磁路和铁芯线圈电路
- 格式:ppt
- 大小:276.00 KB
- 文档页数:10
第一章 磁路和电路基础知识电路是由电气元件和设备组成的总体。
它提供了电流通过的途径,进行能量的转换、 电能的传输和分配,以及信号的处理等。
例如,发电机将机械能转换为电能:电动机将电 能转换成机械能:变压器和配电线路把电能分配给各用电设备:电子放大器或磁放大器可 把所施加的信号经过处理后输出。
一台大型工程机械的电路是由若干简单电路组成的。
因此,掌握简单电路的规律、特 点和分析方法是学懂整机电路并指导实践的必要基础。
为了满足初学电工者的要求和节省 查阅参考书的时间,本章对大型工程机械电路中必要的磁路和电路基础知识有重点地作了 介绍。
1.1 磁路和磁化电和磁是紧密相关的,电流能产生磁场,而变动的磁场或导体切割磁力线又会产生电 动势。
初学电工者往往只注意电而不重视磁。
其实在很多情况下没有磁路知识是不可能学 懂电路的,例如电机、变压器、互感器、接触器和磁放大器等的工作原理都与磁密切相关。
图1.1是一个均匀密绕的空心环形线圈,匝数为 。
当电流I 通过线圈时,在环形线圈内就产生磁场。
环内磁力线是一些以o 为圆心的同心圆,其方向可用右手螺旋定则确定。
磁力线通过的路径称为磁路,环形线圈的磁路是线圈所包围的圆环。
图1.1 环形线圈(一)磁感应强度描述某点磁场强弱和方向的物理量称为磁感应强度。
它不但有大小而且有方向,是一个矢量。
它的方向与该点的磁力线方向一致。
环形线圈内中心线上P 点的磁感应强度lIw r Iw B μπμ==2 (1.1) 式中 μ --表征磁路介质对磁场影响的 物理量,叫做导磁率: r --P 点到圆心的距离:l --磁路的平均长度。
(二)磁通为了描述磁路某一截面上的磁场情况,把该截面上的磁感应强度平均值与垂直于磁感应强度方向的面积s 的乘积称为通过这块面积的磁通,即Bs =φ (1.2)(三)磁场强度为了排除介质对磁场的影响,使计算更加方便,引入磁场强度这个物理量,其定义是μB H =(1.3)环形线圈中P 点的磁场强度为 lIw BH ==μ (1.4) (四)磁势环形线圈中的磁通是因为在w 匝的线圈中通过电流I 而产生的,所以仿照电路中电势的意义把w 与I 的乘积称为磁势[]Iw F = (1.5)(五)磁阻描述磁路对磁通阻碍作用大小的物理量称为磁阻。
《电工基础》课程标准1.课程定位和课程设计1.1课程性质与作用课程性质:本课程是对电气技术类、电子技术类和自动化类相关专业开设,是《电气自动化技术》、《生产过程自动化技术》、《应用电子技术》、《检测技术及应用》等专业的技术基础课程,是上述各专业第一门电类课程。
因而是最重要也是最先行的职业基础课,是公共课、基础课与专业课之间的桥梁。
课程作用:本课程无论对学生的思维素质、创新能力、科学精神以及用电工技术解决实际问题的能力的培养,还是对后继课程的学习,都具有十分重要的作用。
(1)本课程为电类各专业培养高端技能型人才提供必要的电工基础理论、电路分析计算能力及电工测量等基本知识和基本操作技能。
(2)本课程为电类各专业的后续课程,包括电子技术、单片机应用技术、自动控制技术和各专业课程奠定良好的理论基础知识和能力基础。
(3)本课程以供用电系统运行操作岗、过程检测仪表、控制仪表安装、检修和维护岗、电子产品设计、制作、维护岗为工学结合平台,融理论知识与技能培养为一体,使电类各专业学生,开始接触电专业课程时就形成良好的重实践、重技能、重工程应用的理念和脚踏实地、一丝不苟、科学分析等职业素养。
为学生学习专业知识和职业技能,提高全面素质,增强适应职业变化的能力和继续学习的能力打坚实的基础。
1.2课程设计思路课程开发基于面向电气技术类、自动化类、电子类等多个电力类专业开设的《电工基础》课程。
根据以上各专业职业岗位能力的要求,按照“以职业能力为主线,以典型工作为载体,以真实工作环境为依托,以完整工作过程为行动体系”为要求,进行课程内容设计、教学模式设计及考核评价体系设计。
在课程内容的选取和各知识模块学时分配上既考虑电气技术类、自动化类、电子类专业人才培养目标的要求,又使学生具有一定的可持续发展性。
确定了“以应用为目的,以必需够用为度”的原则,教学重点放在“掌握概念,强化应用,培养能力,提高素质”上。
通过教学要实现传授知识和培养能力两方面的教学目的,能力培养要贯穿教学全过程。
第六章磁路与铁心线圈电路★主要内容1、磁场的基本物理量2、磁性材料的磁性能3、磁路及其基本定律4、交流铁心线圈电路5、变压器★教学目的和要求1、理解描述磁场性质的四个有关物理量(磁感应强度、磁通、磁导率和磁场强度)的意义,并熟记它们的单位和符号,了解铁磁材料的磁化、磁滞的物理意义,掌握铁磁材料磁滞回线的概念,了解两类铁磁质的磁性能(磁滞回线的不同特点)和用途。
2、了解磁路的基本概念;了解交流铁心线圈电路的基本电磁关系,掌握交流铁芯线圈端电压与线圈磁通的关系(U≈E=4.44NfΦm)。
3、了解变压器的基本构造、工作原理、绕组的同极性端,掌握理想变压器的三种变换特性,并能利用这些特性对含有变压器的电路进行熟练地计算。
★学时数:6学时★重难点重点:①磁路基本定律、交流铁心线圈;②变压器的三个主要作用难点:①交流铁心线圈电路分析;②变压器与负载的关系★本章作业布置:课本习题P197—199页,6.1.4,6.3.2,6.3.4,6.3.5,6.3.6第六章 磁路与铁心线圈电路本章学习变压器的工作原理。
变压器是一种利用磁路传送电能,实现电压、电流和阻抗变换的重要设备。
§6.1 磁路及其分析方法在电机、变压器及各种铁磁元件中常用铁磁材料做成一定形状的铁心,铁心的磁导率比周围空气或其他物质高得多,因此铁心线圈中电流产生的磁通绝大部分经过铁心而闭合,这种人为造成的磁通闭合路径,称为磁路。
如图7.3-1和图6.1-1分别表示四极直流电机和交流接触器的磁路。
+-一、磁场的基本物理量这部分内容在普物中已基本讲过,这里简单复习一下。
电磁学中已讲过了,电流会产生磁场,通有电流的线圈内部及周围都有磁场存在。
在变压器、电动机等电工设备中,为了用较小的电流产生较强的磁场,通常把线圈绕在铁磁材料制成的铁心上。
由于铁磁性材料的导磁性能比非磁性材料好的多,因此,当线圈中有电流流过时,产生的磁通,绝大部分集中在铁心中,沿铁心面闭合,这部分铁心中的磁通称为主磁通,用Φ表示。