纳米材料复习资料
- 格式:docx
- 大小:110.63 KB
- 文档页数:7
1.纳米材料的表面效应:纳米材料微粒的表面原子数与总原子数之比随着纳米微粒尺寸的减小而大幅度增加,粒子表面结合能随之增加,从而引起纳米微粒性质变化的现象。
2.纳米材料的光致发光:指在一定波长光照射下被激发到高能级激发态的电子重新跃回到低能级被空穴俘获而发射出光子的现象。
3.纳米产品的制造方式:(1)“自上而下”(top down) :是指通过微加工或固态技术, 不断在尺寸上将人类创造的功能产品微型化。
如:切割、研磨、蚀刻、光刻印刷等。
(2)“自下而上”(bottom up) :是指以原子分子为基本单元, 根据人们的意愿进行设计和组装, 从而构筑成具有特定功能的产品,这种技术路线将减少对原材料的需求, 降低环境污染。
如化学合成、自组装、定位组装等。
4.纳米材料的光催化性质:就是光触媒在外界可见光的作用下发生催化作用。
光催化一般是多种相态之间的催化反应。
光触媒在光照条件(可以是不同波长的光照)下所起到催化作用的化学反应,统称为光反应。
5.(1)物理气相沉积:在低压的惰性气体中加热可蒸发的物质,使之气化,再在惰性气氛中冷凝成纳米粒子。
(2)化学气相沉积:是指在远高于临界反应温度的条件下,通过化学反应,使反应产物蒸气形成很高的过饱和蒸气压,自动凝聚形成大量的晶核,这些晶核不断长大,聚集成颗粒,随着气流进入低温区,最终在收集室内得到纳米粉体。
1纳米微粒的蓝移和红移现象:A 蓝移(1)由于纳米粒子的量子尺寸效应导致纳米微粒的光谱峰值向短波方向移动的现象例如:纳米SiC颗粒和大块固体的峰值红外吸收频率分别是814 cm-1和794 cm-1。
蓝移了20 cm-1。
纳米Si3N4颗粒和大块固体的峰值红外吸收频率分别是949 cm-1和935 cm-1,蓝移了14 cm-1。
(2)纳米微粒吸收带“蓝移”的解释:量子尺寸效应由于颗粒尺寸下降能隙变宽,这就导致光吸收带移向短波方向。
Ball等对这种蓝移现象给出了普适性的解释:已被电子占据分子轨道能级与未被占据分子轨道能级之间的宽度(能隙)随颗粒直径减小而增大,这是产生蓝移的根本原因,这种解释对半导体和绝缘体都适用。
《纳米材料导论》复习题2013.12第一章1、纳米材料有哪些危害性?答:纳米技术对生物的危害性:1)在常态下对动植物体友好的金,在纳米态下则有剧毒;2)小于100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存;3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。
纳米技术对环境的危害性:美国研究人员证明,足球烯分子会限制土壤细菌的生长,而巴基球则对鱼类有毒,这说明纳米技术对生态平衡和生态安全都有一定的破坏性。
2、什么是纳米材料、纳米结构?答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1纳米~100纳米范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
纳米材料有两层含义:其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。
纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。
3、什么是纳米科技?答:纳米科技是研究在千万分之一米(10-7)到十亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。
4、什么是纳米技术的科学意义?答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望。
一纳米材料的概念1、纳米材料广义:在一维、二维、三维的空间中始终处于1〜lOOnm范围的晶体或非晶体物质。
其性质完全不同于常规材料,而具有特殊性。
狭义:具有纳米结构的材料。
纳米材料与传统材料的主要差别:尺寸差异性能差异强度、韧性、比热、导电率、扩散率等完全不同于或大大优于常规的体相材料。
2、纳米尺度临界尺寸:当颗粒的大小减小到某一尺寸时,材料的性能突变,与同样组分构成的常规材料性质不同,这个尺寸就是临界尺寸。
同一种纳米材料具有的不同性质所发生突变的临界尺寸不同;而同一种性能的不同纳米材料其临界尺寸也有很大差异。
3、纳米结构基本单元构成纳米结构块体、薄膜、多层膜以及纳米结构材料的基本单元有:团簇,纳米微粒、纳米管、纳米棒、纳米线、纳米纤维、纳米带、纳米环、纳米螺旋和同轴纳米电缆等。
它们至少一维尺寸非常小。
①团簇原子团簇是指几个至几百个原子的聚集体(粒径小于或等于lnm)o如Fen,Cu n S m, C n H m(n 和m都是整数)和碳簇(富勒烯C6o,C70等)等。
它介于单个原子与固体之间。
形状多样化:线状、层状、管状、洋葱状、骨架状、球状等。
原子团簇分类:A 一元原子团簇,如:Nan, Nin,C60, C70B 二元团簇,如:lnnPm,AgnSmC多元团簇,如:Vn(C6H6)mD原子簇化合物,是原子团簇与其它分子以配位键结合形成的化合(例如,某些含Fe-S团簇的蛋白质分子)。
②纳米微粒纳米微粒是指颗粒尺寸为纳米量级的超细微粒,它的尺度大于原子簇,小于通常的微粉。
尺寸一般在1〜lOOnm之间,纳米颗粒所含原子数范围在103-107个,也称它为超微粒子。
上田良二给纳米颗粒的定义是:用电子显微镜才能看到的颗粒称为纳米微粒。
通常,分散性好的纳米粒子在良溶剂中不会沉淀,而且有透光性。
③纳米棒、纳米带和纳米线纳米棒:长径比(长度与直径的比率),J、,截面为圆形。
一般小于20。
纳米线:长径比大,截面为圆形。
一、1、纳米科技:研究由尺寸在0.1—100nm之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
2、纳米固体材料:又可称为纳米结构材料或纳米材料,它是由颗粒或晶粒尺寸为1~100nm的粒子凝聚而成的三维块体。
3、量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象,以及纳米半导体微粒存在比连续的最高被占据分子轨道和最低未被占据的分子轨道能级,这些能隙变宽现象。
4、表面效应:表面原子的活性不但引起纳米粒子表面原子的变化,同时也引起表面电子自旋构象和电子能谱的变化。
5、宏观量子隧道效应:某些宏观量如颗粒的磁化强度,量子相干器件中的磁通量等具有贯穿势垒的能力,称为宏观量子隧道效应。
6、纳米材料(广义):晶粒或晶界等显微构造能达到纳米尺寸水平的材料。
7、原子团簇:由多个原子组成的小粒子。
它们比无机分子大,但比具有平移对称性的块体材料小,它们的原子结构(键长、键角和对称性等)和电子结构不同于分子,也不同于块体。
8、Kubo理论:颗粒尺寸进入纳米级时,靠近费米面附近的能级由原来的准连续变为离散能级。
9、小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。
10、纳米结构材料:由颗粒或晶粒尺寸为1~100nm的粒子形成的三维块体称为纳米固体(结构)材料。
其晶粒尺寸、晶界宽度、析出相分布、气孔尺寸和缺陷尺寸都在纳米数量级。
二、简答题1、冷冻干燥法制备纳米颗粒的基本原理。
先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,再通过热处理得到所需的物质。
2、气相合成法制备纳米颗粒的主要过程有哪些?利用两种以上物质之间的气相化学反应,在高温下合成出相应的化合物,再经过快速冷凝,从而制备各类物质的纳米粒子。
纳米材料复习题1、简单论述纳米材料的定义与分类。
2、什么是原子团簇? 谈谈它的分类。
3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径?4、论述碳纳米管的生长机理(图)。
答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。
(1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。
根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。
①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移;②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端;(2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。
①表面扩散机理:用苯环坐原料来生长碳纳米管,如果苯环进入催化剂内部,会被分解而产生碳氢化合物和氢气同时副产物的检测结果为只有氢气而没有碳氢化化物。
说明苯环没有进入催化剂液滴内部,而只是在催化剂表面脱氢生长,也符合“帽式”生长机理。
5、论述气相和溶液法生长纳米线的生长机理。
(1)气相法反应机理包括:V-L-S机理、V-S机理、碳纳米管模板法、金属原位生长。
①V-L-S机理:反应物在高温下蒸发,在温度降低时与催化剂形成低共熔液滴,小液滴相互聚合形成大液滴,并且共熔体液滴在端部不断吸收粒子和小的液滴,最后由于微粒的过饱和而凝固形成纳米线。
②V-S机理:首先沉底经过处理,在其表面形成许多纳米尺度的凹坑蚀丘,这些凹坑蚀丘为纳米丝提供了成核位置,并且它的尺寸限定了纳米丝的临界成核直径,从而使生长的丝为纳米级。
名词解释:1、纳米:纳米是长度单位,10-9米,10埃。
2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。
3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。
4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。
5、布朗运动:悬浮微粒不停地做无规则运动的现象.6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应.7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。
8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。
9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。
10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。
11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。
HAII—Petch公式:σ--强度; H--硬度;d--晶粒尺寸;K--常数纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。
14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。
大题:纳米粒子的基本特性?(1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。
(2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。
(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性)(3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。
选修课-真空技术与纳米材料复习资料说明:.考试题型:①填空题(每空2分,共16分)②二判断题(对的在()内打错的在()内打X。
(每题2 分,共10分))③选择题(每小题3分,共24分)④综合填空题(共40分)⑤简述题:简述本次公选课你的收获和教学修改意见(不少于150字)(共10分).考试内容基本上都含在资料里,但不是直接出现,以上述形式出现。
希望同学们认真阅读,并结合实践和平时上课理解。
.切忌外传,不得带进考场!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!正文:一.纳米材料部分半导体材料:半导体材料的制备及其性质是材料科学广泛研究的,如太阳能电池利用半导体材料的内光电效应把光能转化为电能,常用于太阳能电池的半导体材料有ITO (掺锡的氧化锢In2O3+SnO2)、AZO (掺铝的氧化锌)、GaAs。
LED (发光二极管)利用半导体材料的电致发光特性把电能转化为光能。
超导材料:超导材料有两大基本物理特性:零电阻特性和完全抗磁性,零电阻特性可以解决导电材料产生的焦耳热问题,利用完全抗磁性已做出了磁悬浮列车。
超导材料的弊端就是转变温度太低,现在已基本可以实现室温超导。
压电材料:简单说就是把压力信号转换成电信号的材料,应用于各种压力传感器。
高端的扫描探针显微镜就是利用这种材料实现图像扫描的。
纳米材料按形状分可有纳米颗粒、纳米薄膜、纳米线、纳米棒、纳米管等。
最常见的就是纳米薄膜。
纳米薄膜材料的制备方法大致可分两大类:化学方法和物理方法。
这里主要介绍PVD (物理气相沉积)和CVD (化学气相沉积)PVD:一般一定要抽真空,主要方式有蒸发、磁控溅射和离子镀CVD:一般也要抽真空,主要有热丝-CVD,微波CVD, PECVD (等离子增强化学气相淀积)和MOCVD (金属有机化合物化学气相淀积)。
纳米材料性能的表征主要包括结构分析、成分分析、表面分析、界面分析、颗粒分析、光电等特性分析等。
1.简单论述纳米材料的定义与分类。
2.什么是原子团簇? 谈谈它的分类.3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径?4.论述碳纳米管的生长机理。
5.论述气相和溶液法生长纳米线的生长机理。
6.解释纳米颗粒红外吸收宽化和蓝移的原因。
7.论述光催化的基本原理以及提高光催化活性的途径。
8.什么是库仑堵塞效应以及观察到的条件?9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。
10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。
11.论述制备纳米材料的气相法和湿化学法。
1.简单论述纳米材料的定义与分类。
答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。
现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。
如果按维数,纳米材料可分为三大类:零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。
一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。
二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。
因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。
3.通过Raman光谱中如何鉴别单壁和多壁碳纳米管?如何计算单壁碳纳米管的直径?答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。
100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。
单臂管的直径d与特征拉曼峰的波数成反比,即d = 224/wd:单壁管的直径,nm;w:为特征拉曼峰的波数cm-14.论述碳纳米管的生长机理。
答:采用化学气相沉积(CVD)在衬底上控制生长多壁碳纳米管。
原理:首先,过镀金属(Fe ,Co, Ni)催化剂颗粒吸收和分解碳化合物,碳与金属形成碳-金属体,随后碳原子从过饱和的催化剂颗粒中析出,为了便于碳纳米管的合成,金属纳米催化剂通常由具有较大的表面积的材料承载。
2018年《纳米材料与技术》期末复习一、填空题(每空格0.5分,共15分)二、选择题(单项,每题1分,共15分)第一章:纳米科学技术概论一、纳米科学技术的发展历史——1、1959年12月,美国物理学家费曼在加州理工学院召开的美物理学会会议上作了一次富有想象力的演说“最底层大有发展空间”,费曼的幻想点燃纳米科技之火。
2、1981年比尼格与罗勒尔发明了看得见原子的扫描隧道显微镜(STM)。
3、1989年在美国加州的IBM实验内,依格勒博士采用低温、超高真空条件下的STM操纵着一个个氙原子,实现了人类另一个幻想——直接操纵单个原子。
4、1991年,日本的饭岛澄男教授在电弧法制备C60时,发现氩气直流电弧放电后的阴极碳棒上发现了管状结构的碳原子簇,直径约几纳米,长约几微米碳纳米管。
5、1990年在美国东海岸的巴尔的摩召开第二届国际STM会议的期间,召开了第一届国际纳米科学技术会议,该会议标志纳米科学技术的诞生。
二、纳米科学技术基本概念——纳米、纳米技术及其分支、纳米科学技术及其分支:纳米技术主要包括纳米材料的制造技术、微机械和微电机的制造技术、纳米器件的制造技术和纳米生物器件及纳米药物的制造技术。
1993年,国际纳米科技指导委员会将纳米科学技术划分为6个分支学科,分别是纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学。
纳米组装体系是以纳米颗粒或纳米丝、纳米管及纳米尺寸的孔洞为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。
根据纳米结构体系构筑过程中的驱动力是靠外因,还是靠内因来划分,大致可分为两类:一是人工纳米结构组装体系,二是纳米结构自组装体系。
第二章:纳米材料学一、纳米材料的分类:❶按功能分为半导体纳米材料、光敏型纳米材料、增强型纳米材料和磁性纳米材料;❷按属性分为金属纳米材料、氧化物纳米材料、硫化物纳米材料、碳(硅)化合物纳米材料、氮(磷)等化合物纳米材料、含氧酸盐纳米材料、复合纳米材料。
《纳米材料与技术》课程复习基本概念1.纳米科技:在纳米尺度(100纳米)上研究物质(包括原子、分子的操纵)的特性和相互作用,以与利用这些特性的多学科交叉的科学和技术。
纳米材料:三维空间中至少有一维尺寸小于100 的材料或由它们作为基本单元构成的具有特殊功能的材料。
纳米材料的类型:0维(在空间3维尺度均在纳米尺度)、1维(..2..)、2维(..3..)、3维(纳米固体,由纳米微粒组成的体相材料)、特性:粒度细、比表面积大、分布均匀、表面活性高成因:2.纳米效应:表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应溶胶:指在液体介质中分散了1~100粒子(基本单元),且在分散体系中保持固体物质不沉淀的胶体体系。
凝胶:是具有固体特征的胶体体系,被分散的物质形成连续的网状骨架,骨架空隙中充有液体或气体,凝胶中分散相的含量很低,一般在1%~3%之间。
理论:溶胶在一定条件下能否稳定存在取决于胶粒之间相互作用的位能。
微粒间总相互作用能:ΦΦA+ ΦR(ΦA微粒间的吸引能,ΦR微粒间的排斥作用能,ΦT微粒间总相互作用能)水热法:在特制的密闭反应容器里,采用水溶液作为反应介质,对反应容器加热,创造一个高温、高压的反应环境,使通常难溶或不溶的物质溶解并重结晶溶剂热:是指在密封的压力容器中,以有机溶剂为溶剂,在高温高压的条件下进行的化学反应超临界水热法:指以温度与压力都处于临界温度和临界压力之上的流体为介质进行水热合成的方法装满度:反应混合物占密闭反应釜空间的体积分数硬模板:利用材料的内表面或外表面为模板,填充到模板的单体进行化学反应,通过控制反应时间,除去模板后可以得到纳米材料。
软模板:由表面活性剂构成的胶团或反相胶团胶束(正相、反向):两亲分子溶解在水中达一定浓度时,其非极性部分会互相吸引,从而使得分子自发形成有序的聚集体,使憎水基向里、亲水基向外,这种多分子有序聚集体称为胶束。
物理气相沉积:在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法()化学气相沉积:利用气态物质通过化学反应在基片表面形成固态薄膜的技术。
(1)表面控制型金属氧化物半导体材料气敏机理:在空气中吸附氧分子并从半导体表面获得电子从而形成吸附的O2-,O-,O2-,结果导致气敏材料的表面电阻增加。
当还原性气体(如H2):O-吸附+ H2→H2O + e-被氧原子捕获的电子重新回到半导体中,从而致使气敏材料的阻值下降。
当氧化性气体时,气体与吸附的氧原子发生的化学反应使更多电子被捕获,使金属半导体的表面电阻进一步升高。
(2)体相控制型金属氧化物半导体气敏机理:由于化学计量比的偏离,在半导体禁带中存在施主能级或受主能级,当化学反应性强且容易还原的氧化物半导体与气体接触时,能使氧化物半导体的结构发生改变,使体电阻发生变化。
比如,γ-Fe2O3,气体传感器,当它与气体接触时,随着气体浓度的增加,形成Fe3O4,使器件的体电阻下降。
γ-Fe2O3被还原成Fe3O4,这是一个可逆转的过程,当被测气体脱离后,又恢复为原有状态,通过这种转换达到了检测气体的目的. (3).金属氧化物半导体气敏器件的灵敏度受到多种因素的影响主要因素:1. 材料的化学元素组成:金属氧化物复合材料为例来说明材料的化学元素组成对其灵敏度的影响。
很多研究表明,复合金属氧化物材料的气敏性质要高于单独的一种金属氧化物。
这可能是两种组分的协同作用,但是对于这种协同作用具体的机理至今尚未有明确据.SnO2-ZnO 对正丁醇的气敏性推测SnO2能够有效地促使正丁醇脱氢变为正丁醛,却不能够有效地催化正丁醛分解。
而ZnO 却能够有效地催化分解正丁醛。
所以将这两种材料结合起来,就能够有效地使正丁醇脱氢变为正丁醛,进而催化分解正丁醛。
所以SnO2-ZnO 对正丁醇的气敏性能高于单独的SnO2或ZnO。
并不是所有复合材料的气敏性能都优于单独的任何一种材料。
只有当复合材料中的组分对催化反应彼此促进时,复合材料的气敏性质才有可能提高。
除了协同作用之外,很多文献中提到,在两种或多种组分之间会形成异质结,异质结的形成能够有效提高复合材料的气敏性质.2. 贵金属表面修饰:贵金属的作用:1、高效的激活剂降低粒子接触部分的势垒;2、促进接触面的气体吸附和反应进而提高气敏材料表面的催化活性。
引入贵金属的方法:浸渍法/溅射法/溶胶-凝胶法/蒸发镀膜法.3. 微结构调控:D >> 2L:晶界控制,传感器的电导率主要依赖于晶界势垒的高度,气敏性能受晶界势垒所控制,与颗粒尺寸没有关系晶界控制.D < 2L:烧结颈控制,此时传感器的导电性能就不仅仅依赖于晶界势垒,而且还与这些电子通道密切相关,气敏性能随着颗粒尺寸的减小而提高晶粒控制.D ≥2L:晶粒控制,颗粒之间电子传输没有势垒阻碍,传感器的电性能主要是受晶粒本身的导电性控制。
此时,传感器具有很高的敏感度,并且其敏感度随着颗粒尺寸的减小而增加4. 测试温度和湿度等合成及测试条件:(a) 当异质结构暴露在乙醇气体中时,乙醇分子会与表面吸附氧发生反应释放电子回到ZnO/TiO2导带,导致界面处势垒宽度与高度的降低。
ZnO/TiO2异质结构纳米纤维敏感性能提升的原因可能是由于在TiO2纳米线为与ZnO纳米片界面处形成的额外的耗尽层所致。
由于ZnO的功函数(5.2–5.3 eV)大于TiO2的功函数(4.2 eV),电子会从TiO2纳米纤维传输至ZnO纳米片,因此会在界面处形成一个异质结势垒以及额外的耗尽层)相比于纯相的TiO2与ZnO,ZnO/TiO2异质结构的导电通道更窄。
在界面处附近的区域,电子更容易从表面反应处释放回导带,这就使得当其暴露在乙醇气体中时,电导率会有一个更大的变化。
因此,这些界面处附近的区域相对于纯相TiO2纳米纤维在气体探测上具有更高的活性。
另外,与纯相材料对比,异质结构材料具有更多的活性位点从而能够吸附更多的氧气分子,使材料具有更好的气敏特性。
(增强机理:1、协同效应。
TiO2纳米纤维与α-Fe2O3纳米棒的协同效应是提升敏感性能的一个重要参数。
α-Fe2O3的功函数(5.88 eV)要高于TiO2的功函数(4.2 eV),这就使得TiO2纳米纤维中的电子很容易的转移到α-Fe2O3纳米棒中。
肖特基势垒和额外的电子耗尽层在纳米纤维和米棒的界面纳处形成。
2、比表面积。
α-Fe2O3/TiO2一维树枝状异质结构的比表面积(37 m2g-1)要高于纯的TiO2纳米纤维(21 m2g-1)和α-Fe2O3纳米棒(7 m2g-1)。
这就使得异质结构能够吸附更多的气体分子增强机理.3、快速的电子转换。
α-Fe2O3纳米棒在TiO2纳米纤维表面的高度分散性能够在阳离子Fe(III)-Fe(II)之间提供有效快速的电子转换。
4、多连接的活性位点。
在纳米纤维与纳米纤维的连接处会调制电子在相邻电极间的传输,电子的传输方向则依赖与气体分子的吸附与脱附。
与纯相的TiO2材料相比,α-Fe2O3/TiO2树枝状异质结构对于三甲胺气体灵敏度的提升是由于材料中出现了α-Fe2O3/TiO2异质结与α-Fe2O3/α-Fe2O3同质结。
这些连接点能够增加材料的活性位点,从而提高传感器的敏感性能。
)5.LED的基本结构:(同质结)P 型和N 型半导体构成PN 结,N 型和P 型半导体接触时,由于费米能级的不同,N 区中电子向P 区扩散,而P 区中空穴向N 区扩散,形成扩散电流。
在扩散中电子和空穴发生复合,在N 区留下施主正电荷,P 区留下受主负电荷,形成了空间电荷区空间电荷区中施主正电荷与受主负电荷建立起PN 结的由N 区指向P 区的内建电场Ebi,载流子在内建电场的作用下形成与扩散电流方向相反的漂移电流,在平衡状态下,扩散电流与漂移电流大小相等,方向相反,PN 结中无净电流流过。
在平衡状态下,空间电荷区的扩散电流和漂移电流达到平衡。
内建电场的建立使N区和P区共有统一的费米能级E F。
当给PN 结加上正向偏压V a(P 区接正电位)时,原有的平衡被打破,外加偏压使PN 结的内建电场热平衡状态下的PN 结能带示意图减弱,从而减少了空间电荷区的漂移电流,扩散电流超过漂移电流,使PN 结有了一股从P 区至N 区的净电流。
外加正偏压V a,从而使电子往P 区扩散,空穴往N 区扩散,形成从P 区至N 区的净扩散电流。
在扩散过程中,电子与空穴发生复合,导带中电子跃迁到价带,多余的能量以光子的形式辐射出来,便形成了PN 结的电致发光6.形状记忆是指具有初始形状的制品变形后,通过加热等处理手段又回复初始形状的功能。
具有形状记忆功能的材料包括形状记忆合金和形状记忆聚合物.某些具有热弹性马氏体相变的合金,处于马氏体状态下进行一定限度的变形或变形诱发马氏体后,在随后的加热过程中,当超过马氏体相消失的温度时材料就能完全恢复变形前的形状和体积,这种现象称为形状记忆效应(SME)。
具有形状记忆效应的合金称形状记忆合金.这种只能记忆住高温时形状的现象称为单向记忆效应(又称单程记忆)。
某些记忆材料例如TiNi合金及Cu基记忆合金经过一定的特殊处理后,材料可以“记忆”住高温时的形态,又可“记忆”低温时的形状。
当温度在高温和低温之间往返变化时,材料自行在两种形状之间变换,这种现象称为双向记忆效应。
有一种特异的现象,它不仅具有双向形状记忆效应,而且在反复变温过程中,总是遵循相同的形状变化规律,即记忆了中间过程这种在温度循环过程中出现的自发形状变化,其形状变化大于所有可逆形状记忆效应,而且高温形状和低温形状是完全可以倒置的,这种记忆效应称为全方位形状记忆效应。
马氏体相变定义:替换原子无扩散位移(切变),即原子沿相界面作协作运动),使其形状改变和表面浮凸,呈现不变平面应变特征的一级、形核-长大型的相变马氏体相变的基本特征:无扩散切变型相变、点阵不变平面应变、固定取向关系、马氏体片内具有亚结构、相变具有可逆性。
某些记忆材料例如形状记忆合金应具备以下三个条件:①马氏体相变是热弹性类型的;②马氏体相变通过孪生(切变)成,而不是通过滑移产生;③母相和马氏体相均属有序结构。
具有形状记忆效应的合金应具备如下条件:①马氏体相变是热弹性的;②马氏体点阵的不变切变为孪变,亚结构为孪晶或位错;3.母相和马氏体均为有序点阵结构;④相变时在晶体学上具有完全可逆性。
形状记忆合金材料:Ti-Ni系、铜系、铁系合金三类。
目前已实用化的形状记忆合金只有Ti-Ni系合金和铜系合金。
Ni-Ti形状记忆合金基本特点:具有良好的力学性能,抗疲劳,耐磨损,抗腐蚀。
记忆效应优良、生物相容性好等一系列的优点。
但制造过程较复杂、价格高昂。
表征材料记忆性能的主要参数:包括记忆合金随温度变化所表现出的形状回复程度,回复应力,使用中的疲劳寿命,也就是经历一定热循环或应力循环后记忆特性的衰减情况。
此外,相变温度及正、逆相变的温度滞后更是关键参数。
☞影响记忆特性主要参数的因素有:合金的成分、成材工艺、热处理(包括冷、热加工)条件及其使用情况等。
1、物理气相沉积(PVD)采用物理方法使物质的原子或分子逸出,然后沉积在基片上形成薄膜的工艺根据使物质的逸出方法不同,可分为蒸镀、溅射和离子镀。
真空蒸镀:把待镀的基片置于真空室内,通过加热使蒸发材料气化(或升华)而沉积到某一温度基片的表面上,从而形成一层薄膜,这一工艺称为真空蒸镀法蒸发源可分为:电阻加热、电子束加热和激光加热等。
溅射:当具有一定能量的粒子轰击固体表面时,固体表面的原子就会得到粒子的一部分能量,当获得能量足以克服周围原子得束缚时,就会从表面逸出,这种现象成为“溅射”它可分为离子束溅射和磁控溅射。
离子束溅射:它由离子源、离子引出极和沉积室3大部分组成,在高真空或超高真空中溅射镀膜法。
利用直流或高频电场使惰性气体(通常为氩)发生电离,产生辉光放电等离子体,电离产生的正离子和电子高速轰击靶材,使靶材上的原子或分子溅射出来,然后沉到基板上形成薄膜。
磁控溅射:被溅射的靶极(阳极)与阴极之间加一个在正交的电磁场的作用下,电子以摆线的方式沿着靶表面前进正交磁场和电场,电场和磁场方向相互垂直。
当镀膜室真空,电子的运动被限制在一定空间内,增加了同工作气体分子的碰抽到设定值时,充入适量的氩气,在阴极(柱状靶或平面靶)和阳撞几率,提高了电子的电离效率。
电子经过多次碰撞后丧失极(镀膜室壁)之间施加几百伏电压,便在镀膜室内产生磁控型异,了能量成为“最终电子”进入弱电场区常辉光放电,氩气被电离。
最后到达阳极时已经是低能电子,不再会使基片过热。
同时高密度等离子体被束缚在靶面附近,又不与基片接触,将靶材表面原子溅射出来沉积在工件表面上形成薄膜。
而基片又可免受等离子体的轰击,因而基片温度又可降低。
更换不同材质的靶和控制不同的溅射时间,便可以获得不同材质和不同厚度的薄膜。
离子镀:离子镀是在真空蒸镀的基础上,在热蒸发源与基片之间加一电场(基片为负极),在真空中基片与蒸发源之间将产生辉光放电,使气体和蒸发物质部分电离,并在电场中加速,从而将蒸发的物质或与气体反应后生成的物质沉积到基片上。