《流体力学与流体机械》最全知识点
- 格式:pdf
- 大小:495.64 KB
- 文档页数:16
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
1.3.2容易管路的计算容易管路的计算主意就是联立求解伯努利方程式和流动阻力计算式,因为问题的已知量不同,计算过程有的需要试差,有的不需要。
1.3.3串联管路的计算串联管路是由几个容易管路串联而成的,其特点如下。
(1)通过各管段的质量流量不变,对不可压缩流体,则体积流量不变,即V1=V2=.。
(2)囫囵管路的总流动阻力为各管段流动阻力之和,即Σwf =wf1十wf2十…..串联管路的计算主意与容易管路的雷同。
1.3.4并联管路的计算并联管路的特点;(1)总流量等于各并联支管流量之和,对ρ=常数的流体,则有:V=V1+V2+V3(2)并联各支管的阻力损失相等,即w f1=wf2=wf3由上式可知,细而长、流体密度小的支管通过的流量小,粗而短、流体密度大的支管通过的流量大。
倘若管路系统由总管部分和并联支管部分串联而成,则在计算总阻力损失wf时,绝不能将并联的各支管的阻力损失加在一起作为并联部分的阻力损失,而只要考虑并联部分中的任一支管即可。
1.4明渠匀称流和非匀称流要求:重点控制明渠恒定匀称流、明渠水力最优断面和允许流速、断面单位能量和临界水深、缓流、急流、临界流及其判别准则等基本概念;控制明渠恒定匀称流的水力基本问题的计算,了解明渠恒定非匀称渐变流的基本微分方程。
1.4.l明渠匀称流的计算明渠的流动方向的液面通大气,故明渠流为无压流。
明渠恒定匀称流是指运动要素(明渠中水深、断面平均流速、流速分布等)沿程不变的流动。
明渠匀称流时具有以下特征:①因为水深及流速沿程不变,水面线、渠底线及总水头线三线互相平行;②在顺坡渠道中,才会存在明渠匀称流;③渠中水受力达到平衡,即重力沿流动方向的分力与阻力平衡。
1.4.2明渠水力最优断面和允许流速1.明渠水力最优断面当底坡i和壁面粗糙系数n、过流断面面积A一定时,使明渠通过的流量达到最大值的过流断面称为水力最优断面。
圆形断面因其水力半径最大、润湿周边最小而成为最优断面。
第四章管路,孔口和管嘴的计算4-1(自编)根据造成液体能量损失的流道几何边界的差异,可以将液体机械能的损失分为哪两大类? 各自的定义是什麽? 发生在哪里?答:可分为沿程损失和局部损失两大类。
沿程损失指均匀分布在流程中单位重量液体的机械能损失,一般发生在工程中常用的等截面管道和渠道中。
局部损失指单位重量液体在流道几何形状发生急剧变化的局部区域中损失的机械能,如在管道的入口、弯头和装阀门处。
4-2粘性流体的两种流动状态是什么?其各自的定义是什么? 答:粘性流体的流动分为层流及紊乱两种状态。
层流状态指的是粘性流体的所有流体质点处于作定向有规则的运动状态,紊流状态指的是粘性流体的所有流体质点处于作不定向无规则的混杂的运动状态。
4-3流态的判断标准是什么?解:流态的判断标准是雷诺数Re 。
由于实际有扰动存在,故一般以下临界雷诺数Re c 作为层紊流流态的判断标准,即Re<2320, 管中流态为层流,Re>2320,管中流态为紊流.。
4-4某管道直径d=50mm ,通过温度为10℃的中等燃料油,其运动粘度m 261006.5-⨯=ν。
试求:保持层流状态的最大流量Q 。
解:由Re νdv 有v=dνRe =(2320×5.06×610-)/0.05=0.235m/s ,故有Q=A v=π×0.05×0.05×0.235/4=m 34106.4-⨯。
4-5(自编) 一等径圆管内径d=100mm ,流通运动粘度ν=1.306×10-6m2/s 的水,求管中保持层流流态的最大流量Q 。
解:由νvd=Re ,有sm dv /03.01.0232010306.1Re6=⨯⨯==-ν此即圆管中能保持层流状态的最大平均速度,对应的最大流量Q 为s m vA Q /1036.24/1.003.0342-⨯===π4-6利用毛细管测定油液粘度,已知毛细管直径d=4.0mm ,长度L=0.5m ,流量Q=1.0cm3/s 时,测压管落差h=15cm 。
流体力学与流体机械
流体力学(Fluid Mechanics)是研究流体(液体和气体)力学性质和行为的学科。
它主要研究流体的运动、力学原理、力和压力、速度和加速度、黏性和湍流等各个方面。
流体力学可以分为静力学和动力学两个方面。
静力学研究静止的流体,包括压力场、压力力学、浮力和表面张力等;动力学研究流体在运动中的行为,包括速度和加速度场、流速分布、流体的轨迹和流线、涡旋和湍流、动量和能量守恒等。
流体机械(Fluid Machinery)是利用流体力学原理设计、制造和运行的设备和机械装置。
它们用于处理和控制流体的能量传递和转换,常见的流体机械包括泵、涡轮机、压缩机、风扇、液压机械等。
泵是一种将机械能转换为流体能量的设备,通过产生压力差使流体移动。
涡轮机则是利用流体对转动叶片的作用力而实现能量转换的装置,它们根据流体进出的方式可以分为水轮机和汽轮机。
压缩机则用于增加流体的压力和密度,常用于气体压缩和制冷设备。
流体机械的设计和运行必须遵循流体力学的基本原则和方程式。
例如,根据连续性方程和动量守恒等方程,通过优化叶轮和导叶等流道形状,以达到提高泵的效率或涡轮机的功率输出等目的。
同时,流体机械的设计也需要考虑流体的黏性、湍流特性、压力损失和能量损失等因素,以确保其运行的稳定性
和效率。
总结而言,流体力学是研究流体的力学性质和行为的学科,而流体机械是利用流体力学原理设计和制造的设备和机械装置。
流体机械的设计需要依赖流体力学的理论原则和方程式,并充分考虑流体的特性和运动行为。
流体力学为流体机械提供了理论基础和设计指导,使得流体能够在各种设备中高效传递、控制和转换。
《流体力学与流体机械》(上)复习提纲第一章流体及其物理性质1.流体如何定义?流体为什么具有流动性?流体与固体有何本质区别?液体与气体的特点有何不同?2.何谓流体微团和流体质点?把流体作为连续性介质假设有何实际意义?分析该假设的合理性。
3.理解和熟练掌握流体的密度、重度、比重和比容等重要物性参数的概念,特别需要注意比重和重度的区别,均匀流体和非均匀流体,以及混合流体的密度、重度等物性参数的应如何计算?重度与密度之间的关系,熟练掌握等压条件下气体密度的简化计算式(1-13)。
4.何谓流体的压缩性和膨胀性?流体压缩性和膨胀性的大小如何度量?流体的体积压缩系数βp、体积弹性系数E及体积膨胀系数β的单位是什么?如何用这三个系数的大小来判别流体压T缩性的大小?5.理解和熟练掌握理想气体状态方程的形式和物理意义,以及方程中各物理量的单位。
6.可压缩流体和不可压缩流体是如何定义的?液体就是不可压缩流体、而气体就是可压缩流体吗?不可压缩流体是真是存在的流体吗?引入不可压缩流体的概念有何实际意义?在什么情况下可以认为流体是不可压缩的?7.理解和掌握马赫数M的概念及其物理意义,为什么说当M<0.3时,流体的可压缩性可以忽略不计?8.何谓流体的粘性和粘性力(内摩擦力)?为什么流体会具有粘性?重点掌握流体的粘性是怎样产生的?流体与固体壁面间的粘性和粘性力是如何构成的?流体的内摩擦力与固体壁面间的摩擦力有何区别?它们所遵循的规律相同吗?9.深入理解和熟练掌握牛顿内摩擦定律的内容、数学表达式的形式及其物理含义和工程应用。
何谓速度梯度?10.深入理解和熟练掌握流体的动力粘度和运动粘度的物理本质及含义、二者之间的区别与联系,分析影响流体的粘性的两大主要因素——压力和温度对流体的粘性的影响。
11.处于静止状态或等速运动状态下的流体是没有粘性的吗?何谓流体的粘性切应力?12.了解流体粘度的常用测量方法及恩氏粘度的概念,以及恩氏粘度如何转换成运动粘度和动力粘度。
《流体力学》各章节复习要点第一章:流体力学基本概念1.流体力学的研究对象是流体运动的性质、规律和力学行为。
2.流体和固体的区别,流体的分类和性质。
3.流体的基本力学性质,包括压强、密度和粘度等。
4.流体的运动描述,包括质点、流线、流管和速度场等概念。
5.流体的变形和应力,包括剪切应力、正应力、黏性和流变性等。
第二章:流体静力学1.流体静压力的基本特征,流体静力学方程和压强的传递规律。
2.流体的浮力,浸没体和浮力的计算方法。
3.子液面、大气压和液体柱的压强和压力计的应用。
4.流体的液面,压强分布和压力容器。
第三章:流体动力学基本方程1.流体运动描述的方法,包括拉格朗日方法和欧拉方法。
2.质点、质点流函数和速度场等的关系。
3.流体的基本方程,包括连续性方程、动量方程和能量方程。
4.流体的不可压缩性和可压缩性假设。
第四章:定常流动和流动的形态1.定常流动和非定常流动的概念和特点。
2.流体流动的形态,包括层流和紊流。
3.流体的压强分布和速度分布。
4.流体的速度分布和速度云。
第五章:流体的动能和势能1.流体的动能、动能方程和功率。
2.流体的势能、势能方程和能率。
3.流体的势能和扬程。
第六章:粘性流体力学基本方程1.粘性流体的三个基本性质,包括黏性、切变应力和流变规律。
2.线性流体的黏性流动,包括牛顿黏性流体模型和黏性损失。
3.非线性流体的黏性流动,包括非牛顿流体和粘弹性流体。
第七章:边界层流动1.边界层的概念和特点。
2.压强分布和速度分布的边界层。
3.边界层和物体间的摩擦阻力。
第八章:维持边界层流动的力1.维持边界层流动的作用力,包括压力梯度、粘性力和凸面力。
2.维持边界层流动的条件和影响因素。
第九章:相似定律和模型试验1.流体力学中的相似原理和相似定律。
2.物理模型和模型试验的概念和应用。
第十章:流体力学的应用1.流体力学在水利工程中的应用,包括水力学、河流动力学和波动力学等。
2.流体力学在能源领域中的应用,包括风力发电和水力发电等。