机械能守恒定律习题(含答案)
- 格式:doc
- 大小:787.50 KB
- 文档页数:7
高中物理必修二第八章机械能守恒定律知识点题库单选题1、在体育课上,某同学练习投篮,站在罚球线处用力将篮球从手中投出,恰好水平击中篮板,则篮球在空中运动过程中( )A .重力势能增加,动能增加B .重力势能减小,动能减小C .重力势能增加,动能减小D .重力势能减小,动能增加 答案:C篮球上升,恰好水平击中篮板,运动到最高点,整个过程重力做负功,重力势能增加,动能减小。
故选C 。
2、将一小球从地面上以12m/s 的初速度竖直向上抛出,小球每次与水平地面碰撞过程中的动能损失均为碰前动能的n 倍,小球抛出后运的v −t 图像如图所示。
已知小球运动过程中受到的空气阻力大小恒定,重力加速度大小为10m/s 2,则n 的值为( )A .56B .16C .59D .49答案:B小球第一次上升的最大高度ℎ1=12(12+0)m =6m上升阶段,根据动能定理有−(mg +F f )ℎ1=−12mv 02v 0=12m/s下降阶段,根据动能定理可知碰前瞬间的动能为mgℎ1−F fℎ1=E k0=48m J第一次与地面碰撞的过程中动能损失ΔE k=E k0−12mv22=8m J则依题意有n=ΔE kE k1=16故ACD错误,B项正确。
故选B。
3、如图所示,在水平地面上方固定一水平平台,平台上表面距地面的高度H=2.2m,倾角θ= 37°的斜面体固定在平台上,斜面底端B与平台平滑连接。
将一内壁光滑血管弯成半径R=0.80m的半圆,固定在平台右端并和平台上表面相切于C点,C、D为细管两端点且在同一竖直线上。
一轻质弹簧上端固定在斜面顶端,一质量m=1.0kg的小物块在外力作用下缓慢压缩弹簧下端至A点,此时弹簧的弹性势能E p=2.8J,AB长L=2.0m。
现撤去外力,小物块从A点由静止释放,脱离弹簧后的小物块继续沿斜面下滑,经光滑平台BC,从C点进入细管,由D点水平飞出。
已知小物块与斜面间动摩擦因数μ=0.80,小物块可视为质点,不计空气阻力及细管内径大小,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8。
机械能守恒定律专题练习姓名:分数:专项练习题第一类问题:双物体系统的机械能守恒问题例1. (2007·江苏南京)如图所示,A 物体用板托着,位于离地面处,轻质细绳通过光滑定滑轮与A、B相连,绳子处于绷直状态,已知A 物体质量,B 物体质量,现将板抽走,A将拉动B上升,设A与地面碰后不反弹,B上升过程中不会碰到定滑轮,问:B 物体在上升过程中离地的最大高度为多大?(取)(例1)(例2)例2. 如图所示,质量分别为2m、m的两个物体A、B可视为质点,用轻质细线连接跨过光滑圆柱体,B着地A恰好与圆心等高,若无初速度地释放,则B上升的最大高度为多少?第二类问题:单一物体的机械能守恒问题例3. (2005年北京卷)是竖直平面内的四分之一圆弧形轨道,在下端B点与水平直轨道相切,如图所示,一小球自A点起由静止开始沿轨道下滑,已知圆轨道半径,不计各处摩擦,求:为R,小球的质量为m(1)小球运动到B点时的动能;(2)小球下滑到距水平轨道的高度为R时速度的大小和方向;(3)小球经过圆弧形轨道的B点和水平轨道的C点时,所受轨道支持力各是多大。
例4. (2007·南昌调考)如图所示,O点离地面高度为H,以O点为圆心,制作点等高的圆弧最高点滚下后水平抛出,试求:四分之一光滑圆弧轨道,小球从与O(1)小球落地点到O点的水平距离;(2)要使这一距离最大,R应满足何条件?最大距离为多少?第三类问题:机械能守恒与圆周运动的综合问题例5. 把一个小球用细线悬挂起来,就成为一个摆(如图所示),摆长为l ,最大偏角为,小球运动到最低位置时的速度是多大?(例5)(例6)例6. (2005·沙市)如图所示,用一根长为L 的细绳,一端固定在天花板上的O点,另一端系一小球A ,在O 点的正下方钉一钉子B ,当质量为m 的小球由水平位置静止释放后,小球运动到最低点时,细线遇到钉子B ,小球开始以B 为圆心做圆周运动,恰能过B 点正上方C ,求OB 的距离。
高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
机械能守恒定律练习一、单选题1.下列所述的物体在运动过程中满足机械能守恒的是( )A. 跳伞运动员张开伞后,在空中匀速下降B. 忽略空气阻力,物体竖直上抛C. 火箭升空过程D. 拉着物体沿光滑斜面匀速上升【答案】B【解析】解:A、跳伞运动员在空中匀速下降,动能不变,重力势能减小,因机械能等于动能和势能之和,则机械能减小。
故A错误。
B、忽略空气阻力,物体竖直上抛,只有重力做功,机械能守恒,故B正确。
C、火箭升空,动力做功,机械能增加。
故C错误。
D、物体沿光滑斜面匀速上升,动能不变,重力势能在增加,所以机械能在增大。
故D错误。
故选:B。
物体机械能守恒的条件是只有重力或者是弹簧弹力做功,或看物体的动能和势能之和是否保持不变,即采用总量的方法进行判断。
解决本题的关键掌握判断机械能是否守恒的方法,1、看是否只有重力做功。
2、看动能和势能之和是否不变。
2.安徽芜湖方特水上乐园是华东地区最大的水上主题公园。
如图为彩虹滑道,游客先要从一个极陡的斜坡落下,接着经过一个拱形水道,最后达到末端。
下列说法正确的是( )A. 斜坡的高度和拱形水道的高度差要设计合理,否则游客经过拱形水道的最高点时可能飞起来B. 游客从斜坡的最高点运动到拱形水道最高点的过程中,重力一直做正功C. 游客从斜坡下滑到最低点时,游客对滑道的压力最小D. 游客从最高点直至滑到最终停下来过程中,游客的机械能消失了【答案】A【解析】解:A、斜坡的高度和拱形水道的高度差要设计合理,不能让游客经过拱形水A正确;B、游客从斜坡的最高点运动到拱形水道最高点的过程中,游客的位置是先降低后升高,所以重力先做正功后做负功,故B错误;C、游客从斜坡上下滑到最低点时,加速度向上,处于超重状态,游客对滑道的压力最大,故C错误;D、游客从最高点直至滑到最终停下来过程中,游客的机械能没有消失,而是转化为其他形式的能(内能),故D错误。
故选:A。
高点运动到拱形水道最高点的过程中,游客是先降低后升高的;游客在最低点时,其加速度向上,游客处于超重状态;整个过程是符合能量守恒的,机械能不是消失,而是转化为其它形式的能。
基础知识一.功1.一个物体受到力的作用,并在上发生了位移,我们就说这个力对物体须知了功,做功的两个必不可少的因素是的作用,在力的。
2.功的计算公式:W= ,式中θ是的夹角,此式主要用于求作功,功是标量,当θ=90°时,力对物体;当θ<90°时,力对物体;当θ>90°时,力对物体。
3.合力的功等于各个力做功的,即W合=W1+W2+W3+W4+……4.功是过程量,与能量的转化相联系,功是能量转化的,能量转化的过程一定伴随着二.功率1.功跟的比值叫功率,它是表示的物理量。
2.计算功率的公式有、,若求瞬时功率,则要用。
3.两种汽车启动问题中得功率研究:三.动能1.物体由于而具有的能量叫动能,公式是,单位是,符号是。
2.物体的动能的变化,指末动能与初动能之差,即△Ek=Ekt一Eko,若△Ek>0,表示物体的动能;若△Ek<0,表示物体的动能。
四.重力势能1.概念:物体由于被举高而具有的能量叫 ,表达式:Ep= ,它是,但有正负,正负的意义是表示比零势能参考面上的势能大还是小,重力势能的变化与重力做功的关系:重力对物体做多少正功,物体的重力势能就多少;重力对物体做多少负功,物体的重力势能就多少。
重力对物体所做的功等于物体的减小量。
即W G=一△Ep=一(Ep2一Ep1)=Ep1一Ep2.2.弹性势能:定义:物体由于发生而具有的能量叫。
大小:弹性势能的大小与及有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能就越大。
习题练习1.下列说法正确的是( )A.当作用力做正功时,反作用力一定做负功B.当作用力不做功时,反作用力也不做功C.作用力与反作用力的功,一定大小相等,正负符号相反D.作用力做正功,反作用力也可能做正功2.如图所示,小物块A位于光滑的斜面上,斜面位于光滑的水平面上,从地面上看,小物块沿斜面下滑的过程中,斜面对小物块的作用力( )A.垂直于接触面,做功为零B.垂直于接触面,做功不为零C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零3.如图所示,质量为m的物体静止在倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,现使斜面水平向左匀速移动距离L.(1)摩擦力对物体做的功为(物体与斜面相对静止)()A.0B.μmglcosθC.-mglcosθsinθD.mglsinθcosθ(2)斜面对物体的弹力做的功为 ( )A.0B.mglsinθcos2θC.-mglcos2θD.mglsinθcosθ(3)重力对物体做的功( )A.0B.mglC.mgltan θD.mglcos θ(4)斜面对物体做的总功是多少? 各力对物体所做的总功是多少? 4.如图所示,物体沿弧形轨道滑下后进入足够长的水平传送带,传送带以图示方向匀速运转,则传送带对物体做功情况可能是( ) A.始终不做功 B.先做负功后做正功 C.先做正功后不做功 D.先做负功后不做功5.物体在水平力F 1作用下,在水平面上做速度为v 1的匀速运动,F 1的功率为P;若在斜向上的力F 2作用下,在水平面上做速度为v 2的匀速运动,F 2的功率也是P,则下列说法正确的是( ) A.F 2可能小于F 1, v 1不可能小于v 2 B.F 2可能小于F 1, v 1一定小于v 2 C.F 2不可能小于F 1, v 1不可能小于v 2 D.F 2不可能小于F 1, v 1一定小于v 26.小汽车在水平路面上由静止启动,在前5 s 内做匀加速直线运动,5 s 末达到额定功率,之后保持以额定功率运动.其v -t 图象如图所示.已知汽车的质量为m=2×103kg,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )A.汽车在前5 s 内的牵引力为4×103NB.汽车在前5 s 内的牵引力为6×103N C.汽车的额定功率为60 kW D.汽车的最大速度为30 m/s7.手持一根长为l 的轻绳的一端在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系一质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力则( ) A.手对木块不做功B.木块不受桌面的摩擦力C.绳的拉力大小等于223r l m +ωD.手拉木块做功的功率等于m ω3r(l 2+r 2)/l8.一根质量为M 的直木棒,悬挂在O 点,有一只质量为m 的猴子抓着木棒,如图所示.剪断悬挂木棒的细绳,木棒开始下落,同时猴子开始沿木棒向上爬.设在一段时间内木棒沿竖直方向下落,猴子对地的高度保持不变,忽略空气阻力,则下列的四个图中能正确反映在这段时间内猴子做功的功率随时间变化的关系的是( )9.机车从静止开始沿平直轨道做匀加速运动,所受的阻力始终不变,在此过程中,下列说法正确的是( ) A.机车输出功率逐渐增大 B.机车输出功率不变C.在任意两相等的时间内,机车动能变化相等D.在任意两相等的时间内,机车动量变化的大小相等10.如图所示,质量为m 的物体A 静止于倾角为θ的斜面体B 上,斜面体B 的质量为M,现对该斜面体施加一个水平向左的推力F,使物体随斜面体一起沿水平方向向左匀速运动的位移为l,则在此运动过程中斜面体B 对物体A 所做的功为( )A.m M Flm +B.Mglcot θC.0D.21mglsin2θ 11.起重机的钢索将重物由地面吊到空中某个高度,其速度图象如图所示,则钢索拉力的功率随时间变化的图象可能是下图中的哪一个( )12.以恒力推物体使它在粗糙水平面上移动一段距离,恒力所做的功为W 1,平均功率为P 1,在末位置的瞬时功率为P t1,以相同的恒力推该物体使它在光滑的水平面上移动相同距离,力所做功为W 2,平均功率为P 2,在末位置的瞬时功率为P t2,则下面结论中正确的是( )A.W 1>W 2B.W 1=W 2C.P 1=P 2D.P t2<P t113.如图所示,滑雪者由静止开始沿斜坡从A 点自由滑下,然后在水平面上前进至B点停下.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m,A 、B 两点间的水平距离为L.在滑雪者经过AB 段运动的过程中,克服摩擦力做的功( )A.大于μmgLB.小于μmgLC.等于μmgLD.以上三种情况都有可能14.某汽车以额定功率在水平路面上行驶,空载时的最大速度为v 1,装满货物后的最大速度为v 2,已知汽车空车的质量为m 0,汽车所受的阻力跟车重成正比,则汽车后来所装的货物的质量是( )A.0221m v v v - B.0221m v vv + C.m 0 D.021m v v 15.物体在恒力作用下做匀变速直线运动,关于这个恒力做功的情况,下列说法正确的是( ) A.在相等的时间内做的功相等 B.通过相同的路程做的功相等 C.通过相同的位移做的功相等D.做功情况与物体运动速度大小有关16.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用,如图所示,假设驴拉磨的平均用力大小为500 N,运动的半径为1 m,则驴拉磨转动一周所做的功为( ) A.0 B.500 J C.500π J D.1 000π J17.如图所示,在倾角为θ的光滑斜面上,木板与滑块质量相等,均为m,木板长为l.一根不计质量的轻绳通过定滑轮分别与木板、滑块相连,滑块与木板间的动摩擦因数为μ,开始时,滑块静止在木板的上端,现用与斜面平行的未知力F,将滑块缓慢拉至木板的下端,拉力做功为( )A.μmglcos θB.2μmglC.2μmglcos θD.21μmgl18.额定功率为80 kW 的汽车,在平直的公路上行驶的最大速度为20 m/s,汽车的质量为2.0 t.若汽车从静止开始做匀加速直线运动,加速度大小为2 m/s 2,运动过程中阻力不变,则:(1)汽车受到的恒定阻力是多大?(2)3 s末汽车的瞬时功率是多大?(3)匀加速直线运动的时间是多长?(4)在匀加速直线运动中,汽车牵引力做的功是多少?答案 (1)4×103 N (2)48 KW (3)5 s (4)2×105 J19.汽车发动机的功率为60 kW,汽车的质量为4 t,当它行驶在坡度为sinα=0.02的长直公路上时,如图所示,所受阻力为车重的0.1倍(g取10 m/s2),求:(1)汽车所能达到的最大速度v m.(2)若汽车从静止开始以0.6 m/s2的加速度做匀加速直线运动,则此过程能维持多长时间?(3)当汽车以0.6 m/s2的加速度匀加速行驶的速度达到最大值时,汽车做功多少?答案 (1)12.5 m/s (2)13.9 s (3)4.16×105 J20.如图甲所示,质量m=2.0 kg的物体静止在水平面上,物体跟水平面间的动摩擦因数μ=0.20.从t=0时刻起,物体受到一个水平力F的作用而开始运动,前8 s内F随时间t变化的规律如图乙所示.g取10m/s2.求:(1)在图丙的坐标系中画出物体在前8 s内的v—t图象.(2)前8 s内水平力F所做的功.答案 (1) v-t图象如下图所示 (2)155 J动能定理.机械能守恒定律一.动能定理1.内容:外力对物体做功的代数和等于。
机械能守恒定律精选练习一夯实基础1.如图所示实例中均不考虑空气阻力,系统机械能守恒的是()【答案】D【解析】:人上楼、跳绳过程中机械能不守恒,从能量转化角度看都是消耗人体的化学能;水滴石穿,水滴的机械能减少的部分转变为内能;弓箭射出过程中是弹性势能与动能、重力势能的相互转化,只有重力和弹力做功,机械能守恒。
2.(2019·浙江省温州市诸暨中学高一下学期期中)关于以下四幅图,下列说法中正确的是()A.图1中“蛟龙号”被吊车吊下水的过程中它的机械能守恒B.图2中火车在匀速转弯时动能不变,故所受合外力为零C.图3中握力器在手的压力作用下弹性势能增加了D.图4中撑杆跳高运动员在上升过程中机械能守恒【答案】C【解析】:图1中“蛟龙号”被吊车吊下水的过程,钢绳对它做负功,所以机械能不守恒,故A错误;图2中火车在匀速转弯时做匀速圆周运动,所受的合外力指向圆心且不为零,故B错误;图3中握力器在手的压力下形变增大,所以弹性势能增大,C正确;图4中撑杆跳高运动员在上升过程中撑杆的弹性势能转化为运动员的机械能,所以运动员的机械能不守恒,故D错误。
3.(2019·山东省济南外国语学校高一下学期月考)如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面。
设物体在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h ,则物体运动到C 点时,弹簧的弹性势能是( )A .mgh -12mv 2 B .12mv 2-mgh C .mghD .mgh +12mv 2 【答案】B【解析】:由A 到C 的过程运用机械能守恒定律得:mgh +E p =12mv 2所以E p =12mv 2-mgh ,故选B 。
4.如图,质量为m 的苹果,从离地面H 高的树上由静止开始落下,树下有一深度为h 的坑。
若以地面为零势能参考平面,则当苹果落到坑底时的机械能为( )A .-mghB .mgHC .mg (H +h )D .mg (H -h )【答案】B【解析】:苹果下落过程机械能守恒,开始下落时其机械能为E =mgH ,落到坑底时机械能仍为mgH 。
机械能守恒定律经典同步练习题及答案1、一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度为2 m/s,则正确的说法是:B.合外力对物体做功12J。
2、机械能不守恒的情况有:A.在空气中匀速下落的降落伞和B.物体沿光滑圆弧面下滑。
3、航天员进行素质训练时,抓住秋千杆由水平状态向下摆,到达竖直状态的过程中,航天员所受重力的瞬时功率变化情况是:D。
先减小后增大。
4、如图2所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:C、10J。
5、关于力对物体做功以及产生的效果,正确的说法是:C.物体克服某个力做功时,这个力对物体来说是动力和D.某个力对物体做正功时,这个力对物体来说是动力。
6、物体沿直线运动的v-t关系如图所示,已知在第1秒内合外力对物体做的功为W,则(A)从第1秒末到第3秒末合外力做功为4W,(B)从第3秒末到第5秒末合外力做功为-2W,(C)从第5秒末到第7秒末合外力做功为W,(D)从第3秒末到第4秒末合外力做功为-0.75W。
7、如图,卷扬机的绳索通过定滑轮用力F拉位于粗糙面上的木箱,使之沿斜面加速向上移动。
在移动过程中,正确的说法是:A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和。
8、如图所示,静止在水平桌面的纸带上有一质量为0.1kg 的小铁块,它离纸带的右端距离为0.5m,铁块与纸带间动摩擦因数为0.1.现用力向左以2m/s2的加速度将纸带从铁块下抽出,求:(不计铁块大小,铁块不滚动)(1)将纸带从铁块下抽出需要多长时间?(2)纸带对铁块做多少功?9、一辆氢气燃料汽车质量为m=2.0×10kg,发动机额定输出功率为80kW。
在平直公路上行驶时,所受阻力为车重的0.1倍。
汽车从静止开始先匀加速启动,加速度大小为a=1.0m/s2.当汽车达到额定输出功率后,汽车保持功率不变,继续加速行驶了800m,直到获得最大速度后才匀速行驶。
一、选择题1.如图所示,轻质弹簧竖直放置,下端固定。
小球从弹簧的正上方某一高度处由静止下落,不计空气阻力,则从小球接触弹簧到弹簧被压缩至最短的过程中()A.小球的动能一直减小B.小球的机械能守恒C.弹簧的弹性势能先增加后减小D.小球的重力势能一直减小2.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地(不计空气阻力),以下说法正确的是()①运行的时间相等②重力的平均功率相等③落地时重力的瞬时功率相等④落地时的动能相等A.④B.②③C.③④D.②③④3.两个互相垂直的力F1与F2作用在同一物体上,使物体运动,物体通过一段位移时,力F1对物体做功为4J。
力F2对物体做功为3J,则力F1与F2的合力对物体做功为()A.0 B.5J C.7J D.25J4.关于功和能,下列说法不正确的是()A.滑动摩擦力对物体可以做正功B.当作用力对物体做正功时,反作用力可以不做功C.一对互为作用力和反作用力的滑动摩擦力,做功之和一定为零D.只有重力做功的物体,在运动过程中机械能一定守恒5.物体从某一高度做初速为0v的平抛运动,p E为物体重力势能,k E为物体动能,h为下落高度,t为飞行时间,v为物体的速度大小。
以水平地面为零势能面,不计空气阻力,下E与各物理量之间关系可能正确的是()列图象中反映pA.B.C.D.6.在水平地面上竖直上抛一个小球,小球在运动过程中重力瞬时功率的绝对值为P,离地高度h。
不计空气阻力,从抛出到落回原地的过程中,P与h关系图像为()A.B.C.D.7.如图,游乐场中,从高处P到水面Q处有三条不同的光滑轨道,图中甲和丙是两条长度相等的曲线轨道,乙是直线轨道。
甲、乙、丙三小孩沿不同轨道同时从P处自由滑向Q 处,下列说法正确的有()A.甲的切向加速度始终比丙的小B.因为乙沿直线下滑,所经过的路程最短,所以乙最先到达Q处C.虽然甲、乙、丙所经过的路径不同,但它们的位移相同,所以应该同时到达Q处D.甲、乙、丙到达Q处时的速度大小是相等的8.将一个小球从水平地面竖直向上抛出,它在运动过程中受到的空气阻力大小恒定,其上升的最大高度为20m,则运动过程中小球的动能和重力势能相等时,其高度为(规定水平地面为零势能面)()A.上升时高于10m,下降时低于10mB.上升时低于10m,下降时高于10mC.上升时高于10m,下降时高于10mD.上升时低于10m,下降时低于10m9.在倾角为30°的斜面上,某人用平行于斜面的力把原来静止于斜面上的质量为2kg的物体沿斜面向上推了2m的距离,并使物体获得1m/s的速度,已知物体与斜面间的动摩擦因数为33,g取10m/s2,则在这个过程中()A.物体机械能增加41J B.摩擦力对物体做功20JC.合外力对物体做功1J D.物体重力势能增加40J10.按压式圆珠笔内装有一根小弹簧,尾部有一个小帽,压一下小帽,笔尖就伸出来。
第八章机械能守恒定律机械能守恒定律课后篇巩固提升合格考达标练1.下列运动过程中,机械能守恒的是()A.热气球缓缓升空B.树叶从枝头飘落C.掷出的铅球在空中运动D.跳水运动员在水中下沉,空气的浮力做功,机械能不守恒,选项A错误;树叶从枝头飘落,所受的空气阻力不能忽略,空气阻力做负功,其机械能不守恒,选项B错误;掷出的铅球在空中运动时,所受空气的阻力对其运动的影响可以忽略,只有重力做功,其机械能守恒,选项C正确;跳水运动员在水中下沉时,所受水的浮力做负功,其机械能不守恒,选项D错误。
2.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,弹簧始终处于弹性限度内,下列关于能量的叙述正确的是()A.重力势能和动能之和总保持不变B.重力势能和弹性势能之和总保持不变C.动能和弹性势能之和总保持不变D.重力势能、弹性势能和动能之和总保持不变,弹力做负功,重力势能、弹性势能及动能都要发生变化,任意两种能量之和都不会保持不变,但三种能量相互转化,总和不变,选项D正确。
3.(多选)(2021江苏徐州高一检测)如图所示,一轻弹簧的一端固定于O点,另一端系一小球,将小球从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由下摆,不计空气阻力,弹簧始终处于弹性限度内,则在小球由A 点摆向最低点B的过程中()A.小球的机械能守恒B.弹簧的弹性势能增加C.弹簧和小球组成的系统机械能守恒D.小球的机械能减少,所以小球的机械能减少,A错误,D正确。
由于弹簧被拉长,所以弹簧的弹性势能增大,B正确。
A到B的过程中,只有重力和弹簧弹力做功,系统机械能守恒,即弹簧和小球组成的系统机械能守恒,C正确。
4.以相同大小的初速度v0将物体从同一水平面分别竖直上抛、斜上抛、沿光滑斜面(足够长)上滑,如图所示,三种情况达到的最大高度分别为h1、h2和h3,不计空气阻力(斜上抛物体在最高点的速度方向水平),则()A.h1=h2>h3B.h1=h2<h3C.h1=h3<h2D.h1=h3>h2,上升到最高点时,速度均为0,由机械能守恒定律得mgh=12mv02,所以h=v022g,斜上抛物体在最高点速度不为零,设为v1,则mgh2=12mv02−12mv12,所以h2<h1=h3,故D对。
图 2 图 3图4《机械能守恒》 第Ⅰ卷(选择题,共40分)一、选择题(每小题4分,共40分。
在每小题给出的四个选项中,至少有一个选项是正确的,全部选对得4分,对而不全得2分。
)1、关于机械能是否守恒的叙述,正确的是 ( ) A .做匀速直线运动的物体机械能一定守恒 B .做变速运动的物体机械能可能守恒C .外力对物体做功为零时,机械能一定守恒D .若只有重力对物体做功,物体的机械能一定守恒2、质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图1所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程中重力势能的变化分别是( )A .mgh ,减少mg (H-h )B .mgh ,增加mg (H+h )C .-mgh ,增加mg (H-h )D .-mgh ,减少mg (H+h ) 3、一个物体以一定的初速度竖直上抛,不计空气阻力,那么如图2所示,表示物体的动能E k 随高度h 变化的图象A 、物体的重力势能E p 随速度v 变化的图象B 、物体的机械能E 随高度h 变化的图象C 、物体的动能E k 随速度v 的变化图象D ,可能正确的是( )4、物体从高处自由下落,若选地面为参考平面,则下落时间为落地时间的一半时,物体所具有的动能和重力势能之比为 ( ) A .1:4 B .1:3 C .1:2 D .1:15、如图3所示,质量为m 的木块放在光滑的水平桌面上,用轻绳绕过 桌边的定滑轮与质量为M 的砝码相连,已知M =2m ,让绳拉直后使砝码 从静止开始下降h (小于桌面)的距离,木块仍没离开桌面,则砝码的速率为( )A .31gh 6 B .mgh C .gh 2 D .gh 3326、质量为m 的小球用长为L 的轻绳悬于O 点,如图4所示,小球在水 平力F 作用下由最低点P 缓慢地移到Q 点,在 此过程中F 做的功为( )图1A .FL sin θB .mgL cos θC .mgL (1-cos θ)D .Fl tan θ7、质量为m 的物体,由静止开始下落,由于阻力作用,下落的加速度为54g ,在物体下落h 的过程中,下列说法中正确的应是( )A .物体的动能增加了54mghB .物体的机械能减少了54mghC .物体克服阻力所做的功为51mghD .物体的重力势能减少了mgh8、如图5所示,一轻弹簧固定于O 点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自 由摆下,不计空气阻力,在重物由A 点摆向最低点的过程中( ) A .重物的重力势能减少 B .重物的重力势能增大 C .重物的机械能不变 D .重物的机械能减少9、如图6所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的应是( ) A .重力势能和动能之和总保持不变 B .重力势能和弹性势能之和总保持不变 C .动能和弹性势能之和保持不变D .重力势能、弹性势能和动能之和总保持不变10、平抛一物体,落地时速度方向与水平方向的夹角为θ.取地面为参考平面,则物体被抛出时,其重力势能和动能之比为( ) A .tan θ B .cot θ C .cot 2θ D .tan 2θ第Ⅱ卷(非选择题,共60分)二、填空题(每小题6分,共24分。
把正确答案填写在题中的横线上,或按题目要求作答。
)11、从某一高度平抛一小球,不计空气阻力,它在空中飞行的第1 s 内、第2 s 内、第3 s 内动能增量之比ΔE k1∶ΔE k2∶ΔE k3=________.12、质量为m 、摆长为L 的摆球从摆角为53°处无初速地摆下,不计空气阻力,设摆球在最低点处的重力势能为零,那么当摆球的摆角θ=________时,摆球的动能和重力势能相等.(sin53°=0.8)13、如图7所示,物体以100 J 的初动能从斜面底端向上运动,中途第一次通过斜面上M 点时,其动能减少了80 J ,图 6 图 5图7图8 机械能减少了32 J.则当物体沿斜面重新返回底端时,其动 能为________J.14、在“验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50 H z.查得当地的重力加速度g =9.80 m /s 2,所用的重物的质量为m (kg ),实验中得到一条点迹清晰的纸带,如图8把第一个点记作O ,另外连续的4个点A 、B 、C 、D 作为测量的点,经测量知道A 、B 、C 、D 各点到O 点的距离分别为62.99 cm 、70.18 cm 、77.76 cm 、85.73 cm ,根据以上数据,可知重物由打O 点运动到打C 点,重力势能减少量等于________J ,动能的增加量等于 ________J.(取3位有效数字)三、计算题(共36分。
要求写出必要的文字说明、主要方程式和重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分。
) 15、(12分)物体的质量为m ,沿光滑的弯曲轨道滑下,轨道的形状如图9所示,与弯曲轨道相接的圆轨道的半径为R ,要使物体沿光滑圆轨道能通过最高点,物体应从离轨道最低处多高的地方由静止开始滑下?16.(12分)细绳的一端固定,另一端系一质量为m 的小球,小球绕绳的固定点在竖直平面做圆周运动.小球在最低点和最高点时细绳对小球拉力的大小相差多少?图917.(12分)一个质量m =0.20kg 的小球系于轻质弹簧的一端,且套在光滑竖立的圆环上,弹簧的上端固定于环的最高点A ,环的半径R =0.5m ,弹簧的原长L 0=0.5m ,劲度系数为4.8N/m ,如图10所示,若小球从图中所示位置B 点由静止开始滑动到最低点C 时,弹簧的弹性势能E p 弹=0.6J ,求 (1)小球到C 点时的速度vc 的大小。
(2)小球在C 点对环的作用力。
(g=10m/s 2)参考答案1.【答案】 BD【解析】 判断机械能是否守恒,依据是重力以外的力是否做了功,不管物体是做匀速运动还是变速运动,也不管物体是做直线运动还是做曲线运动,只要重力以外的力不做功,机械能就一定守恒.外力做功为零,并不意味着重力以外的力做功为零,所以,机械能不一定守恒.选项B 、D 正确. 2.【答案】 D【解析】 重力势能的数值与参考平面的选取有关.重力势能的变化量与重力做功对应,而与参考平面的选取无关. 3.【答案】 ABCD【解析】 设物体的初速度为v 0,物体的质量为m ,由机械能守恒定律得21mv 02=mgh +21mv 2,所以,物体的动能与高度h 的关系为E k =21mv 02-mgh ,图象A 正确。
物体的重力势能与速度v 的关系为E p =21mv 02-21mv 2,则E p -v 图象为开口向下的抛物线(第一象限中的部分),图象B 可能正确.由于竖直上抛运AB C图10动过程中机械能守恒,所以,E -h 图象为一平行h 轴的直线,C 图象正确.由E k =21mv 2知,E k -v 图象为一开口向上的抛物线(第一象限中部分),所以,D 图象可能正确. 4.【答案】 B【解析】 设物体下落时离地面高度为h ,则物体所具有的机械能为mgh ,当物体下落时间为落地时间一半时,下落高度为h 1,则h 1=43h,物体下落时机械能守恒,所以mgh =mgh 1+E k =43mgh +E k ,所以,E k =4mgh,E k ∶E p =1∶3. 5.【答案】 D【解析】 以m 和M 组成的系统为研究对象,系统机械能守恒.则M 下降h 后速度为v ,由机械能守恒定律得:系统减少的重力势能等于增加的动能,则Mgh =21mv 2+21Mv 2 ,M =2m ,得v =32gh 36.【答案】 C【解析】 水平力做功使小球的重力势能增加,水平力对小球做多少功,小球的重力势能增加多少.所以,水平力对小球做的功为 W =mgL (1-cos θ).C 选项正确. 7.【答案】 ACD 【解析】 由牛顿第二定律得mg -F =ma ,物体下落时受到阻力大小为F =m (g -a )=51mg ,物体所受的合外力大小为54mg ,在物体下落h 的过程中,合外力做的功为54mgh ,所以,物体的动能增加54mgh ,A 选项正确.重力以外的力(阻力)做功为-51mgh ,所以,物体的机械能减少51mgh ,B 选项错,C选项对.重力做功为mgh ,物体的重力势能减少了mgh ,选项D 正确.8.【答案】 AD【解析】 物体从A 点释放后,在从A 点向B 点运动的过程中,物体的重力势能逐渐减小,动能逐渐增加,弹簧逐渐被拉长,弹性势能逐渐增大,所以,物体减小的重力势能一部分转化为物体的动能,另一部分转化为弹簧的弹性势能.对物体和弹簧构成的系统,机械能守恒,但对物体来说,其机械能减小.选项A 、D 正确. 9.【答案】 D【解析】 在球从高处下落到弹簧压缩到最短的过程中,重力势能、动能、弹性势能相互转化,其总和不变,选项D 正确. 10.【答案】 D【解析】 设物体抛出点的高度为h ,初速度为v 0,则落地时速度为v =v 0/cos θ,平抛过程只有重力做功,物体机械能守恒,得mgh +21mv 02=21mv 2=21m220cos v ,所以 mgh =21mv 02·tan 2θ. 11.【答案】 1:3:5【解析】 平抛运动的竖直分运动为自由落地运动,在第1 s 内、第2 s 内、第3 s 内物体的竖直位移之比为 h 1:h 2:h 3=1:3:5 ,则在第1 s 内、第2 s 内、第3 s 内重力做功之比为mgh 1:mgh 2:mgh 3=1:3:5 ,由动能定理得,物体在第1 s 内、第2 s 内、第3 s 内动能增量之比为ΔE k1: ΔE k2: ΔE k3=1:3:5 12.【答案】 37°【解析】 根据机械能守恒定律得mgL (1-cos53°)=21mv 2+mgL (1-cos θ),由于21mv 2=mgL (1-cos θ),所以,mgL (1-cos53°)=2mgL (1-cos θ),求得cos θ=0.8,θ=37° 13.【答案】 20【解析】 物体沿斜面上滑的过程中,克服摩擦力做的功等于物体机械能的减少量,即 μmg cos α·s =ΔE ,设物体在上滑过程中动能的减少量为ΔE k ,由动能定理得 -(mg sin α+μmg cos α)s =-ΔE k ,即 (mg sin α+μmg cos αs =ΔE k ,得αμααμcos sin cos +=KE E∆∆,即在上滑过程中,物体减少的机械能和减少的动能之比为定值,并且K E E ∆∆=8032=52,物体到达最高点时动能减少了100 J ,减少的机械能为ΔE =52ΔE k =52×100 J=40 J ,由此可知,物体在上滑过程中克服摩擦力做的功为40 J.由于物体下滑时摩擦力大小和位移大小都没变,所以,下滑过程中克服摩擦力做的功也为40 J.即在全过程中物体损失的机械能为80 J ,物体返回底端时动能为20 J. 14.【答案】 7.62m ;7.56m【解析】 ΔE p =mgh =9.80×0.7776 m =7.620 m J , v C =T S BD 2=3.888 m /s ,ΔE k =221C mv =7.56 m J.15.(12分) 【解析】 物体恰能通过圆轨道的最高点,有mg =m Rv 2① 3分)物体下滑过程中机械能守恒,有ΔE p =ΔE k , (3分)即 mg (h -2R )=21mv 2 ② (3分)由①、②解得 h =25R . (3分)16.(12分)【解析】 设小球在最高点和在最低点时速度分别为v 1和v 2,绳对球的拉力分别为F 1和F 2,圆周运动的半径为R ,由牛顿第二定律得F 1+mg =m Rv21 ① (3分)F 2-mg =m Rv22 ② (3分)由机械能守恒定律得21mv 12+mg ·2R =21mv 22 ③ (3分)由①②③解得 F 2-F 1=6mg (3分)17.(12分)【解析】 (1)小球从B 到C 过程中,满足机械能守恒,取C 点为重力势能的参考平面mgR(1+cos600)=弹P c E mv +221 (3分) 解得 s m mE gR v P c /32.06.025.010323=⨯-⨯⨯=-=弹 (3分) (2)根据胡克定律 F 弹 = kx = 4.8×0.5=2.4N (3分) 小球在C 点时应用牛顿第二定律得(竖直向上的方向为正方向)F 弹+F N -mg =m Rv c 2(3分)∴ F N = mg - F 弹+ m Rv c 2=0.2×10-2.4+0.2×5.032=3.2N (3分)根据牛顿第三定律得,小球对环的作用力为3.2N ,方向竖直向下。