动2巩固练习(学生独学)1.如图所示,点A、点B所在的位置是(D)A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上2.在平面直角坐标系中,点(-3,2)所在的象限是(B)A.第一象限B.第二象限C.第三象限D.第四象限3.如图,写出点A、B、C、D、E、F、H的坐标.解:A(2,1)、B(-4,3)、C(-2,-3)、D(3,-3)、E(-3,0)、F(0,2)、H(0,0).活动3拓展延伸(学生对学)【例2】如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0)、B(9,0)、C(7,5)、D(2,7).试确定这个四边形的面积.【互动探索】四边形ABCD不是规则图形,可以考虑把它分成三角形或规则的四边形来解决.【解答】分别过点D、C向x轴作垂线,垂足分别为点E、F,则四边形ABCD被分割为△AED、△BCF及梯形CDEF.由各点的坐标,得AE=2,DE=7,EF=5,FB=2,CF=5,∴S四边形ABCD=S△AED+S梯形CDEF+S△BCF=12×2×7+12×(7+5)×5+12×5×2=7+30+5=42.【互动总结】(学生总结,老师点评)在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,进而求出面积.环节3课堂小结,当堂达标(学生总结,老师点评)平面直角坐标系⎩⎪⎨⎪⎧定义:原点、坐标轴、象限点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点练习设计请完成本课时对应练习!7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置(第1课时) 教学目标一、基本目标【知识与技能】1.掌握建立适当的坐标系描述地理位置的方法.2.了解用方向和距离表示地理位置的方法.【过程与方法】1.通过观察、探索用坐标表示地理位置的方法,发展学生数形结合的意识.2.通过利用平面直角坐标系绘制区域内一些地点的分布情况,使学生进一步体会数学的应用价值.【情感态度与价值观】通过用坐标确定学生们的家与学校的位置,让学生认识数学与生活的密切联系,提高学生学习数学的兴趣.二、重难点目标【教学重点】用坐标表示地理位置的方法.【教学难点】根据已知条件建立适当的坐标系.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P73~P75的内容,完成下面练习.【3 min反馈】1.建立直角坐标系的一般步骤:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题,确定恰当的比例尺,在坐标轴上标出单位长度.2.在航海和测绘中,经常用方向和距离来刻画平面内两个物体的相对位置.通常以北偏东(西),或南偏东(西)确定方向.用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.3.如图,雷达探测器测得六个目标A、B、C、D、E、F,目标E、F的位置表示为E(3,300°)、F(5,210°),按照此方法在表示目标A、B、C、D的位置时,其中不正确的是(D)A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)4.某市区的几个旅游景点在平面直角坐标系中的位置如图所示,已知图中每个小正方形的边长均为1个单位长度,且山陕会馆的坐标是(4,-1),则其他各景点的坐标分别为:光岳楼(1,0);金凤广场(-2,-1.5);动物园(6,3);湖心岛(-1.5,1).环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】(教材P73“探究”)根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走1500 m,再向北走2000 m.小强家:出校门向西走2000 m,再向北走3500 m,最后向东走500 m.小敏家:出校门向南走1000 m,再向东走3000 m,最后向南走750 m.【互动探索】(引发学生思考)如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?【解答】小刚家、小强家、小敏家的位置均是以学校为参照点来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1∶10 000(即图中1 cm相当于实际中10 000 cm,即100米).画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.【思考】选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地表示出三位同学家的位置.【互动总结】(学生总结,老师点评)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.【注意】用坐标表示地理位置时,一要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二要注意坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东、西、南、北的方向与地理位置的方向一致;三要注意标明比例尺和坐标轴上的单位长度.另外,当地点比较集中,坐标平面又较小时,各地点的名称在图上可以用代号标出,并在图外另附名称.【例2】在某城市中,体育馆在火车站以西4000 m再往北2000 m处,华侨宾馆在火车站以西3000 m再往南2000 m处,百佳超市在火车站以南3000 m再往东2000 m处,请建立适当的平面直角坐标系,分别写出各地的坐标.【互动探索】(引发学生思考)根据题中叙述,体育馆、华侨宾馆、百佳超市都是以火车站为中心描述位置的,于是可以以火车站为原点,正东方向为x轴正方向,正北方向为y轴正方向建立平面直角坐标系.【解答】如图,以火车站为原点,以正东方向为x轴正方向,以正北方向为y轴正方向,建立平面直角坐标系.各地的坐标分别为:火车站(0,0)、体育馆(-4000,2000)、华侨宾馆(-3000,-2000)、百佳超市(2000,-3000).【互动总结】(学生总结,老师点评)选择一个适当的参照点为原点及x轴和y轴的正方向的确定,直接影响着计算的繁简程度,所以建立平面直角坐标系时,要以能简捷地确定平面内点的坐标为原则.【例3】如图,三个圆的半径分别为10 km、20 km、30 km,OA在北偏东30°方向处,OB与正北方向夹角为35°,C在正南处,A、B、C分别是位于三环、二环、一环上的三所学校,请用方向和距离表示这三所学校的位置.【互动探索】(引发学生思考)如何用“方向+距离”的方法表示物体的位置?要注意什么?【解答】A在点O北偏东30°方向,到点O的距离为30 km.B在点O北偏西35°方向,到点O的距离为20 km.C在点O正南方向,到点O的距离为10 km.【互动总结】(学生总结,老师点评)用“方向+距离”的方法表示物体的位置要有两个数据:一是方向,二是距离.在表述时,一般是方向在前,距离在后.活动2巩固练习(学生独学)1.点A的位置如图所示,则关于点A的位置下列说法中正确的是(D)A.距点O 4 km处B.北偏东40°方向上4 km处C.在点O北偏东50°方向上4 km处D.在点O北偏东40°方向上4 km处2.如图所示,四边形ABCD是边长为6的正方形,请建立一个适当的平面直角坐标系,并分别写出A、B、C、D的坐标.解:答案不唯一,如:以AB所在的直线为x轴,AD所在的直线为y轴,并以点A为坐标原点,建立平面直角坐标系,则点A、B、C、D的坐标分别是(0,0),(6,0),(6,6),(0,6).3.如图是某市旅游景点的示意图,试建立适当的平面直角坐标系,并用坐标表示出各景点的位置.解:答案不唯一,如:建立如图所示的平面直角坐标系,则各景点位置的坐标分别为:科技大学(0,0),大成殿(2,3),钟楼(1,6),雁塔(3,8),中心广场(5,4),映月湖(9,1),碑林(9,8).环节3课堂小结,当堂达标(学生总结,老师点评)1.用坐标表示地理位置.2.用“方向+距离”表示地理位置.练习设计请完成本课时对应练习!7.2.2 用坐标表示平移(第2课时) 教学目标一、基本目标【知识与技能】1.掌握坐标变化与图形平移的关系.2.利用点的平移规律将平面图形进行平移.3.根据图形上点的坐标的变化,判定图形的移动过程.【过程与方法】通过探索坐标变化与图形平移的关系,发展学生数形结合的意识和形象思维能力.【情感态度与价值观】培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.二、重难点目标【教学重点】掌握坐标变化与图形平移的关系.【教学难点】利用坐标变化与图形平移的关系解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P77的内容,完成下面练习.【3 min反馈】1.一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).2.一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.3.将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(C)A.(3,1)B.(-3,-1)C.(3,-1)D.(-3,1)4.如图,在边长为1的正方形网格中,将△ABC向右平移四个单位长度得到△A′B′C′,则点A′的坐标是(B)A.(1,-3)B.(1,3)C.(-1,-3)D.(-1,3)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图1,△ABC三个顶点的坐标分别是A(4,3)、B(3,1)、C(1,2).(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连结A1、B1、C1各点,得到三角形A1B1C1.(2)在上面的三角形中如果将△ABC三个顶点的纵坐标都减去5,横坐标不变,情况又会如何呢?【互动探索】(引发学生思考)(联系前面所学知识可知,平面直角坐标系中图形的平移也可先通过平移图形上某些特殊点,再依次连结这些平移后的特殊点得到)因为图形的平移是以点的平移为基础的,因此所得三角形A1B1C1与三角形ABC的大小、形状完全相同,可以看作将三角形ABC向左平移6个单位长度得到.【解答】如图所示:【互动总结】(学生总结,老师点评)根据在平面直角坐标系内,图形的平移方向和距离解答.【例2】如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上一点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)【互动探索】(引发学生思考)根据已知三对对应点的坐标,得出变换规律→让点P的坐标也作相应变化.【分析】∵A(-3,-2)、B(-2,0)、C(-1,-3)、A′(3,0)、B′(4,2)、C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上一点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).【答案】B【互动总结】(学生总结,老师点评)坐标系中图形上所有点的平移变化规律是一致的,解此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.活动2巩固练习(学生独学)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为(C)A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.点A(m,4)向右平移2个单位后得到B(3,n),则m-n=-3.3.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(2,-1).4.如图,三架飞机P、Q、R保持编队飞行,30秒后飞机P飞到P1的位置,飞机Q、R 飞到了新位置Q1、R1.在直角坐标系中标出Q1、R1,并写出坐标.解:由题意可知P (-1,1)、Q (-3,1)、R (-1,-1). ∵30秒后P 1的坐标为(4,3),∴飞机P 向右平移了5个单位,向上平移了2个单位,∴Q 1的坐标为(2,3),R 1的坐标为(4,1).在直角坐标系中的位置如题图. 活动3 拓展延伸(学生对学)【例3】如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.【互动探索】(1)由经平移后点P (a ,b )的对应点为P 1(a +6,b +2)可知,图形向右平移了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的两个三角形的面积.【解答】(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2). (2)如图,连结AA 1、CC 1.∵S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,∴S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.【互动总结】(学生总结,老师点评)(1)坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,且左减右加;上下移动改变点的纵坐标,且上加下减.(2)求四边形的面积通常转化为求几个三角形的面积的和.环节3 课堂小结,当堂达标 (学生总结,老师点评)用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.练习设计请完成本课时对应练习!。
7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。
人教版七年级下册第七章平面直角坐标系教学设计一、教学目标1.能够理解平面直角坐标系的概念和构成方式;2.能够画出平面直角坐标系,并对于已知坐标的点进行标出;3.能够根据已知坐标的点来确定某一点的坐标;4.能够利用平面直角坐标系解决简单的实际问题。
二、教学重点和难点1.教学重点:平面直角坐标系的定义、构成、如何表示点的坐标;2.教学难点:如何应用平面直角坐标系解决实际问题。
三、教学内容和步骤3.1 教学内容1.平面直角坐标系的定义和构成;2.如何在平面直角坐标系中表示点的坐标;3.平面直角坐标系中点的对称性;4.在平面直角坐标系中求点的坐标;5.平面直角坐标系的应用。
3.2 教学步骤3.2.1 导入1.利用学生的日常生活场景引入平面直角坐标系的概念,例如:导航使用、地图上的坐标、遥控玩具车的方向控制等等。
2.找到与平面直角坐标系相关的物品或图片展示。
3.2.2 概念教学1.引导学生了解平面直角坐标系的定义和组成方式;2.通过画图的方式来讲解平面直角坐标系的坐标系和坐标轴;3.讲解平面直角坐标系的四象限及各象限的特点。
3.2.3 标出点的坐标1.介绍如何在平面直角坐标系中标出点的坐标;2.以图形的形式展示学生如何标出点的坐标;3.让学生自己在平面直角坐标系中标出点的坐标。
3.2.4 对称性1.引导学生理解平面直角坐标系中点的对称性;2.利用图像演示对称轴与对称中心的概念;3.让学生自己找到平面直角坐标系中的对称轴和对称中心。
3.2.5 求点的坐标1.要学生掌握在给定点的条件下求未知点的坐标;2.以图形的形式展示学生在平面直角坐标系中求点坐标;3.让学生自己在平面直角坐标系中求出未知点的坐标。
3.2.6 应用1.利用简单的问题来说明平面直角坐标系在实际生活中的应用;2.让学生自己通过平面直角坐标系解决一些实际问题。
四、教学方法1.示范演示法:通过图形演示的方式,使学生更加直观的理解平面直角坐标系的概念;2.互动探究法:通过让学生自己探究平面直角坐标系的性质和应用,激发学生的学习兴趣和保持好奇心。
第七章平面直角坐标系7.1.1有序数对教学目标:知识与技能:理解有序数对的应用意义,了解平面上确定点的常用方法过程与方法:培养学生用数学的意识,激发学生的学习兴趣.情感态度与价值观:培养学生用数学的意识,激发学生的学习兴趣。
教学重难点:重点:有序数对及平面确定点的方法.难点:利用有序数对表示平面的点.教学过程一.创设问题情境,引入新课问题 1:一位居民打给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。
问题2:地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。
问题3:某人买了一8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?二、新课讲授1、由学生回答以下问题:(1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
(2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。
”合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置.思考:(1)怎样确定教室里坐位的位置?(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。
(3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。
让学生讨论、交流后得到以下共识:(1)可用排数和列数两个不同的数来确定位置。
(2)排数和列数先后顺序对位置有影响。
(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。
因而这一对数是有顺序的。
(3)让学生到黑板贴出的表格上指出讨论同学的位置。
人教版数学七年级下册7.1.2《平面直角坐标系》教学设计一. 教材分析《平面直角坐标系》是人教版数学七年级下册第七章第一节的内容,主要包括平面直角坐标系的定义、各象限内点的坐标特征、坐标轴的性质等。
本节内容是学生学习函数、几何等知识的基础,对于学生形成数学思维、提高解决问题的能力具有重要意义。
二. 学情分析七年级的学生已具备一定的空间想象能力和逻辑思维能力,但对平面直角坐标系的理解还需借助具体事物。
学生在小学阶段已经接触过一些简单的坐标知识,如用坐标表示物体的位置,为本节课的学习奠定了基础。
但如何将实际问题与坐标系相结合,还需要教师引导学生进行探究。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握各象限内点的坐标特征,了解坐标轴的性质。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 教学重难点1.重点:平面直角坐标系的定义,各象限内点的坐标特征。
2.难点:坐标轴的性质,如何将实际问题与坐标系相结合。
五. 教学方法采用“问题驱动”的教学方法,引导学生观察、操作、思考、交流,以达到对平面直角坐标系的理解和应用。
六. 教学准备1.准备平面直角坐标系的模型或图片。
2.准备一些实际问题,如描述物体在平面直角坐标系中的位置。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如电影院、商场等,引导学生思考如何用数学方法表示这些事物的位置。
进而引入平面直角坐标系的定义。
2.呈现(10分钟)教师展示平面直角坐标系的模型或图片,引导学生观察并总结各象限内点的坐标特征。
同时,教师通过讲解坐标轴的性质,帮助学生理解坐标系的基本概念。
3.操练(10分钟)教师提出一些实际问题,让学生在平面直角坐标系中进行操作,找出问题的答案。
如:“某商品在商场内的位置为(3,5),请找出该商品在平面直角坐标系中的位置。
人教版七年级下册
7.1.2 《平面直角坐标系》(第1课时)
教学设计方案
一、教学目标
1.理解平面直角坐标系的相关概念.
2.掌握平面直角坐标系中点与其坐标的对应关系.
3.体验数和符号的广泛应用.
二、教学重点
1.会画平面直角坐标系.
2.在平面直角系中,能根据点的位置写出点坐标;根据坐标找到对应的点.
三、教学难点
四、教具与媒体准备
1.自制的平面直角坐标系教具(如图1).
2.自己录制的《平面直角坐标系》微课.
3.写有“4,2,0,1,3
--”等数字的纸片(如图2).
自主阅读教材P65~67,你认为哪句话最重要?说说理由
六、作业
P68:练习1,2
七、板书设计
八、本课特色
1.利用了微课进行概念教学,整合了信息技术和数学学科教学。
2.在教学过程中,深挖细掘抓根本,激疑设问促内化。
7.1.1有序数对设计教学过程合作探究思考:(1)(2,4)和(4,2)在同一个位置吗?(2)如果约定“排数在前,列数在后”,刚才那些同学对应的有序数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数a与b组成的数对,叫做有序数对。
记作(a,b)思考:在生活中还有用有序数对表示一个位置的例子吗?3.【例题讲解】例1:如图,甲处表示2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5)表示甲处的位置,那么(2,5)→(3,5)→(4,5)→(5,5)→(5,4)→(5,3)→(5,2)表示从甲处到乙处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。
乙甲3街4街5街6街2巷1巷1街2街6巷5巷4巷3巷例2:请同学们说出以下各个地点所表示的有序数对。
例3:图中五角星五个顶点的位置如何表示?已知A(0,0)B (2,1)合作探究例4:“怪兽吃豆豆”是一种计算机游戏,图中的●标志表示“怪兽”先后经过的几个位置,如果用(1,2)表示“怪兽”经过的第2个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?例5:右图:若黑马的位置用(3,7)表示,请你用有序数对表示黑马可以走到的哪几个位置。
例6:如右图,方块中有25个汉字,用(C,3)表示“天”那么按下列要求排列会组成一句什么话,把它读出来。
5可明个万女4中我的一学3爱英天帅活2球里是生大1小孩打习哥A B C D E(1)(A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B, 4)(2)(B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E, 1)例7:台风“麦莎”2005年7月31日生成,8月6日凌晨3点40分在玉环干江登陆即:东经121.8度,北纬28.6度,你能找到具体登落点吗?7.1.2 平面直角坐标系(第一课时)教学过程设计合作探究练一练:1.在平面直角坐标系内,下列各点在第四象限的是( )A.(2,1)B.(-2,1)C.(-3,-5)D.(3,-5)2.已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在()A.第一象限B.第二象限C.第三象限D.第四象限3.设点M(a,b)为平面直角坐标系中的点当a>0,b<0时点M位于第几象限?当ab>0时,点M位于第几象限?当a为任意数时,且b<0时,点M直角坐标系中的位置是什么?尝 1.点(3,-2)在第_____象限;点(-1.5,-1)7.1.2 平面直角坐标系(第二课时)教学过程设计问题与情境二次备课情景引入【复习旧知】1.什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2.平面直角坐标系内点与坐标之间有什么关系?3.象限内的点和坐标轴上的点有什么特征?合作探究合作探究3.【提出问题】探究一:如图,正方形ABCD的边长6.(1)如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A,B,C,D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4)观察:点B和点C坐标之间有什么联系?点B和点D坐标之间呢?【师生归纳】设P点坐标为(a,b),则点P到x轴的距离是_________;点P到y轴的距离是_________合作探究平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联系?(2)点A与点C关于哪一条直线对称?它们的坐标之间有什么联系?(3)点B与点C呢?【师生归纳】关于x轴对称的点的______相同,______互为相反数;关于y轴对称的点的______相同,______互为相反数;关于原点对称的点的______、______都互为相反数;探究三:建立一个平面直角坐标系,描出下列各组点:1.(1,1);(2,2);(-3,-3);(-4,-4)2.(1,-1);(-2,2);(3,-3);(-4,4);思考:1.这些点有什么特征?2.经过这两组点得到的直线有什么特征?【师生归纳】第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
7.2.1用坐标表示地理位置教学过程设计(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2)坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3)要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.(同学可举例说明)尝试应用如图,小杰与同学去游乐城游玩,如果用(8,5)表示入口处的位置,(6,1)表示高空缆车的位置,那么其他游乐设施的位置如何表示?补充提高1、如图,一艘船在A处遇险后向相距35 n mile位于B处的救生船报警.(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?7.2.2用坐标表示平移小 结本节课我们学习了什么:建立适当平面直角坐标系用坐标来表示地理位置的一般过程是什么?你还能用其他的方法吗? 作业课本第75页习题第5,6.12题. 教 学 反 思年级 七年级课题7.2.2 用坐标表示平移课型新授教 知识 技能1. 掌握坐标变化与图形平移的关系;2. 能利用点的平移规律将平面图形进行平移;学目标3.会根据图形上点的坐标的变化,来判定图形的移动过程.过程方法经历用坐标表示平移的过程发展学生的形象思维能力和数形结合的意识.情感态度。
培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.教学重点掌握坐标变化与图形平移的关系教学难点利用坐标变化与图形平移的关系解决实际问题教学方法启发、讨论、交流教学手段多媒体教学过程设计问题与情境二次备课情景引入体验回顾1. 什么叫做平移?把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。
2 .平移后得到的新图形与原图形有什么关系?平移后图形的位置改变,形状、大小不变。
上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.合作探究点的平移如图,将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出这个点,并写出它的坐标.把点A向左平移2个单位呢?把点A向上平移6个单位呢?把点A向下平移4个单位呢?第六章小结与复习教学过程设计知识梳理3.平面直角坐标系的有关概念。
4.各象限的坐标的符号特征。
5.坐标轴上的点的坐标特征。
6.对称点的坐标特征。
7. 平行于坐标轴的直线上的点的坐标特征。
8.各象限的角平分线上的点的坐标特征。
典例精析1.例1:求(-4,2),(4,4),(4,2)每两点之间的距离。
简介勾股定理,让学生感受知识的系统性。
2. 已知点(0,0),(4,0),(3,-2),在平面直角坐标系内找一点,使它与已知三点构成平行四边形。
找出所有可能情况3.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0)(2,1),(1,1)(1,2)(2,2),……,根据这个规律,第2012个点的横坐标为 .4. 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(4-,5),(1-,3).⑴请在如图所示的网格平面内作出平面直角坐标系;(2)求出△ABC的面积。
基础巩固1.在平面直角坐标系中,点P(-3,4)到x轴的距离为 ( ).A.3 B.4 C.5 D.-42.若点A(a,-5), B (8,b)关于y轴对称,则a = , b= 。
3.课本第85页第7、9题。
能力提升1.课本第86页11题。
2.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.小结小结收获和困惑,领会数学思想. 作业课本第84页复习题.教学反思。