2016-2017年山东省泰安市泰山区八年级上学期期中数学试卷和答案
- 格式:doc
- 大小:322.00 KB
- 文档页数:18
八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。
…○…………内…………○………学校:______…○…………外…………○………绝密★启用前山东省泰安市泰山区2016-2017学年八年级上期中数学试卷含答案解析题号 一 二 得分注意事项:1.本试卷共XX 页,二个大题,满分114分,考试时间为1分钟。
请用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
一、单选题(共42分)评卷人 得分1.下列等式从左到右的变形中,属于因式分解的是( )(3分) A. a(b ﹣5)=ab ﹣5a B. a 2﹣4a+4=a(a ﹣4)+4 C. x 2﹣81y 2=(x+9y)(x ﹣9y) D. (3x ﹣2)(2x+1)=6x 2﹣x ﹣22.下列分式中,属于最简分式的是( )(3分)A.B.C.D.试卷第2页,总13页……外…………内……3.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )(3分)A. 3.5元B. 6元C. 6.5元D. 7元4.多项式m2﹣4n2与m2﹣4mn+4n2的公因式是( )(3分)A. (m+2n)(m﹣2n)B. m+2nC. m﹣2nD. (m+2n)(m﹣2n)25.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是( )(3分)A. 甲B. 乙C. 丙D. 丁6.(3分)A. x=2B. x=±2C. x=﹣2…………线…………………线……… D. x=07.下列因式分解正确的是( )(3分) A. B.C. D.8.下列多项式:①x 2+y 2;②x 2﹣1;③x 3+4x ﹣4;④x 2﹣10x+25,其中能直接用公式法因式分解的有( )(3分) A. 1个 B. 2个 C. 3个 D. 4个9.八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:某同学分析后得到如下结论: ①一班与二班学生平均成绩相同; ②二班优生人数多于一班(优生线85分); ③一班学生的成绩相对稳定. 其中正确的是( )(3分)A. ①②B. ①③C. ①②③D. ②③试卷第4页,总13页…○…………外…………○…………装…………○…………订…………○…………线…………○……※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○……10. (3分)A.B.C.D.11. (3分)A. B. C.D.12. (3分)A. B. C. D.13. (3分)A.………○……○…………订…………○…………线…………○……学_______班级:___________考号:___________………○……○…………订…………○…………线…………○…… B.C. D.14. (3分)A.B.C.D.二、解答题(共72分)评卷人 得分15.因式分解:m 2+4m+4= .(3分)16. (3分)17.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是 元.。
泰安市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019七下·嵊州期末) 在5×5方格纸中,将图1中的图形N平移至图2所示的位置,下列操作正确的是()A . 先向下平移1格,再向左平移1格B . 先向下平移1格,再向左平移2格C . 先向下平移2格,再向左平移1格D . 先向下平移2格,再向左平移2格2. (2分)(2019·河池模拟) 如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A . 30°B . 40°C . 50°D . 60°3. (2分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的左视图是()A .B .C .D .4. (2分) (2016八上·港南期中) 若等腰三角形一腰上的高是腰长的一半,则这个等腰三角形的底角是()A . 75°或15°B . 75°C . 15°D . 75°或30°5. (2分) (2018八上·白城期中) 如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC 的度数等于()A . 120°B . 70°C . 60°D . 50°6. (2分) (2018八上·白城期中) 如图所示△ABC中,AB=AC,∠B=30°,AB⊥AD,AD=4cm,则BC的长为()A . 8cmB . c4mC . 12cmD . 6cm二、填空题 (共8题;共8分)7. (1分)(2020·无锡模拟) 如图,已知⊙O 的直径为 8cm,A、B、C 三点在⊙O 上,且∠ACB=30°,则 AB 的长为________.8. (1分) (2018八上·白城期中) 如图,∠1=∠2,如果添加一个条件,即可得到△ABE≌△ACE,那么这个条件可以是________(要求:不添加其他辅助线,写出一个条件即可)9. (1分) (2018八上·白城期中) 如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=________.10. (1分) (2018八上·白城期中) 小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是________.11. (1分) (2018八上·白城期中) 点A(4,﹣2)关于y轴的对称点A′的坐标为________.12. (1分) (2018八上·白城期中) 已知4×2a×2a+1=29 ,且2a+b=8,求ab=________.13. (1分) (2018八上·白城期中) 如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为________.14. (1分) (2018八上·白城期中) 如图,△ABC是等边三角形,D为AB的中点,DE⊥AC垂足为点E,EF∥AB,AE=1,则△EFC的周长=________.三、解答题 (共12题;共94分)15. (5分) (2017·涿州模拟) 计算下列各题(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣ |;(2)解方程:x2﹣1=2(x+1).16. (5分) (2018八上·白城期中) 如图,已知AB∥DE , AB=DE , BE=CF ,求证:AC∥DF .17. (5分) (2018八上·白城期中) 如图所示,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O点作EF∥BC,交AB于E,交AC于F,若BE=3,CF=2,试求EF的值.18. (5分) (2018八上·白城期中) 如图,在△ABC中,按以下步骤作图:①分别以点A、C为圆心,以大于 AC的长为半径画弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD,若∠C=28°,AB=BD;求∠B的度数.19. (5分) (2018八上·白城期中) 如图,已知△ABC和△BED都是等边三角形,且A、E、D在一条直线上,且DC=4,BD=2,求AD的长度?20. (2分) (2018八上·白城期中) 如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB 的端点在格点上,按要求画出格点三角形,并求其面积.(1)在图①中画出一个以AB为腰的等腰三角形ABC,其面积为________.(2)在图②中画出一个以AB为底的等腰三角形ABC,其面积为________.21. (10分) (2018八上·白城期中) 如图∠BAC=30°,D为角平分线上一点,DE⊥AC于E,DF∥AC且交AB 于F.(1)求证:△ADF是等腰三角形.(2)若DF=10cm,求DE的长.22. (10分) (2018八上·白城期中) 如图所示,若MP和NQ分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ的度数.23. (11分) (2018八上·白城期中) 如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1 .(2)△A1B1C1的面积为________.(3)在x轴上找出一点P,使PA+PB的值最小直接画出点P的位置.24. (6分) (2018八上·白城期中) 如图(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD 到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是________.(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.25. (15分) (2018八上·白城期中) 已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),求点C的坐标;(2)如图2,过点C作CD⊥y轴于D,请直接写出线段OA,OD,CD之间等量关系;(3)如图3,若x轴恰好平分∠BAC,BC与x轴交于点E,过点C作CF⊥x轴于F,问CF与AE有怎样的数量关系?并说明理由.26. (15分) (2018八上·白城期中) 如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共8分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共94分)15-1、15-2、16-1、17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
山东省泰安地区2016--2017学年度第一学期期中质量检测八年级数学试题注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题60分,非选择题60分,满分120分,考试时间120分钟;2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,请将答题纸和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共20个小题,每小题3分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求。
)1.下列各式从左到右的变形中,是因式分解的是( ) A.()()2339a a a +-=- B.()()22a b a b a b -=+-C.()24545a a a a --=--D.23232m m m m m ⎛⎫--=-- ⎪⎝⎭2.无论x 取什么数时,总是有意义的分式是( )A.122+x x B.12+x x C.133+x x D.25x x -3.若22)31a (91ma a -=++,则m 的值为( )A. 2B.3C.32-D.324.若已知分式96122+---x x x 的值为0,则x -2的值为 ( )A.91或-1 B.91或1 C.-1 D.15.下列各式是完全平方式的是( )A.412+-x x B.241x + C.22b ab a ++ D.122-+x x6.下列运动属于旋转的是( )A.滚动过程中篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折过程7.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么A D ′为( )A.10B.8C.7D.128.如图将△ABC 绕着点C 按顺时针旋转20°,B 点落在B ′的位置,A 点落在A ′的位置,若AC ⊥A ′B ′,则∠BAC 的度数是( ) A.50° B.60° C.70° D.80°9.分式方程31329122+=---x x x 的解为( ) A.3 B.-3 C.无解 D.3或-310.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A 到出口B 所走的路线(图中虚线)长为( ) A.100米 B.99米 C.98米 D.74米11.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( )A.15°B.20°C.25°D.30°12.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可(第8题)′BACA ′(第10题)列方程为( ) A . B.C .D .13.在同一段路上,某人上坡速度为a ,下坡速度为b ,则该人来回一趟的平均速度是 ( )A.aB.bC.2b a + D.ba 2ab+14.把多项式)2()2(2a m a m -+-分解因式等于( ) A.))(2(2m m a +- B.))(2(2m m a --C.m(a-2)(m-1)D.m(a-2)(m+1)15.若关于x 的方程222-=-+x m x x 有增根,则m 的值与增根x 的值分别是( )A.m=-4,x=2B.m=4,x=2C.m=-4,x=-2D.m=4,x=-216.下列分式是最简分式的是( )A.x x x --21 B.11+-x x C.112--x x D.x 4417.下列等式成立的是( )A.b a b a +=+321 B.b a b a +=+122 C.ba ab ab ab -=-2 D.b a ab a a +-=+-18.某校八年级(1)班全体学生2016年体育测试考试成绩统计如下:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误的是( ) A.该班一共有40名同学;B.该班学生这次考试成绩的众数是45分;C.该班学生这次考试成绩的中位数是45分;D.该班学生这次考试成绩的平均数是45分. 19.下列不是表示数据离散程度的量是( ) A.方差 B.极差 C.平均数 D.标准差20.如图,△ABC 沿着由点B 到点E 的方向,平移到△DEF ,已知BC =5.EC =3,那么平移的距离为( ) A.2B.3C.5D.7第Ⅱ卷(非选择题 共60分)题号 二 三 总分25 26 27 28 29 得分注意事项: 1.第Ⅱ卷共4页,用蓝黑钢笔或圆珠笔直接答在答题纸上;2.答卷前将密封线内的项目填写清楚。
2016-2017学年山东省泰安市宁阳十二中八年级(上)期中数学试卷一、(每小题3分共60分,请把答案填入答题栏内)1.代数式,,,﹣,,,中,分式的个数为()A.5个B.4个C.3个D.2个2.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个4.要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>15.下列分式是最简分式的是()A.B.C.D.6.将分式中的x、y的值同时扩大2倍,则扩大后分式的值()A.扩大2倍 B.缩小2倍 C.保持不变 D.无法确定7.下列各式正确的是()A.=﹣B.=﹣C.=﹣D.=﹣8.下列说法正确的是()①角平分线上任意一点到角的两边的线段长相等.②角是轴对称图形.③线段不是轴对称图形.④线段垂直平分线上的点到这条线段两个端点的距离相等.A.①②③④B.①②③ C.②③④ D.②④9.等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65° 65°B.50° 80°C.65° 65°或50° 80°D.50° 50°10.已知等腰三角形一边是3,一边是6,则它的周长等于()A.12 B.12或15 C.15 D.18或1511.下列关于分式的判断,正确的是()A.当x=2时,的值为零B.无论x为何值,的值正数C.无论x为何值,的值不可能是正数D.当x≠3时,有意义12.等边△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°13.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)14.如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD 的是()A.AD=AE B.AB=AC C.BE=CD D.∠AEB=∠ADC15.下列等式中,不成立的是()A.=x﹣y B.=x﹣yC.D.16.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±117.在等腰三角形ABC中,AB=AC,BE,CD分别是底角的平分线,DE∥BC,图中等腰三角形的个数有()A.4个B.5个C.6个D.8个18.如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A.50°B.75°C.80°D.105°19.已知两个分式:A=,B=,其中x≠±2.下面的结论正确的是()A.A=B B.A,B互为相反数C.A,B互为倒数D.以上结论都不对20.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.=C.D.二、填空题(每小题2分共12分)21.已知,且abc≠0,则=.22.已知x:y=3:4,y:z=6:7,求x:y:z=.23.a=4,b=16,c=8,若a、c、b、d成比例线段.则d=.24.关于x的方程+1=有增根,则m的值为.25.如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D 是AC中点.其中正确的命题序号是.26.在△ABC中,∠C=90°,BD平分∠ABC,若AB=10,CD=2,则△ABD的面积为.作图题27.已知:线段a,h求作:等腰三角形ABC,使底边AB=a,AB边上的高CD=h28.如图,牧童在A处放牛,其家在B处,若牧童在A处放牛,牵到河边饮水后再回家,试问在何处饮水所走路程最短?请在图上作出来.29.计算题:(1)a﹣2+(2).30.解分式方程:(1)(2)﹣=1.31.先化简,再求值:,其中a=﹣4.32.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.33.如图:AC=DF,AD=BE,BC=EF.求证:BC‖EF.2016-2017学年山东省泰安市宁阳十二中八年级(上)期中数学试卷参考答案与试题解析一、(每小题3分共60分,请把答案填入答题栏内)1.代数式,,,﹣,,,中,分式的个数为()A.5个B.4个C.3个D.2个【考点】分式的定义.【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式可得答案.【解答】解:代数式,﹣,是分式,共3个,故选:C.2.下列图形中,不是轴对称图形的是()A.B. C. D.【考点】轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.3.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF ≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质.【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案.【解答】解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.4.要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>1【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0.【解答】解:∵x+1≠0,∴x≠﹣1.故选:B.5.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.6.将分式中的x、y的值同时扩大2倍,则扩大后分式的值()A.扩大2倍 B.缩小2倍 C.保持不变 D.无法确定【考点】分式的基本性质.【分析】根据分式的基本性质把分式中的x、y同时扩大2倍后进行约分化简与原分式比较即可求得答案.【解答】解:当分式中的x、y的值同时扩大2倍后可得===2•,∴扩大后分式的值扩大2倍,故选A.7.下列各式正确的是()A.=﹣B.=﹣C.=﹣D.=﹣【考点】分式的基本性质.【分析】根据分式的分子分母同乘或同除以同一个整式(0除外)分式的值不变,可得答案.【解答】解:A,故A错误;B,故B正确;C ,故C错误;D,故D错误;故选:B.8.下列说法正确的是()①角平分线上任意一点到角的两边的线段长相等.②角是轴对称图形.③线段不是轴对称图形.④线段垂直平分线上的点到这条线段两个端点的距离相等.A.①②③④B.①②③ C.②③④ D.②④【考点】线段垂直平分线的性质;角平分线的性质;轴对称图形.【分析】根据角平分线的性质与线段垂直平分线的性质求解即可求得答案.【解答】解:∵①角平分线上任意一点到角的两边的距离相等.故错误;②角是轴对称图形.正确;③线段是轴对称图形,故错误;④线段垂直平分线上的点到这条线段两个端点的距离相等.正确.∴下列说法正确的是②④.故选D.9.等腰三角形的一个内角是50°,则另外两个角的度数分别是()A.65° 65°B.50° 80°C.65° 65°或50° 80°D.50° 50°【考点】等腰三角形的性质.【分析】根据等腰三角形的性质推出∠B=∠C,分为两种情况:①当底角∠B=50°时,②当顶角∠A=50°时,根据∠B=∠C和三角形的内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,①当底角∠B=50°时,则∠C=50°,∠A=180°﹣∠B﹣∠C=80°;②当顶角∠A=50°时,∵∠B+∠C+∠A=180°,∠B=∠C,∴∠B=∠C=×=65°;即其余两角的度数是50°,80°或65°,65°,故选C.10.已知等腰三角形一边是3,一边是6,则它的周长等于()A.12 B.12或15 C.15 D.18或15【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的两腰相等,分①6是腰长,②3是腰长,两种情况讨论求解即可.【解答】解:①6是腰长,能够组成三角形,周长=6+6+3=15,②3是腰长,∵3+3=6,∴3、3、6不能组成三角形,∴三角形的周长为15.故选C.11.下列关于分式的判断,正确的是()A.当x=2时,的值为零B.无论x为何值,的值正数C.无论x为何值,的值不可能是正数D.当x≠3时,有意义【考点】分式的值;分式有意义的条件;分式的值为零的条件.【分析】根据分式的分母为零分式无意义,可判断A、D,根据分式的分子分母同号为正、异号为负,可判断B、C.【解答】解:A、当x=﹣1时,的值为零,故A错误;B、无论x为何值,的值正数,故B正确;C、当x>﹣1时,的值是正数,故C错误;D、当x≠﹣1时,有意义,故D错误;故选:B.12.等边△ABC的两条角平分线BD和CE交于点I,则∠BIC等于()A.60°B.90°C.120°D.150°【考点】等边三角形的性质;角平分线的性质.【分析】由已知条件根据等边三角形的性质、角平分线的性质求解.【解答】解:如图,∵等边三角形ABC中,BD,CE分别是∠ABC,∠ACB的角的平分线,交于点I,∴∠1=∠2=∠ACB=30°,∴∠BIC=180°﹣(∠1+∠2)=120°.故选C.13.点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:点M(1,2)关于x轴对称的点的坐标为(1,﹣2),故选:C.14.如图,D在AB上,E在AC上,且∠B=∠C,则下列条件中,无法判定△ABE≌△ACD 的是()A.AD=AE B.AB=AC C.BE=CD D.∠AEB=∠ADC【考点】全等三角形的判定.【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:A、正确,符合判定AAS;B、正确,符合判定ASA;C、正确,符合判定AAS;D、不正确,三角形全等必须有边的参与.故选D.15.下列等式中,不成立的是()A.=x﹣y B.=x﹣yC.D.【考点】分式的加减法;分式的基本性质.【分析】根据分式的加减法,以及分式的基本性质,逐项判断即可.【解答】解:∵==x+y,∴选项A不正确;∵==x﹣y,∴选项B正确;∵=,∴选项C正确;∵=﹣,∴选项D正确.故选:A.16.若分式的值为零,则x的值为()A.0 B.1 C.﹣1 D.±1【考点】分式的值为零的条件.【分析】根据分式为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为零,∴,解得x=1.故选B.17.在等腰三角形ABC中,AB=AC,BE,CD分别是底角的平分线,DE∥BC,图中等腰三角形的个数有()A.4个B.5个C.6个D.8个【考点】等腰三角形的判定与性质.【分析】如图,证明∠DBE=∠DEB,∠EDC=∠ECD,∠ODE=∠OED,∠OBC=∠OCB,进而得到AD=AE、OD=OE、OB=OC、BD=ED、CE=DE,即可解决问题.【解答】解:如图,∵AB=AC,∴∠ABC=∠ACB(设为2α);∵DE∥BC,∴∠ADE=∠AED=2α;∠DEO=∠CBO=α,∠EDO=∠BCO=α;∵BE,CD分别是底角的平分线,∴∠ABE=∠CBE=α,∠ACD=∠BCD=α,∴∠DBE=∠DEB,∠EDC=∠ECD,∠ODE=∠OED,∠OBC=∠OCB,∴AD=AE、OD=OE、OB=OC、BD=ED、CE=DE,∴图中共有6个等腰三角形,故选C.18.如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A.50°B.75°C.80°D.105°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出BP=AP,CQ=AQ,推出∠B=∠BAP,∠C=∠QAC,求出∠B+∠C,即可求出∠BAP+∠QAC,即可求出答案.【解答】解:∵MP和QN分别垂直平分AB和AC,∴BP=AP,CQ=AQ,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=130°﹣50°=80°,故选:C.19.已知两个分式:A=,B=,其中x≠±2.下面的结论正确的是()A.A=B B.A,B互为相反数C.A,B互为倒数D.以上结论都不对【考点】分式的加减法.【分析】先对A式的分母进行因式分解、对B式进行通分,再比较A、B的关系.【解答】解:∵A=,B=,∴A≠B;∵A×B=≠1,∴A、B不为倒数;∵A+B==0,∴A、B互为相反数.故选B.20.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.=C.D.【考点】由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.二、填空题(每小题2分共12分)21.已知,且abc≠0,则=.【考点】比例的性质.【分析】利用,设a=2x,则b=4x,c=5x,进而代入原式求出即可.【解答】解:∵,∴设a=2x,则b=4x,c=5x,∴===.故答案为:.22.已知x:y=3:4,y:z=6:7,求x:y:z=9:12:14.【考点】比例的性质.【分析】根据分式的基本性质可得,x:y=3:4=9:12,y:z=6:7=12:14,进而求出x:y:z的值.【解答】解:∵x:y=3:4,y:z=6:7,∴x:y=9:12,y:z=12:14,∴x:y:z=9:12:14.故答案为9:12:14.23.a=4,b=16,c=8,若a、c、b、d成比例线段.则d=32.【考点】比例线段.【分析】根据成比例线段的概念,得a:c=b:d,再根据比例的基本性质,可求得d的值.【解答】解:∵a、c、b、d是成比例线段,∴a:c=b:d,即4:8=16:d,∴d=32;故答案为:32.24.关于x的方程+1=有增根,则m的值为3.【考点】分式方程的增根.【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x﹣3=0,将x的值代入计算即可求出m的值.【解答】解:分式方程去分母得:x+x﹣3=m,根据分式方程有增根得到x﹣3=0,即x=3,将x=3代入整式方程得:3+3﹣3=m,则m=3.故答案为:3.25.如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D 是AC中点.其中正确的命题序号是(1)(2)(3).【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质和等腰三角形ABC的顶角为36°,求出各角的度数,然后对各选项分析判断后利用排除法求解.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分线,∴AD=BD,∠ABD=∠A=36°,∴∠DBC=72°﹣36°=36°,∠BDC=180°﹣36°﹣72°=72°,∴BD=BC;(1)BD平分∠ABC正确;(2)AD=BD=CD正确;(3)△BDC的周长=BC+CD+BD=BC+CD+AD=BC+AC=AB+BC,正确;(4)AD=BD≠CD,所以D不是AC的中点,故本选项错误.故正确的命题是(1)(2)(3).26.在△ABC中,∠C=90°,BD平分∠ABC,若AB=10,CD=2,则△ABD的面积为10.【考点】角平分线的性质.【分析】过点D作DE⊥AB于点E,根据角的平分线上的点到角的两边的距离相等,得DE=DC=2,再根据三角形的面积计算公式得出△ABD的面积.【解答】解:如图,过点D作DE⊥AB于点E∵BD平分∠ABC又∵DE⊥AB,DC⊥BC∴DE=DC=2∴△ABD的面积=•AB•DE=×10×2=10故答案为10.作图题27.已知:线段a,h求作:等腰三角形ABC,使底边AB=a,AB边上的高CD=h【考点】作图—复杂作图;等腰三角形的性质.【分析】(1)作AB=a;(2)作AB的垂直平分线CF,垂足为D;(3)在DF上截取CD=h;(4)连接AC、BC,即可得等腰三角形.【解答】解:如图,△ABC即为所求三角形.28.如图,牧童在A处放牛,其家在B处,若牧童在A处放牛,牵到河边饮水后再回家,试问在何处饮水所走路程最短?请在图上作出来.【考点】轴对称-最短路线问题.【分析】作出点A关于河岸l的对称点A′,连接A′B,交河岸l于点D,则点D是牛饮水的位置.【解答】解:如图:29.计算题:(1)a﹣2+(2).【考点】分式的混合运算.【分析】分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的,运算的结果要化成最简分式或整式.【解答】解:(1)原式=+==;(2)原式=××(﹣)=×(﹣)=﹣.30.解分式方程:(1)(2)﹣=1.【考点】解分式方程.【分析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:1=4﹣x﹣2x+6,解得:x=3,经检验x=3是增根,分式方程无解;(2)去分母得:x2+5x+4﹣4=x2﹣1,解得:x=﹣,经检验x=﹣是分式方程的解.31.先化简,再求值:,其中a=﹣4.【考点】分式的化简求值.【分析】先把分式化简,再把数代入求值.【解答】解:原式==•=;当a=﹣4时,原式=3.32.在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.【考点】分式方程的应用.【分析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间﹣吉普车的时间=.【解答】解:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.答:抢修车的速度为20千米/时,吉普车的速度为30千米/时.33.如图:AC=DF,AD=BE,BC=EF.求证:BC‖EF.【考点】全等三角形的判定与性质.【分析】易证AB=ED,再有已知条件易证△ABC≌△DEF,所以可得∠ABC=∠DEF,进而可得BC‖EF.【解答】证明:∵AD=BE,∴AD+DB=BE+DB,即AB=ED,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴BC‖EF.2017年1月5日。
山东省泰安市八年级上期中数学考试卷(解析版)(初二)期中考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】下列各式从左到右的变形中,是因式分解的是().A.(a+3)(a﹣3)=﹣9B.=(a+b)(a﹣b)C.﹣4a﹣5=a(a﹣4)﹣5D.【答案】B.【解析】试题分析:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.A、是整式的乘法,不是因式分解,故本选项错误;B、符合因式分解的定义,故本选项正确;C 、右边不是积的形式,不是因式分解,故本选项错误;D、是整式的乘法,不是因式分解,故本选项错误. 故选:B.考点:因式分解的意义.【题文】无论x取什么数时,总是有意义的分式是().A. B. C. D.【答案】A.【解析】试题分析:分式总是有意义,即分母恒不为0.A、∵≠0,∴分式恒有意义.B、当2x+1=0,即x=﹣0.5时,分式无意义.C、当=0,即x=﹣1时,分式无意义.D、当=0,即x=0时,分式无意义.故选:A.考点:分式有意义的条件.【题文】若,则m的值为().A.2 B.3 C. D.【答案】C.【解析】试题分析:利用完全平方公式的结构特征判断即可确定出m的值.∵=,∴m=.故选:C.考点:配方法的应用.【题文】若已知分式的值为0,则x﹣2的值为().A.或﹣1 B.或1 C.﹣1 D.1【答案】D.【解析】试题分析:根据分式值为零的条件可得:|x﹣2|﹣1=0,且≠0,再解即可.由题意得:|x﹣2|﹣1=0,且≠0,解得:x=1.故选:D.考点:分式的值为零的条件;负整数指数幂.【题文】下列各式是完全平方式的是().A. B. C. D.【答案】A.【解析】试题分析:完全平方式有两个,是和,据此即可判断.A、是完全平方式,故本选项正确; B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误:D、不是完全平方式,故本选项错误.故选:A.考点:完全平方式.【题文】下列运动属于旋转的是().A.滚动过程中的篮球的滚动B.钟表的钟摆的摆动C.气球升空的运动D.一个图形沿某直线对折的过程【答案】B.【解析】试题分析:根据旋转变换的概念,对选项进行分析,排除错误答案.A、滚动过程中的篮球属于滚动,不是绕着某一个固定的点转动,不属旋转;B、钟表的钟摆的摆动,符合旋转变换的定义,属于旋转;C、气球升空的运动是平移,不属于旋转;D、一个图形沿某直线对折的过程是轴对称,不属于旋转.故选:B.考点:生活中的旋转现象.【题文】如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′处,那么AD′为().A. B. C. D.【答案】D.【解析】试题分析:先利用正方形的性质得到BD=,再根据旋转的性质得BD′=BD=,然后根据勾股定理计算AD′==.故选:D.考点:旋转的性质;正方形的性质.【题文】如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是().A.50° B.60° C.70° D.80°【答案】C.【解析】试题分析:根据旋转的性质可知,∠BCB′=∠ACA′=20°,又因为AC⊥A′B′,则∠BAC=∠A′=90°﹣20°=70°.故选:C.考点:旋转的性质.【题文】分式方程的解为().A.3 B.﹣3 C.无解 D.3或﹣3【答案】C.【解析】试题分析:观察可得最简公分母是(x+3)(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程得12﹣2(x+3)=x﹣3,解得:x=3.检验:把x=3代入(x+3)(x﹣3)=0,即x=3不是原分式方程的解.故原方程无解.故选:C.考点:解分式方程.【题文】如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为().A.100米 B.99米 C.98米 D.74米【答案】C.【解析】试题分析:根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,所以长AB=50米,宽BC=25米,路线为50+(25﹣1)×2=98米.故选:C.考点:生活中的平移现象.【题文】如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15° B.20° C.25° D.30°【答案】C.【解析】试题分析:先根据正方形的性质和旋转的性质得到∠AOF=90°+40°=130°,OA=OF,再根据等腰三角形的性质即可求得∠OFA=÷2=25°.考点:旋转的性质.【题文】A、B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程为().A. B.C. D.【答案】A.【解析】试题分析:根据题意可以列出相应的方程,从而可以解答本题.由题意可得,.故选:A.考点:由实际问题抽象出分式方程.【题文】在同一段路上,某人上坡速度为a,下坡速度为b,则该人来回一趟的平均速度是().l【答案】C.【解析】试题分析:先把(2﹣a)转化为(a﹣2),然后提取公因式m(a﹣2),可得(a﹣2)+m(2﹣a)= m (a﹣2)(m﹣1).故选:C.考点:因式分解——提公因式法.【题文】若关于x的方程有增根,则m的值与增根x的值分别是().A.m=﹣4,x=2 B.m=4,x=2C.m=﹣4,x=﹣2 D.m=4,x=﹣2【答案】B.【解析】试题分析:分式方程去分母转化为整式方程x+2=m,由分式方程有增根,得到最简公分母x﹣2=0,即x=2,把x=2代入整式方程得:m=4,则m的值与增根x的值分别是m=4,x=2.故选:B.考点:分式方程的增根.【题文】下列分式是最简分式的是().A. B. C. D.【答案】B.试题分析:要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.A、=,故此选项错误;B、无法化简,是最简分式,故此选项正确;C、=,故此选项错误;D、=,故此选项错误.故选:B.考点:最简分式.【题文】下列等式成立的是().A. B.C. D.【答案】C.【解析】试题分析:原式各项计算得到结果,即可做出判断.A、原式=,错误;B、原式不能约分,错误;C、原式=,正确;D、原式=,错误.故选:C.考点:分式的混合运算.【题文】某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是().A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【答案】D.【解析】试题分析:结合表格根据众数、平均数、中位数的概念求解.该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选:D.考点:众数;统计表;加权平均数;中位数.【题文】下列不是表示数据离散程度的量是().A.方差 B.极差 C.平均数 D.标准差【答案】C.【解析】试题分析:根据平均数、方差、标准差和极差的意义分析即可确定该题的答案.由于方差、极差、标准差都能反映数据的波动大小,而平均数反应数据的平均水平.故选:C.考点:统计量的选择.【题文】如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为().A.2 B.3 C.5 D.7【答案】A.【解析】试题分析:观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=5﹣3=2.故选:A.考点:平移的性质.【题文】已知=3,则的值是.【答案】7.【解析】试题分析:把已知条件两边平方,然后整理即可求解.∵=3,∴=9,∴=9﹣2=7.故答案为:7.考点:完全平方公式.【题文】已知一组数据10,9,8,x,12,y,10,7的平均数是10,又知y比x大2,则x= ,y= .【答案】11;13.【解析】试题分析:根据算术平均数的计算公式求出x+y的值,再根据y比x大2,即可求出x与y的值.∵数据10,9,8,x,12,y,10,7的平均数是10,∴(10+9+8+x+12+y+10+7)÷8=10,∴x+y=24,∵y比x大2,∴y=x+2,∴x=11,y=13.故答案为:11;13.考点:算术平均数.【题文】分解因式:=.【答案】.【解析】试题分析:先提取公因式x,再对余下的多项式利用完全平方公式继续分解.==.故答案为:.考点:提公因式法与公式法的综合运用.【题文】某蓄水池装有A,B两根进水管,每小时可分别进水a吨,b吨,若单独开放A进水管,p小时可将该水池注满.如果A,B两根水管同时开放,那么能提前小时将蓄水池注满.【答案】.【解析】试题分析:根据题意可得:.故答案为:.考点:列代数式.【题文】计算:(1);(2)先化简再求值:已知x=,求.【答案】(1);(2)化简得,代入数值得.【解析】试题分析:(1)直接将原式中分子与分母分解因式,进而化简求出答案;(2)首先进行通分,进而化简,再将已知代入化简即可.试题解析:(1)原式===;(2)原式====,∵x=,∴原式==.考点:分式的化简求值.【题文】某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20件,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?【答案】(1) 50元;(2) 900元.【解析】试题分析:(1)设这种纪念品9月份的销售单价为x元,则10月份的销售单价为0.9x元,根据题意列出方程,求出方程的解即可得到结果;(2)根据9月份的销量与成本价确定出10月份的利润即可.试题解析:(1)设这种纪念品9月份的销售单价为x元,则10月份的销售单价为0.9x元,由题意得:,解得:x=50,经检验:x=50是原方程的解,答:9月份的销售单价为50元;(2)∵9月份的销售量为2000÷50=40(件),成本价为÷40=30(元/件),∴10月份获利为:(40+20)×30=900(元).考点:分式方程的应用.【题文】如图,在平面直角坐标系中,四边形ABCD各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1),在同一方格纸中,(1)将四边形ABCD向左平移4个单位长度,画出平移后的四边形,并写出各点的坐标;(2)将四边形ABCD绕原点O旋转180°,画出旋转后的图形四边形,并写出各点的坐标.【答案】(1)图形详见解析;(0,4),(﹣3,3),(﹣1,3),(﹣1,1);(2)图形详见解析;(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1).【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案.试题解析:(1)如图所示:四边形,即为所求,(0,4),(﹣3,3),(﹣1,3),(﹣1,1);(2)如图所示:四边形,即为所求,(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1).考点:作图-旋转变换;作图-平移变换.【题文】如图,已知△ABC,以BC为边向外作△BCD并连接AD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且点A,C,E在一条直线上,若AB=3,AC=2,求∠BAD的度数与AD的长?【答案】60°;5.【解析】试题分析:根据旋转的性质得∠ADE=60°,DA=DE,∠BAD=∠E=60°,则可判断△ADE为等边三角形,所以∠E=60°,AD=AE,于是得到∠BAD=60°,再利用点A、C、E在一条直线上得到AE=AC+CE,再根据△ABD绕着点D按顺时针方向旋转60°后得到△ECD得到CE=AB,所以AE=AC+AB=5,进而得到AD的长.试题解析:∵点A、C、E在一条直线上,而△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴∠ADE=60°,DA=DE,∠BAD=∠E=60°,∴△ADE为等边三角形,∴∠E=60°,AD=AE,∴∠BAD=60°,∵点A、C、E在一条直线上,∴AE=AC+CE,∵△ABD绕着点D按顺时针方向旋转60°后得到△ECD,∴CE=AB,∴AE=AC+AB=2+3=5,∴AD=AE=5.考点:旋转的性质.【题文】在烟台市举办的“读好书、讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所卷图书的中位数和众数分别是多少?【答案】(1)50;(2)补全条形统计图详见解析;(3)3;2.【解析】试题分析:(1)根据捐2本的人数是15人,占30%,即可求得总人数;(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;(3)根据中位数和众数的定义解答.试题解析:(1)因为捐2本的人数是15人,占30%,所以该班人数为15÷30%=50,答:该班有学生50人;(2)根据题意知,捐4本的人数为:50﹣(10+15+7+5)=13.如图所示:(3)七(1)班所捐图书的中位数是3,众数是2.考点:条形统计图;扇形统计图;中位数;众数.。
八年级(上)期中数学试卷一、选择题(本大题共12小题,共36.0分)1.用长为4cm,5cm,6cm的三条线段围成一个三角形,该事件是()A. 随机事件B. 必然事件C. 不可能事件D. 无法确定2.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A. 15B. 310C. 13D.123.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A. 10,12B. 12,11C. 11,12D. 12,124.下列从左到右的变形,属于因式分解的是()A. (x+3)(x−2)=x2+x−6B. ax−ay−1=a(x−y)−1C. 8a2b3=2a2⋅4b3D. x2−4=(x+2)(x−2)5.如果4x2-12x+m2是一个完全平方式,则m的值是()A. 3B. −3C. ±3D. 96.不论a,b为何有理数,a2+b2-2a-4b+c的值总是非负数,则c的最小值是()A. 4B. 5C. 6D. 无法确定7.要使分式5xx+2有意义,则x的取值满足的条件是()A. x=−2B. x≠−2C. x=0D. x≠08.如图,在数轴上表示关于x的不等式组的解集是()A. x≥−1B. −1≤x≤2C. −1≤x<2D. x<29.在解分式方程3x−1+x+21−x=2时,去分母后变形正确的是()A. 3−(x+2)=2(x−1)B. 3−x+2=2(x−1)C. 3−(x+2)=2D. 3+(x+2)=2(x−1)10.若a<b,则下列结论不一定成立的是()A. a−1<b−1B. 2a<2bC. −a3>−b3D. a2<b211.已知关于x的不等式3x-m+1>0的最小整数解为2,则实数m的取值范围是()A. 4≤m<7B. 4<m<7C. 4≤m≤7D. 4<m≤712.若关于x的不等式组x<3a+2x>a−4无解,则a的取值范围是()A. a≤−3B. a<−3C. a>3D. a≥3二、填空题(本大题共6小题,共18.0分)13.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是______.14.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是______.15.若分式x2−1x+1的值为0,则x=______.16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为______.17.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax+b≥kx的解集为______.18.已知点P(1-a,2a+6)在第四象限,则a的取值范围是______.三、计算题(本大题共2小题,共20.0分)19.先化简,再求值(1)(xx2+x-1)÷x2−1x2+2x+1,其中x的值从不等式x≥−1x−12<1的正整数解中选取.(2)a−33a2−6a÷(a+2-5a−2),其中a2+3a-1=0.20.解分式方程(1)1x+2-3xx2−4=0(2)x−1x−2+2=32−x四、解答题(本大题共5小题,共46.0分)21.把下列各式分解因式:(1)2a(x-y)-6b(y-x)(2)(a2-2a+1)-b(a-1)(3)2x(y-x)+(x+y)(x-y)22.(1)解不等式,并将其解集分别表示在数轴上.10-4(x-3)≤2(x-1);(2)解不等式组x−32(2x−1)≤4①1+3x2>2x−1②,并写出x的所有整数解.23.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.24.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?25.阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a的值.解:设另一个因式是(2x+b),根据题意,得2x2+x+a=(x+2)(2x+b).展开,得2x2+x+a=2x2+(b+4)x+2b.所以,b+4=1a=2b,解得a=−6b=−3所以,另一个因式是(2x-3),a的值是-6.请你仿照以上做法解答下题:已知二次三项式3x2+10x+m有一个因式是(x+4),求另一个因式以及m的值.答案和解析1.【答案】B【解析】解:用长为4cm,5cm,6cm的三条线段一定能围成一个三角形,则该事件是必然事件.故选:B.随机事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,依据定义即可解决.本题主要考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【答案】D【解析】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故选:D.两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.此题主要考查几何概率的意义:一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.3.【答案】C【解析】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选:C.先把原数据按由小到大排列,然后根据中位数和众数的定义求解.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.4.【答案】D【解析】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2-4=(x+2)(x-2),正确.故选:D.根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.这类问题的关键在于能否正确应用分解因式的定义来判断.5.【答案】C【解析】解:由题意可知:(2x-3)2=4x2-12x+9,∴m2=9,∴m=±3故选:C.根据完全平方公式即可求出答案.本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.6.【答案】B【解析】解:∵a2+b2-2a-4b+c=(a-1)2-1+(b-2)2-4+c=(a-1)2+(b-2)2+c-5≥0,∴c的最小值是5;故选:B.先把给出的式子通过完全平方公式化成(a-1)2-1+(b-2)2-4+c≥,再根据非负数的性质,即可求出c的最小值.此题考查了因式分解的应用,用到的知识点是完全平方式和非负数的性质,解题的关键要利用完全平方式的非负性来判断,并通过添项凑完全平方式.7.【答案】B【解析】解:根据题意得,x+2≠0,解得x≠-2.故选:B.根据分式有意义,分母不等于0列式计算即可得解.本题考查了分式有意义的条件,分式有意义的条件是分母不等于零.8.【答案】C【解析】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从3出发向左画出的折线且表示2的点是空心圆,表示x<2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:-1≤x<2.故选:C.数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.两个不等式的公共部分就是不等式组的解集.此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.【答案】A【解析】解:两边都乘以x-1,得:3-(x+2)=2(x-1),故选:A.分式方程去分母转化为整式方程,即可作出判断.此题考查了解分式方程,熟练掌握运算法则是解本题的关键.10.【答案】D【解析】解:A、在不等式a<b的两边同时减去1,不等式仍成立,即a-1<b-1,故本选项错误;B、在不等式a<b的两边同时乘以2,不等式仍成立,即2a<2b,故本选项错误;C、在不等式a<b的两边同时乘以-,不等号的方向改变,即->-,故本选项错误;D、当a=-5,b=1时,不等式a2<b2不成立,故本选项正确;故选:D.由不等式的性质进行计算并作出正确的判断.考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.11.【答案】A【解析】解:解不等式3x-m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.12.【答案】A【解析】解:∵不等式组无解,∴a-4≥3a+2,解得:a≤-3,故选:A.利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.13.【答案】14【解析】解:∵在一个不透明的口袋中装有3个红球、1个白球,共4个球,∴任意摸出1个球,摸到白球的概率是,故答案为:.先求出袋子中球的总个数及白球的个数,再根据概率公式解答即可.本题考查的是可能性的大小,即随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=.14.【答案】2.8【解析】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10-8)2+(8-8)2+(9-8)2+(8-8)2+(5-8)2]==2.8.故答案为:2.8.根据众数的概念,确定x的值,再求该组数据的方差.本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.15.【答案】1【解析】解:分式的值为0,得x2-1=0且x+1≠0.解得x=1,故答案为:1.分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.16.【答案】12【解析】解:∵a+b=4,a-b=1,∴(a+1)2-(b-1)2=(a+1+b-1)(a+1-b+1)=(a+b)(a-b+2)=4×(1+2)=12.故答案是:12.对所求代数式运用平方差公式进行因式分解,然后整体代入求值.本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构即可解答.17.【答案】x≥-1【解析】解:从图象可看出当x≥-1,直线l2的图象在直线l1的上方,不等式ax+b>kx.故答案为:x≥-1.当x≥-1时,y=kx的函数图象在y=ax+b的下方,从而可得到不等式的解集.本题考查一次函数与一元一次不等式的关系,通过图象求解,当图象在上方时大于,在下方时小于.18.【答案】a<-3【解析】解:∵点P(1-a,2a+6)在第四象限,∴,解得a<-3.故答案为a<-3.根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】解:(1)原式=−x2x(x+1)•(x+1)2(x+1)(x−1)=-xx−1,由不等式组x≥−1x−12<1,解得:-1≤x<3,整数解为-1,0,1,2,当x=-1,0,1时,原式没有意义,舍去;当x=2时,原式=-22−1=-2;(2)原式=a−33a(a−2)÷a2−4−5a−2=a−33a(a−2)•a−2(a+3)(a−3)=13a(a+3),由a2+3a-1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式组的整数解确定出x的值,代入计算即可求出值;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)去分母得:x-2-3x=0,解得:x=-1,经检验x=-1是分式方程的解,所以原分式方程的解为x=-1;(2)原方程可变为:x−1x−2+2=−3x−2去分母得,x-1+2(x-2)=-3,整理,得3x-5=-3,解得:x=23,检验:把x=23代入x-2≠0,所以x=23是原方程的解.【解析】(1)去分母转化为整式方程,求出整式方程的解并检验即可;(2)先利用分式的基本性质,把分母统一为x-2或2-x,再转化为整式方程求解.此题考查了解分式方程的解法,利用了转化的思想,解分式方程要注意检验.21.【答案】解:(1)2a(x-y)-6b(y-x)=2(x-y)(a+3b);(2)(a2-2a+1)-b(a-1)=(a-1)(a-b-1);(3)2x(y-x)+(x+y)(x-y)=(y-x)(2x-x-y)=-(x-y)2.【解析】根据分解因式的方法-提公因式法分解因式即可.本题考查了因式分解-提公因式法,熟练掌握分解因式的方法是解题的关键.22.【答案】解:(1)10-4(x-3)≤2(x-1)10-4x+12≤2x-2,-6x≤-24,x≥4.解集在数轴上如图所示:.(2)x−32(2x−1)≤4①1+3x2>2x−1②,解不等式①,得:x≥-54,解不等式②,得:x<3,则不等式组的解集为-54≤x<3,∴不等式组的整数解为:-1、0、1、2.【解析】(1)去括号,移项,合并同类项,化系数为1即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可.本题考查不等式组的解法,数轴等知识,解题的关键是熟练掌握不等式组的解法,属于中考常考题型.23.【答案】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8-5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.8ax-4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.【解析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.24.【答案】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有480x+10=360x,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1-10%)(50-y)+40y≤1500,解得y≤11713,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.【解析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.考查了分式方程的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键25.【答案】解:设另一个因式是(3x+b),根据题意,得3x2+10x+m=(x+4)(3x+b).展开,得3x2+10x+m=3x2+(b+12)x+4b.所以,b+12=10m=4b,解得:b=−2m=−8,所以,另一个因式是(3x-2),m的值是-8.【解析】直接利用已知例题进而假设出另一个因式是(3x+b),求出答案即可.此题主要考查了因式分解的意义,正确假设出另一个因式是解题关键.。
山东省泰安市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)下列说法错误的是().A .B .C . 2的平方根是D .2. (1分)下列各数中,大小在﹣1和﹣2之间的数是()A . ﹣3B . ﹣C . 0D . |﹣3|3. (1分) (2016八上·仙游期末) 若是一个完全平方式,则=().A . 8B . 8或-8C . 4D . 4或-44. (1分)分解因式-4x2y+2xy2-xy的结果是()A . -4(x2+2xy2-xy)B . -xy(-4x+2y-1)C . -xy(4x-2y+1)D . -xy(4x-2y)5. (1分) (2017七下·温州期中) 下列整式乘法运算中,正确的是()A .B .C .D .6. (1分) (2015八上·海淀期末) 如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A . 2B . 3C . 4D . 57. (1分)若多项式x2+3x=3,则多项式3x2+9x-4的值为()A . 3B . 4C . 5D . 68. (1分)已知a= m﹣1,b=m2﹣ m(m为任意实数),则a与b的大小关系为()A . a>bB . a<bC . a=bD . 不能确定9. (1分) (2018八上·营口期末) 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A .B .C .D .10. (1分)下列结论错误的是()A . 成轴对称的图形全等B . 两边对应相等的直角三角形不一定全等C . 一边和一锐角对应相等的两直角三角形全等D . 两直线被第三条直线所截,同位角相等二、填空题 (共6题;共6分)11. (1分)(2016·河南) 计算:(﹣2)0﹣ =________.12. (1分)计算:=________.13. (1分)(2011·杭州) 当x=﹣7时,代数式(2x+5)(x+1)﹣(x﹣3)(x+1)的值为________.14. (1分)(2016·龙岩) 因式分解:a2﹣6a+9=________15. (1分) (2019九上·南岗期末) 如图,正方形中,点分别在边和上,连接点分别在边上,连接 ,若 ,则________.16. (1分)(2013·南宁) 分解因式:x2﹣25=________.三、解答题 (共7题;共10分)17. (1分)(2017·临沂) 计算:|1﹣|+2cos45°﹣ +()﹣1 .18. (1分)先去括号,再合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)19. (1分) (2019八上·洛宁期中) 先化简,再求值:,其中x=2,y=-1.20. (2分) (2020八上·襄城期末) 因式分解(1)(2)(3)(4)21. (1分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(3,4),请在所给网格上按要求画整点四边形.(1)在图1中画一个四边形OABP,使得点P的横、纵坐标之和等于5.(2)在图2中画一个四边形OABQ,使得点Q的横、纵坐标的平方和等于20.22. (3分) (2020九下·信阳月考) 在中,,以直角边为直径作,交于点,为的中点,连接、 .(1)求证:为切线.(2)若,填空:①当 ________时,四边形为正方形;②当 ________时,为等边三角形.23. (1分) (2017八上·双城月考) 在△ABO中,AO=BO,直线MN经过点O, 且AC⊥MN 于C,BD⊥MN于D(1)当直线MN绕点O旋转到图①的位置时,求证:CD=AC+BD;(2)当直线MN绕点O旋转到图②的位置时,求证:CD=AC-BD;(3)当直线MN绕点O旋转到图③的位置时,试问:CD、AC、BD有怎样的等量关系?请写出这个等量关系,并加以证明。
山东省泰安市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019八上·乐亭期中) 若一个物体的质量为1.0549kg,则用四舍五入法将1.0549精确到0.01的近似值为()A . 1B .C .D .3. (2分) (2016九上·腾冲期中) 分式方程 = 的解为()A . x=﹣1B . x=2C . x=4D . x=34. (2分) (2017八下·盐都期中) 下列等式成立的是()A . + =B . =C . =D . =﹣5. (2分) (2019七下·兴化月考) 如果,,那么a、b、c的大小关系为()A . b>c>aB . c>a>bC . c>b>aD . a>c>b6. (2分)(2017·云南) 下列说法正确的是()A . 要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B . 4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C . 甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D . 某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖7. (2分)下列说法:①全等三角形的形状相同,大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长,面积分别相等;⑤所有的等边三角形都是全等三角形.其中正确的说法有()A . 5个B . 4个C . 3个D . 1个8. (2分) (2017八下·罗山期中) 已知△ABC的三边分别为a.b、c,则下列条件中不能判定△ABC是直角三角形的是()A . b2=a2﹣c2B .C . ∠C=∠A﹣∠BD . ∠A:∠B:∠C=3:4:59. (2分)绵阳到某地相距n千米,提速前火车从绵阳到某地要t小时,提速后行车时间减少了0.5小时,提速后火车的速度比原来速度快了()A .B .C . -D . -10. (2分)下列图形中,阴影部分的面积为2的有()个A . 4个B . 3个C . 2个D . 1个11. (2分)已知下列命题:①若a>0,b>0,则a+b>0;②正方形的对角线互相垂直平分;③直角三角形斜边上的中线等于斜边的一半;④菱形的四条边相等.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个12. (2分)如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数是()A . 80°B . 100°C . 60°D . 45° .二、填空题 (共6题;共6分)13. (1分)(2017·平谷模拟) 如果分式的值为0,那么x的值是________.14. (1分)(2017·江西模拟) 计算 +()﹣2﹣ +| ﹣2|+3tan30°﹣2(π﹣)0=________.15. (1分)(2019·苏州模拟) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD 边上一动点,将四边形APQD沿直线PQ折叠,A的对应点为A′,则CA′的长度最小值为________.16. (1分) (2017七下·莒县期末) 如图,OP平分∠AOB,∠BCP=40°,CP∥OA,PD⊥OA于点D,则∠OPD=________°.17. (1分) (2016九上·武胜期中) 等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为________.18. (1分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________ .三、解答题 (共8题;共60分)19. (10分)(2016·徐州) 计算:(1)(﹣1)2016+x0﹣ +(2)÷ .20. (10分)(2013·镇江)(1)解方程:(2)解不等式组:.21. (5分)已知﹣ =3,求.22. (5分) (2015九上·柘城期末) 解方程:.23. (5分)如图,在▱ABCD中,AE⊥B C,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.24. (5分)如图,CD是线段AB的垂直平分线,则∠CAD=∠CBD.请说明理由.25. (5分)(2017·丹东模拟) “母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?26. (15分) (2019八上·慈溪期末) 如图,已知直线交x轴于A,交y轴于B,过B作,且,点C在第四象限,点 .(1)求点A,B,C的坐标;(2)点M是直线AB上一动点,当最小时,求点M的坐标;(3)点P、Q分别在直线AB和BC上,是以RQ为斜边的等腰直角三角形直接写出点P的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共60分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、25-1、26-1、26-2、26-3、。
2016-2017学年山东省泰安市泰山区八年级(上)期中数学试卷(五四学制)一、选择题(本大题共14个小题,每小题3分,共42分.每小题给出的四个答案中,只有一项是正确的.)1.(3分)下列等式从左到右的变形中,属于因式分解的是()A.a(b﹣5)=ab﹣5a B.a2﹣4a+4=a(a﹣4)+4C.x2﹣81y2=(x+9y)(x﹣9y)D.(3x﹣2)(2x+1)=6x2﹣x﹣22.(3分)下列分式中,属于最简分式的是()A .B .C .D .3.(3分)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元 C.6.5元D.7元4.(3分)多项式m2﹣4n2与m2﹣4mn+4n2的公因式是()A.(m+2n)(m﹣2n)B.m+2n C .m﹣2n D.(m+2n)(m﹣2n)2 5.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁6.(3分)若分式的值为0,则()A.x=2 B.x=±2 C.x=﹣2 D.x=07.(3分)下列因式分解正确的是()A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣4y2=(x+4y)(x﹣4y)C.x2﹣x+=(x﹣)2D.2xy﹣x2﹣y2=﹣(x+y)28.(3分)下列多项式:①x2+y2;②x2﹣1;③x3+4x﹣4;④x2﹣10x+25,其中能直接用公式法因式分解的有()A.1个 B.2个 C.3个 D.4个9.(3分)八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:某同学分析后得到如下结论:①一班与二班学生平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是()A.①②B.①③C.①②③D.②③10.(3分)化简÷(1+)的结果是()A. B. C.D.11.(3分)若把分式中的x和y都变为原来的3倍,那么分式的值变为原来的()A.倍 B.3倍 C.不变D.倍12.(3分)满足方程的x的值是()A.x=2 B.x=﹣2 C.x=0 D.无解13.(3分)若a+b+1=0,则3a2+3b2+6ab的值是()A.3 B.﹣3 C.1 D.﹣114.(3分)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.只要求填写最后结果)15.(3分)因式分解:m2+4m+4=.16.(3分)分式与的最简公分母是.17.(3分)某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是元.18.(3分)一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的平均数为3,则x的值是.19.(3分)若4x2+mx+9是一个完全平方式,则实数m的值是.20.(3分)若分式方程﹣=有增根,则m的值是.21.(3分)已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于.22.(3分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,问:江水的流速为多少?设江水的流速为x千米/时,则可列方程为.三、解答题(本大题共6小题,共54分.写出必要的文字说明、证明过程或推演步骤)23.(8分)因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.24.(12分)计算(1)÷;(2)++;(3)+﹣.25.(5分)先化简,再求值:,其中a=﹣1.26.(10分)解方程(1);(2).27.(9分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?28.(10分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?2016-2017学年山东省泰安市泰山区八年级(上)期中数学试卷(五四学制)参考答案与试题解析一、选择题(本大题共14个小题,每小题3分,共42分.每小题给出的四个答案中,只有一项是正确的.)1.(3分)下列等式从左到右的变形中,属于因式分解的是()A.a(b﹣5)=ab﹣5a B.a2﹣4a+4=a(a﹣4)+4C.x2﹣81y2=(x+9y)(x﹣9y)D.(3x﹣2)(2x+1)=6x2﹣x﹣2【解答】解:根据因式分解的概念可知:x2﹣81y2=(x+9y)(x﹣9y),故选:C.2.(3分)下列分式中,属于最简分式的是()A .B .C .D .【解答】解:A 、=,故A选项错误.B 、是最简分式,不能化简,故B选项,C 、=,能进行化简,故C选项错误.D 、=﹣1,故D选项错误.故选:B.3.(3分)在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元 C.6.5元D.7元【解答】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元);故选:C.4.(3分)多项式m2﹣4n2与m2﹣4mn+4n2的公因式是()A.(m+2n)(m﹣2n)B.m+2n C.m﹣2n D.(m+2n)(m﹣2n)2【解答】解:m2﹣4n2=(m﹣2n)(m+2n),m2﹣4mn+4n2=(m﹣2n)2,∴m2﹣4n2与m2﹣4mn+4n2的公因式是m﹣2n.故选:C.5.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选:D.6.(3分)若分式的值为0,则()A.x=2 B.x=±2 C.x=﹣2 D.x=0【解答】解:由题意得:x2﹣4=0,且x+2≠0,解得:x=2,故选:A.7.(3分)下列因式分解正确的是()A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣4y2=(x+4y)(x﹣4y)C.x2﹣x+=(x﹣)2D.2xy﹣x2﹣y2=﹣(x+y)2【解答】解:A、4a2﹣4a+1=4a(a﹣1)+1,不是因式分解,故此选项错误;B、x2﹣4y2=(x+2y)(x﹣2y),故此选项错误;C、x2﹣x+=(x﹣)2,正确;D、2xy﹣x2﹣y2=﹣(x﹣y)2,故此选项错误;故选:C.8.(3分)下列多项式:①x2+y2;②x2﹣1;③x3+4x﹣4;④x2﹣10x+25,其中能直接用公式法因式分解的有()A.1个 B.2个 C.3个 D.4个【解答】解:①x2+y2,无法因式分解,②x2﹣1=(x+1)(x﹣1),故此选项正确;③x3+4x﹣4,无法因式分解;④x2﹣10x+25=(x﹣5)2,故此选项正确;故选:B.9.(3分)八年级一班与二班的同学在一次数学测验中的成绩统计情况如下表:某同学分析后得到如下结论:①一班与二班学生平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是()A.①②B.①③C.①②③D.②③【解答】解:从表中可知,平均字数都是80,故①正确;一班的中位数是84,二班的中位数是85,比一班的多,而平均数都要为80,说明二班的优秀人数多于一班的,故②正确;一班的方差大于二班的,又说明一班的波动情况大,所以③错误.故选:A.10.(3分)化简÷(1+)的结果是()A. B. C.D.【解答】解:原式=÷=•=.故选:A.11.(3分)若把分式中的x和y都变为原来的3倍,那么分式的值变为原来的()A.倍 B.3倍 C.不变D.倍【解答】解:==•,故选:A.12.(3分)满足方程的x的值是()A.x=2 B.x=﹣2 C.x=0 D.无解【解答】解:去分母得:1+3x﹣6=x﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选:D.13.(3分)若a+b+1=0,则3a2+3b2+6ab的值是()A.3 B.﹣3 C.1 D.﹣1【解答】解:由a+b+1=0得:a+b=﹣13a2+3b2+6ab=3(a2+b2+2ab)=3(a+b)2=3×(﹣1)2=3,故选:A.14.(3分)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.【解答】解:原计划植树用的时间应该表示为,而实际用的时间为.那么方程可表示为.故选:A.二、填空题(本大题共8小题,每小题3分,共24分.只要求填写最后结果)15.(3分)因式分解:m2+4m+4=(m+2)2.【解答】解:原式=(m+2)2.故答案为:(m+2)2.16.(3分)分式与的最简公分母是x(x+3)(x﹣3).【解答】解:∵=,=,∴分式与的最简公分母是x(x+3)(x﹣3).故答案为:x(x+3)(x﹣3).17.(3分)某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是15元.【解答】解:∵捐款的总人数为8+10+12+6+4=40人,第20个与第21个数据都是15元,∴中位数是15元.故答案为:15.18.(3分)一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的平均数为3,则x的值是3.【解答】解:根据题意可得=3,解得:x=3,故答案为:3.19.(3分)若4x2+mx+9是一个完全平方式,则实数m的值是±12.【解答】解:∵4x2+mx+9=(2x)2+mx+32,∴mx=±2×2x×3,解得m=±12.故答案为:±12.20.(3分)若分式方程﹣=有增根,则m的值是4或﹣8.【解答】解:去分母得,m﹣2(x﹣2)=x+2,∵方程﹣=有增根,∴x=±2,当x=2时,m=4;当x=﹣2时,m=﹣8;故答案为4或﹣8.21.(3分)已知a2﹣3ab+b2=0(a≠0,b≠0),则代数式+的值等于3.【解答】解:∵a2﹣3ab+b2=0(a≠0,b≠0),∴a2+b2=3ab,∴+===3.故答案为:3.22.(3分)一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用的时间与以最大航速逆流航行60千米所用的时间相等,问:江水的流速为多少?设江水的流速为x千米/时,则可列方程为=.【解答】解:设江水的流速为x千米/时,可得:=,故答案为:=.三、解答题(本大题共6小题,共54分.写出必要的文字说明、证明过程或推演步骤)23.(8分)因式分解(1)4m(a﹣b)﹣6n(b﹣a);(2)16(m﹣n)2﹣9(m+n)2.【解答】解:(1)原式=4m(a﹣b)+6n(a﹣b)=2(a﹣b)(2m+3n);(2)原式=[4(m﹣n)+3(m+n)][4(m﹣n)﹣3(m+n)]=(7m﹣n)(m﹣7n).24.(12分)计算(1)÷;(2)++;(3)+﹣.【解答】解:(1)原式==;(2)原式=+﹣====;(3)原式=+﹣=+﹣==.25.(5分)先化简,再求值:,其中a=﹣1.【解答】解:原式=•=2(a+4)=2a+8,当a=﹣1时,原式=2×(﹣1)+8=6.26.(10分)解方程(1);(2).【解答】解:(1)去分母得:2(2x﹣1)=3(x﹣3),去括号得:4x﹣2=3x﹣9,移项合并得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x﹣1+2x+2=4,移项合并得:3x=3,解得:x=1,经检验x=1是增根,分式方程无解.27.(9分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在B组,中位数在C组;(2)样本中,女生身高在E组的人数有2人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?【解答】解:∵B组人数最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组,故答案为:B、C;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人,故答案为:2;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.28.(10分)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?【解答】解:(1)设第一批购进书包的单价是x元.则:×3=.解得:x=80.经检验:x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120﹣80)+×(120﹣84)=3700(元).答:商店共盈利3700元.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B在x轴正半轴上,点A(4,4)、C(1,-1),且AB=BC,AB⊥BC,求点B的坐标;xyBCAO2.如图,在直线l上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S、2S、3S、4S,则14S S+=.ls4s3s2s13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.B4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。