空间几何体的结构
- 格式:doc
- 大小:150.00 KB
- 文档页数:3
⾼⼀数学知识点总结_空间⼏何体的结构知识点⾼⼀数学怎么学? 学⽣学习期间,在课堂的时间占了⼀⼤部分。
因此听课的效率如何,决定着学习的基本状况,今天⼩编在这给⼤家整理了⾼⼀数学知识点总结,接下来随着⼩编⼀起来看看吧!⾼⼀数学知识点总结(⼀)空间⼏何体的结构知识点1、静态的观点有两个平⾏的平⾯,其他的⾯是曲⾯;动态的观点:矩形绕其⼀边旋转形成的⾯围成的旋转体,象这样的旋转体称为圆柱。
2、定义:以矩形的⼀边所在直线为旋转轴,其余各边旋转⽽形成的的曲⾯所围成的旋转体叫做圆柱,旋转轴叫圆柱的轴;垂直于旋转轴的边旋转⽽成的圆⾯叫做圆柱的底⾯;平⾏于圆柱轴的边旋转⽽成的⾯叫圆柱的侧⾯,圆柱的侧⾯⼜称圆柱的⾯。
⽆论转到什么位置,不垂直于轴的边都叫圆柱侧⾯的母线。
表⽰:圆柱⽤表⽰轴的字母表⽰。
规定:圆柱和棱柱统称为柱体。
3、静态观点:有⼀平⾯,其他的⾯是曲⾯;动态的观点:直⾓三⾓形绕其⼀直⾓旋转形成的⾯围成的旋转体,像这样的旋转体称为圆锥。
4、定义:以直⾓三⾓形的⼀条直⾓边所在的直线为旋转轴,其余两边旋转⽽形成的⾯所围成的旋转体叫做圆锥。
旋转轴叫圆锥的轴;垂直于旋转轴的边旋转⽽成的圆⾯成为圆锥的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫圆锥的侧⾯,圆锥的侧⾯⼜称圆锥的⾯,⽆论旋转到什么位置,这条边都叫做圆锥侧⾯的母线。
表⽰:圆锥⽤表⽰轴的字母表⽰。
规定:圆锥和棱锥统称为锥体。
5、定义:以半直⾓梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转⽽形成的曲⾯所围成的⼏何体叫圆台。
还可以看成⽤平⾏于圆锥底⾯的平⾯截这个圆锥,截⾯于底⾯之间的部分。
旋转轴叫圆台的轴。
垂直于旋转轴的边旋转⽽形成的圆⾯称为圆台的底⾯;不垂直于旋转轴的边旋转⽽成的曲⾯叫做圆台的侧⾯,⽆论转到什么位置,这条边都叫圆台侧⾯的母线。
表⽰:圆台⽤表⽰轴的字母表⽰。
规定:圆台和棱台统称为台体。
6、定义:以半圆的直径所在的直线为旋转轴,将半圆旋转⼀周所形成的曲⾯称为球⾯,球⾯所围成的旋转体称为球体,简称为球。
空间几何体的结构教案第一章:绪论1.1 空间几何体的概念学习目标:了解空间几何体的定义和分类,能够识别常见的空间几何体。
教学内容:介绍空间几何体的概念,解释点、线、面、体之间的关系。
教学活动:通过实物展示和图形演示,让学生直观地理解空间几何体的概念。
1.2 空间几何体的分类学习目标:掌握空间几何体的分类,能够区分各种几何体的特点。
教学内容:介绍空间几何体的分类,包括立体几何体的分类和旋转体几何体的分类。
教学活动:通过图形展示和分类讨论,让学生掌握空间几何体的分类。
第二章:立体几何体的结构特征2.1 立方体学习目标:了解立方体的结构特征,能够计算立方体的表面积和体积。
教学内容:介绍立方体的定义、性质和结构特征,讲解立方体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生了解立方体的结构特征。
2.2 球体学习目标:掌握球体的结构特征,能够计算球体的表面积和体积。
教学内容:介绍球体的定义、性质和结构特征,讲解球体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生掌握球体的结构特征。
第三章:旋转体几何体的结构特征3.1 圆柱体学习目标:了解圆柱体的结构特征,能够计算圆柱体的表面积和体积。
教学内容:介绍圆柱体的定义、性质和结构特征,讲解圆柱体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生了解圆柱体的结构特征。
3.2 圆锥体学习目标:掌握圆锥体的结构特征,能够计算圆锥体的表面积和体积。
教学内容:介绍圆锥体的定义、性质和结构特征,讲解圆锥体的表面积和体积的计算方法。
教学活动:通过实物观察和几何模型操作,让学生掌握圆锥体的结构特征。
第四章:空间几何体的相互转化4.1 立方体与球体的转化学习目标:了解立方体与球体的相互转化方法,能够进行相关的计算。
教学内容:介绍立方体与球体的相互转化方法,讲解转化的条件和转化的过程。
教学活动:通过几何模型操作和数学证明,让学生了解立方体与球体的相互转化。
空间几何体的结构一、棱柱、棱锥、棱台的结构特征1、空间几何体概念定义空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分.如果我们只考虑物体的和,而不考试其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体多面体一般地,我们把由若干个围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的;相邻两个面的叫做多面体的棱;棱与棱的叫做多面体的顶点旋转体我们把由一个平面图形绕它所在平面内的一条定旋转所形成的叫做旋转体,这条定直线叫做旋转体的备注:(1)多面体是由平面多边形围成的,这里的多边形包括它内部的平面部分.(2)多面体最少有四个面.(3)平面图形绕定直线旋转形成旋转体,这条定直线可以是平面图形的边,也可以不是,但定直线一定与平面图形在同一个平面内.Ex1、下列物体不能..抽象成旋转体的是( )A.篮球B.日光灯管C.电线杆D.国家游泳馆水立方[解析]水立方是多面体,不能抽象成旋转体;篮球、日光灯管、电线杆都可抽象成旋转体.答案:D2、棱柱定义一般地,有两个面互相,其余各面都是,并且每两个四边形的公共边都互相,由这些面所围成的叫做棱柱有关概念棱柱中,两个互相的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的叫做棱柱的侧棱;侧面与底面的叫做棱柱的顶点图形表示法用表示底面各顶点的表示棱柱,如上图中的棱柱可记为棱柱ABCDE-A′B′C′D′E′分类按底面多边形的分为三棱柱、四棱柱、五棱柱……备注:有两个面互相平行,其余各面为平行四边形的几何体,却不一定是棱柱,如图所示的几何体就不是棱柱.因为棱柱要求有两个面互相平行,其余各面都是四边形,并且每相邻的两个四边形的公共边都互相平行,而该图中有相邻四边形的公共边是不平行的.Ex2、下列几何体中,柱体有( )A .1个B .2个C .3个D .4个 答案:D3、棱锥 定义一般地,有一个面是 ,其余各面都是 的三角形,由这些面所围成的多面体叫做棱锥有关概念多边形面叫做棱锥的底面或底;有 的各个三角形面叫做棱锥的侧面;各侧面的 叫做棱锥的顶点;相邻侧面的 叫做棱锥的侧棱 。
空间几何体的结构教学目标:掌握棱柱、棱锥、棱台等多面体结构特征.掌握圆柱、圆锥、圆台、球等旋转体的结构特征.概括简单组合体的结构特征.教学过程:1.几何体只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)构成空间几何体的基本元素:点、线、面是构成空间几何体的基本元素.(2)平面及其表示方法:①平面的概念:平面是处处平直的面,它是向四面八方无限延展的.②平面的表示方法:图形表示:在立体几何中,通常画平行四边形表示一个平面并把它想象成无限延展的符号表示:平面一般用希腊字母α,β,γ…来命名,还可以用表示它的平行四边形对角顶点的字母来命名.深刻理解平面的概念,搞清平面与平面图形的区别与联系是解决相关问题的关键.平面与平面图形的区别与联系为:平面是没有厚度、绝对平展且无边界的,也就是说平面是无限延展的,无厚薄,无大小的一种理想的图形.平面可以用三角形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形是平面,只能说平面可以用平面图形来表示.(3)用运动的观点理解空间基本图形之间的关系:①点动成线:运动方向始终不变得到直线或线段;运动方向时刻变化得到的是曲线或者曲线的一段.②线动成面:直线平行移动可以得到平面或者曲面;固定射线的端点,让其绕一个圆弧转动,可以形成锥面.③面动成体:面运动的轨迹(经过的空间部分)可以形成一个几何体.3.棱柱(1)棱柱的定义一般地,由一个平面多边形(凸多边形)沿某一方向平移形成的空间几何体叫做棱柱。
平移起止位置的两个平面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面.两侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)棱柱的本质特征:①两个底面是全等的多边形,且互相平行;F1E1D1C1B1A1F EA②其余各面每相邻两个面的公共边都互相平行. (3)正棱柱底面是正多边形,每个侧面都是矩形的棱柱叫正棱柱.4.棱锥 (1)棱锥的定义当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥。
空间几何体的结构空间几何体是指在三维空间中具有一定形状和特征的几何体。
它们广泛应用于建筑、工程、物理学、数学等领域,并且对于人们的日常生活也有着重要的影响。
空间几何体的结构包括点、线、面、体以及它们之间的关系和性质。
1.点:点是空间中最基本的几何结构,它没有大小和形状,只有位置。
点用坐标表示,通常用三维坐标系的(x,y,z)来表示。
2.线:线是由无限多个点连接而成的一维结构,它没有宽度和厚度,只有长度。
线用于连接两个点,表示直线的两个端点,也可以用于表示线段,即直线的一部分。
3.面:面是由无限多个线连接而成的二维结构,它具有宽度和长度,但没有厚度。
面用于表示平面或曲面,可以是多边形、圆形、椭圆等形状。
4.体:体是由无限多个面连接而成的三维结构,它具有长度、宽度和厚度。
常见的体包括立方体、圆柱体、球体等,它们具有不同的形状和特征。
在空间几何体中,还存在很多重要的关系和性质,如:1.位置关系:点与点之间可以有相对位置的关系,如点在直线上、点在平面上、点在体内等。
线与线、面与面之间也可以有相对位置的关系,如平行、垂直、相交等。
2.夹角关系:夹角是两条线相交时形成的角。
根据夹角的大小和形状,可以分为锐角、直角、钝角等,夹角的度数可以通过三角函数进行计算。
3.长度、面积和体积:空间几何体的长度、面积和体积是表征其大小的重要性质。
长度是线的特征,可以通过测量直线的长度得到。
面积是面的特征,可以通过测量平面图形的面积得到。
体积是体的特征,可以通过测量三维空间物体的体积得到。
4.对称关系:对称是指一个几何体在一些中心或条轴线下具有镜像关系。
常见的对称关系有轴对称和面对称,通过对称关系可以研究几何体的性质和变化。
总的来说,空间几何体的结构包括点、线、面、体以及它们之间的关系和性质。
了解和掌握这些结构和关系对于理解和应用空间几何体具有重要的意义。
空间几何体的结构一、教学目标:1. 让学生了解并掌握空间几何体的基本概念和性质。
2. 培养学生空间想象能力和思维能力。
3. 使学生能够运用空间几何体的知识解决实际问题。
二、教学内容:1. 空间几何体的定义及分类。
2. 空间几何体的基本性质。
3. 空间几何体的直观图和斜二测图。
4. 空间几何体的坐标表示。
5. 空间几何体的线性空间。
三、教学重点与难点:1. 重点:空间几何体的定义、分类、基本性质及坐标表示。
2. 难点:空间几何体的直观图和斜二测图的绘制,线性空间的性质。
四、教学方法:1. 采用讲授法,讲解空间几何体的基本概念和性质。
2. 运用案例分析法,分析实际问题,巩固知识点。
3. 利用数形结合法,引导学生直观地理解空间几何体的结构。
4. 开展小组讨论,培养学生的合作能力和创新能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生思考空间几何体的实际应用,激发学生的学习兴趣。
2. 新课导入:讲解空间几何体的定义、分类和基本性质。
3. 案例分析:分析实际问题,让学生运用空间几何体的知识解决问题。
4. 直观图与斜二测图:讲解绘制方法,培养学生空间想象能力。
5. 坐标表示:讲解空间几何体的坐标表示方法,巩固知识点。
6. 线性空间:介绍线性空间的概念和性质,拓展学生知识面。
7. 课堂练习:布置练习题,让学生巩固所学知识。
8. 总结与展望:对本节课内容进行总结,为学生后续学习打下基础。
9. 课后作业:布置作业,巩固所学知识。
10. 教学反馈:及时了解学生学习情况,调整教学方法,提高教学质量。
六、教学评估与反思:1. 评估学生对空间几何体基本概念、性质的理解和掌握程度。
2. 检查学生能否运用空间几何体的知识解决实际问题。
3. 评价学生空间想象能力和思维能力的提升情况。
4. 反思教学过程中的不足,提出改进措施。
七、教学拓展与延伸:1. 探讨空间几何体在现实生活中的应用。
2. 介绍空间几何体与其他学科领域的联系。
空间几何体的结构
知识梳理:
1.棱柱、棱锥、棱台的结构特征比较,如下表所示:
2.圆柱、圆锥、圆台、球的结构特征比较,如下表所示:
3.简单几何体的分类:
⎪⎪⎪⎪⎪
⎩
⎪⎪⎪⎪⎪
⎨⎧⎪⎪⎩
⎪⎪
⎨
⎧⎪
⎩⎪
⎨⎧球圆台圆锥圆柱旋转体棱台棱锥棱柱
多面体简单几何体
4.空间几何体的表面积和体积 (1)多面体的表面积
①我们可以把多面体展成平面图形,利用平面图形求面积的方法,求多面体的表面积; ②棱柱、棱锥、棱台是由多个平面图形围成的多面体它们的侧面积就是各侧面面积之和,表面积是各个面的面积之和,即侧面积与底面积之和。
(2)旋转体的表面积公式
名称 侧面积 表面积
圆柱 rl S π2=圆柱侧
2
22r rl S ππ+= 圆锥 rl S π=圆锥
2
r rl S ππ+=
圆台 l r r S )'+=(圆台侧π
2
2)r r l r r S '++'+=πππ(
球
2
4R S π=
①设棱(圆)柱的底面积为S ,高为h ,则体积Sh V =; ②设棱(圆)锥的底面积为S ,高为h ,则体积Sh V 31=;
③
设
S '、S ,高为h ,则体积
h S S S S V )(31+'+
'=
;
④设球半径为R ,则球的体积3
3
4R V π=。
1、 下列几何体是棱柱的有( )
图2
A.5个
B.4个
C.3个
D.2个 2、下列命题中正确的是( )
A.棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥。
B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
D.棱台各侧棱的延长线交于一点 3、下列命题中正确的是( )
A. .圆锥的侧面展开图为扇形,这个扇形所在圆的半径等于圆锥底面圆的半径;
B.以直角梯形的一腰为轴旋转所得的旋转体是圆台;
C.一个平面截圆锥,得到一个圆锥和一个圆台;
D 以直角三角形的一直角边为轴旋转所得的旋转体是圆锥.
4、设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )
(A )2a π (B )
2
73
a π (C )
2
113
a π (D )25a π
5、已知SABC 是球O 表面上的点,SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1 BC =,则球O 的表面积等于( )
(A )4π
(B )3π
(C)2π
(D) π
6、正方体1111ABC D -A B C D 的棱长为2,动点E 、F 在棱11A B 上。
点Q 是CD 的中点,动点P 在棱AD 上,若EF=1,DP=x ,1A E=y(x,y 大于零),则三棱锥P-EFQ 的体积:( ) (A )与x ,y 都有关; (B )与x ,y 都无关;
(C )与x 有关,与y 无关; (D )与y 有关,与x 无关;
7、有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( )
(A)( (B)(1, (C) (
-
(D) (0,)
8、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球
3,那么这个球的体积为
9. 四面体P-ABC 中, PA=PB=PC=2, ∠APB=∠BPC=∠APC=300. 一只蚂蚁 从A 点出发沿四面体的表面绕一周, 再回到A 点, 问蚂蚁经过的最短路程是_________.
答案:1.D2.D 3.D4.B.5.A6. C7. A 8. 4
3π9.22。