线虫基本操作方法
- 格式:doc
- 大小:214.00 KB
- 文档页数:71
线虫开放实验的补充说明1.培养基倒培养基一定在超净台中完成,注意无菌操作,平板不能高压灭菌,会变形。
2.线虫的食物滴菌同样在超净台中完成,菌滴于平板中央(防止线虫爬到平板边缘干死丢了),并且要进行测试无杂菌才可大规模使用,污染杂菌会影响观察和统计记录。
3.线虫的生活史和表型观察(重要)“磨刀不误砍柴工”这两部分是整个线虫遗传实验最重要的基本知识。
需要记录并熟悉线虫的生活史。
熟知不同阶段的线虫(特别是L4和adult),区分雌雄同体线虫(hermaphrodite)和雄虫(male),识别典型的突变体:unc 和dpy。
4.线虫的基本实验操作(重要)熟练使用picker(自制铂金丝小铲),达到如下要求:1)注意操作迅速,干净,不污染杂菌,及时烧picker,防止交叉污染虫子和卵;2)两种方法“挑”和“粘”。
“挑”:在解剖镜下找到目标线虫后,用picker 末端在线虫的附近压琼脂培养基,使线虫爬到picker上再转移到新的平板中;“粘”:用picker末端蘸取少量OP50,轻轻地而且快速的碰触线虫的上部,线虫被picker上的菌液粘住。
3)用“挑”法时,往新的平板放线虫时,注意要慢慢降低picker末端,轻轻接触琼脂平面或菌苔边缘等线虫爬出来,不要将琼脂戳破,否则线虫喜欢钻入琼脂中,4)转移虫子不挑破培养基,不使虫子被挑死;如果是用“粘”法,直接将picker底部粘上的菌液线虫放到新平板的菌苔边缘即可。
3)挑虫准确性强,不顺带别的虫子和卵;4)要做到“挑的起”,“放的下”,掌握挑虫技巧。
5.线虫的遗传实验技巧1)掌握mating时期:充分利用L4的特点,使用L4早期的雌雄同体的虫子进行交配。
2)铺op50食物菌斑时,建议铺菌斑较小的平板作为mating plate,提高交配效率,另外雄虫比例较高时也可提高交配效率。
一般雄虫:雌雄同体为3:1至4:1能有不错的交配效率,当雌雄同体为比较弱的突变体时,建议增加雌雄同体的量,以防止某些母本产卵少或不产卵,导致交配后代很少。
⑴线虫的淘洗过筛称取鲜土100 g,用淘洗—过筛—蔗糖梯度密度离心方法分离线虫(Lianget al., 2002)。
将称好的土倒入水盆中,加水搅匀,静置1 min。
将水倒入一组网筛,即上层为60 目,下层为400 目,边倒边震荡分样筛,防止水充满下层的400 目筛而从筛中溢出。
然后,再在盆中加入水后混匀,静置1 min,倒入网筛中,如此重复三次。
将400 目的分样筛取下,用喷头把400 目网筛中的线虫悬液中的泥浆冲洗干净,倒入烧杯中,静置。
⑵蔗糖梯度离心将静置烧杯中的上层水轻轻倒掉,只保留下层大约30 ml 水、线虫和泥浆的混合物。
将混合物轻轻摇匀,倒入离心管中,在天平上调平衡,把平衡后的离心管放入离心机中,第一次离心(离心机的转速2000 r·min-1,离心时间为4 min)。
倒掉第一次离心后的离心管内的上层液,保留土层。
在离心管中分别注入比重为1.18 g·ml-1的蔗糖溶液约10 ml,在天平上调平衡后,摇匀,放入离心机中进行第二次离心。
离心后,迅速取出离心管,把离心管内的上层液倒入500 目筛中,用水把蔗糖液冲掉,以防线虫在蔗糖液中脱水变形。
然后把线虫液冲入烧杯中,随后再转入试管中。
将其静置24 h 以上,以使线虫沉淀,并进行饥饿处理,以得到虫体各器官清楚的线虫标本。
⑶线虫的杀死和固定线虫的杀死采用温和热杀死法(Gentle Heating)。
先将水浴锅温度设定为60℃;把静置6 h 以上的试管中的上层水小心抽出,只保留大约2~3加热3 min杀死线虫,取出,稍静置冷却,加入等量的2倍TAF固定液,摇匀,倒入青霉素小瓶中,写好标签和序号,放入标本盒中。
⑷线虫的科属鉴定在解剖镜下观察计数,然后依据测得的土壤水分将土壤线虫种群折算成100 g干土中含有的线虫条数。
土壤线虫群落生态指数计算土壤线虫的生态指数有优势度指数、香农—威纳指数、均匀度指数、丰富度指数。
(1)优势度指数(Dom):公式Dom=∑pi2,pi—第i个线虫属个体所占的比例。
大棚有了根结线虫,咋整?联社专家有一手!根结线虫是为害保护地蔬菜的最重要的土传病害之一,并且由于保护地蔬菜周年生产、常年连作,必要的营养和生存条件加上温暖湿润的环境不仅使根结线虫周年为害(特别是在春、夏、秋气温较高的季节,为害更为严重),而且还加剧了其繁殖进程,因而,近年来根结线虫愈演愈烈,甚至很多人将其与病毒病并列为世界性难题。
菜农之家联合社从实用性的角度给出根结线虫的综合防治技术,或者可称为配套防治方案。
(本文较长,但是非常实用,请耐心看完)一、根结线虫的为害及症状1.地下部表现:根结线虫主要发生在植株根部,以侧根和须根更容易受害。
根系受害后形成大小和形状不同的瘤状根结,有的呈现串珠状、初为白色,后变为淡褐色,表面有龟裂。
2.地上部表现:发病后,一方面根系吸收、输送水分和养分的能力下降;另一方面根系合成内源激素的能力下降,从而使叶片变小,叶色变浅、变黄,似缺素症;落花落果,果实小畸形多;植株生长缓慢、矮小瘦弱,中午萎蔫,早晚恢复,至全株枯死。
二、根结线虫为害作物根结线虫是一种高度专化型杂食性病原线虫,寄主范围十分广泛,危害作物:黄瓜、苦瓜、番茄、洋葱、茄子、马铃薯、胡萝卜等等。
三、根结线虫的侵染循环四、根结线虫的传播渠道根结线虫在土壤中活动范围很小,有资料称一年内移动距离不超过1米。
因此,初侵染源主要是病土、病苗及灌溉水。
线虫的远距离移动和传播,通常是借助于流水、风、病土搬迁,和农机具沾带的病残体和病土、带病的种苗和其他营养材料以及各项农事活动完成。
五、根结线虫的生物学特性根结线虫完整生活史需经卵-幼虫-成虫三个阶段。
土温达10℃以上时,卵可孵化,幼虫多在土层1-20厘米处活动。
根结线虫在棚室一年发生10代左右,每个雌虫产卵300粒左右。
温度25-30℃时,25天可完成一个世代。
适宜土壤相对湿度40-70%。
在干燥或过湿土壤中,其活动受到抑制。
适宜土壤PH4-8。
土壤质地疏松、盐分低的条件适宜线虫活动,有利发病,一般砂土较粘土发病重,连作地发病重。
治疗线虫病常用的方法有哪些寄生在植物上的线虫,体型较小,大约0.5mm—3mm,多数雌雄同型呈线性或圆筒状,两端稍尖,个别种雌虫膨大成梨型或肾型,如根结线虫。
线虫的头部有唇和口腔,口腔内有管状口针或轴针,其基部与食道相连,那线虫病的防治方法有哪些呢?利用线虫病被动传播为主的特点严格执行检疫措施;利用植物线虫在不适宜的寄主上难以繁殖的特点,选用抗病、耐病品种;利用大多数植物线虫有在土壤中的生活史的特点,用化学药剂处理土壤;进行种子汰选和种苗的热处理;通过轮作、秋季休闲、翻耕晒土、田间卫生等耕作措施破坏植物线虫存活的适宜条件,以及利用天敌控制等,大家知道治疗线虫病常用的方法有哪些吗?1、加强检疫,切断病害被动传播的人为途径。
无庸讳言,植物检疫是目前造成苗木线虫病迁移的薄弱环节。
一直以来,由于大家植物检疫意识淡薄,放松了对植物进出的检疫工作,使得线虫等检疫对象的传播容易,造成这些病害的逐年加重。
因此,在这里要呼吁业内人士都要自觉加强苗木的检疫工作,培育无线虫病害的健壮苗木种子,来减轻线虫病害的流行。
2、利用植物栽培,控制线虫病害发生。
①轮作是一种有效防治线虫病的措施。
防治根结线虫可以辣椒、大葱、大蒜、韭菜以及禾本科牧草、草坪、小麦、大麦、玉米等农作物轮作;防治花生根结线虫可以甘薯、棉花轮作、一般轮作2—3年。
实行水旱轮作,如水稻、水生花卉等轮作一年就有很好的防治效果。
②种植诱虫植物和拮抗植物是消灭大量线虫的好方法。
在种植花木前,首先种植生长迅速的速生植物,如菠菜、小白菜、小青菜等1—2个月,线虫大量侵染后还没有产卵前连根拔除,可以大量清除线虫。
种植线虫非繁殖寄主植物或者拮抗植物,如柽麻、石刁柏、猪屎豆等,由于植物根部分泌物还有毒素,会使线虫侵染后不能发育成虫或不能存活。
种植万寿菊、孔雀草、芥末、芝麻、蓖麻能杀死土壤中线虫,降低土种线虫数量。
因为万寿菊能产生一种2-3-噻嗯,是一种强杀线虫物质,尤其对根结线虫效果很好。
一、实验目的1. 了解线虫的基本生物学特征和生长习性。
2. 掌握线虫实验操作的基本技能。
3. 探究不同环境因素对线虫生长和发育的影响。
二、实验材料1. 线虫:秀丽线虫(Caenorhabditis elegans)2. 培养基:Lysogeny broth(LB)培养基3. 实验器具:恒温培养箱、显微镜、培养皿、移液器、酒精灯、镊子、剪刀等三、实验方法1. 线虫培养(1)将线虫置于含有LB培养基的培养皿中,放入恒温培养箱中,温度控制在25℃左右。
(2)每隔一定时间,用移液器吸取适量的培养基,移入新的培养皿中,以保持培养基的新鲜。
(3)观察线虫的生长状况,记录其数量、活动能力等。
2. 线虫实验操作(1)线虫的分离:用镊子轻轻将线虫从培养皿中取出,置于显微镜下观察其形态。
(2)线虫的计数:将线虫置于计数板上,使用显微镜进行计数。
(3)线虫的染色:将线虫置于载玻片上,用酒精灯加热,使其固定,然后用染料染色,观察其结构。
3. 环境因素对线虫生长和发育的影响(1)温度:将线虫置于不同温度的培养箱中,观察其生长和发育情况。
(2)光照:将线虫置于不同光照强度的环境中,观察其生长和发育情况。
(3)湿度:将线虫置于不同湿度的环境中,观察其生长和发育情况。
四、实验结果与分析1. 线虫培养结果经过一段时间的培养,线虫数量逐渐增多,活动能力逐渐增强。
在适宜的温度、湿度和光照条件下,线虫的生长和发育状况良好。
2. 线虫实验操作结果(1)线虫的分离:成功分离出线虫,并观察到其形态特征。
(2)线虫的计数:通过计数板,成功计数线虫的数量。
(3)线虫的染色:成功染色线虫,观察到其结构。
3. 环境因素对线虫生长和发育的影响(1)温度:在25℃左右的温度下,线虫的生长和发育状况良好;温度过高或过低,线虫的生长和发育受到抑制。
(2)光照:在适宜的光照条件下,线虫的生长和发育状况良好;光照过强或过弱,线虫的生长和发育受到抑制。
(3)湿度:在适宜的湿度条件下,线虫的生长和发育状况良好;湿度过高或过低,线虫的生长和发育受到抑制。
蔬菜大棚中的根结线虫病防治技术蔬菜生产中常常遭受到根结线虫病的侵袭,这是一种由根结线虫引起的病害,会严重影响蔬菜的生长和产量。
因此,合理的根结线虫病防治技术对于蔬菜大棚的生产至关重要。
本文将介绍一些有效的根结线虫病防治技术,以帮助种植户提高蔬菜的抗病能力和产量。
一、土壤消毒技术1. 热水浸泡法热水处理是一种简单有效的根结线虫病防治技术。
将种植土壤放入水中浸泡约50-55摄氏度的热水中,浸泡时间取决于土壤的类型和温度。
热水能有效杀灭土壤中的根结线虫,从而减少病害的发生。
2. 化学消毒法化学消毒剂是一种常用的根结线虫病防治技术。
常见的化学消毒剂有甲基溴、甲苯丙酮和甲基叠氮磺胺等。
在种植前,可根据土壤的类型和根结线虫的密度选择适量的化学消毒剂进行喷施,以达到有效控制根结线虫的目的。
二、优质苗木选用1. 种子处理在蔬菜种植前,可以将种子浸泡在特定浓度的农药中,以杀灭种子表面带有根结线虫的感染。
种子处理可以有效降低根结线虫病的发生率。
2. 苗床消毒在苗床建立前,可以使用适量的化学消毒剂对苗床土壤进行消毒处理,以杀灭土壤中的根结线虫。
苗床消毒可以有效预防根结线虫的传播,提高苗木的质量。
三、合理的土壤管理1. 土壤疏松保持土壤的疏松状态是一种有效的根结线虫病防治技术。
通过定期松土、翻耕等措施,可有效改善土壤结构,增加土壤通气性,减少根结线虫的滋生。
2. 轮作制度蔬菜大棚应根据不同蔬菜的生长周期和根结线虫的寄主范围,采取合理的轮作制度。
定期更换蔬菜种植位置,能有效降低根结线虫在土壤中的密度,减少根结线虫的危害。
四、生物防治技术1. 施用生物控制剂生物控制剂是一种对根结线虫有特殊抑制或杀灭作用的微生物制剂。
在种植蔬菜的过程中,适量喷施生物控制剂能有效控制根结线虫的病害,并对环境友好。
2. 引入天敌通过引入具有捕食根结线虫能力的天敌,如蓟马、线虫和螨类等,可以在一定程度上降低根结线虫的密度,达到防治的目的。
引入天敌是一种自然的、可持续的根结线虫病防治技术。
使用昆虫病原线虫防治韭蛆技术规程1 范围本标准规定了使用昆虫病原线虫防治韭蛆技术昆虫病原线虫的准备、使用技术、使用要求方面的基本原则和技术方法。
本标准适用于XX省韭菜、葱、洋葱和大蒜等蔬菜田使用昆虫病原线虫防治韭蛆的技术操作。
2 术语和定义下列术语和定义适用于本文件。
2.1昆虫病原线虫entomopathogenic nematodes,EPNs昆虫病原线虫是一类专性寄生昆虫的线虫,可通过害虫口、肛门、气门、体壁节间膜等处进入害虫体内,利用害虫体内营养物质进行大量繁殖,使目标害虫死亡。
3 昆虫病原线虫的准备昆虫病原线虫选用斯氏线虫(Steinernema feltiae)和异小杆线虫(Heterorhabditis indica),运输工具应清洁无毒,运输过程宜平稳,应低温(4 ℃~10 ℃)保存。
4 使用技术4.1 使用时间在春季和秋季韭蛆幼虫始发期使用(韭蛆的形态特征见附录A),土壤温度达到15 ℃以上可以使用,20 ℃~30 ℃时最佳。
应在晴天早晚或者阴天时使用,避免紫外线照射。
4.2 使用量每666.7 m2用1亿条昆虫病原线虫,若韭蛆幼虫发生量大,加倍使用。
4.3 使用方法先浇水再喷淋。
昆虫病原线虫均匀分散在水中,有沉淀时搅拌均匀后喷淋,一年使用2次。
根据韭蛆发生数量可适当增加1次~2次。
4.4 防治效果检查使用7 d~14 d后,随机挖取韭菜鳞茎调查韭蛆幼虫的数量,如果韭蛆数量没降低,应及时查明原因,补施线虫。
5 使用要求5.1 施用昆虫病原线虫的工具应与化学农药的工具分开。
5.2 禁止将昆虫病原线虫产品以及昆虫病原线虫溶液放在太阳下暴晒。
未用完的昆虫病原线虫应放至冰箱4 ℃条件下保存,且保存不能超过30 d。
5.3 使用昆虫病原线虫后土壤含水量应保持在10 %~20 %。
5.4 如果发生其它病虫害,应优先选用生物、农业、物理等非化学农药方法进行防治。
5.5 使用昆虫病原线虫前后14 d内不能使用高毒杀虫剂和除草剂。
食用菌线虫及软体动物的防治措施一、食用菌线虫及其防治线虫属于无脊椎动物门的线虫纲,主要危害双孢蘑菇、草菇、木耳、银耳、香菇、平菇等食用菌,严重影响其产量。
危害食用菌的线虫种类很多,多数是腐生性线虫,少数半寄生,只有极少数是寄生性的病原线虫,常见的腐生性线虫有嗜菌丝茎线虫和堆肥滑刃线虫。
(一)形态特征线虫是一种体形细长(长约1mm,粗0.03~0.09mm),两端稍尖的线状小蠕虫,肉眼看不到。
虫体多为乳白色,成熟时体壁可呈棕色或褐色。
线虫防治方法:1、搞好出菇室卫生,并控制好环境条件消灭各种媒介害虫,防止线虫传播;出菇期间要加强通风,防止菇房闷热、潮湿。
2、培养料处理要注意培养料堆制场地的环境卫生,并提高培养料的堆温;培养料还需后发酵处理,以彻底杀死其中的线虫及虫卵;控制好培养料的含水量,防止培养料过湿。
用于平菇栽培的生料,可用2%石灰水浸泡24h杀灭线虫。
3、耳木处理段木栽培木耳时,可用1%石灰水(上清液)或5%的食盐水喷洒耳木,每隔10d喷一次;或在地面上撒施石灰。
4、覆土材料处理覆土最好进行巴氏消毒,也可在使用前一周用敌敌畏熏蒸。
5、使用洁净水源拌料和管理用水要使用自来水或洁净的井水、河水,防止被线虫污染的水喷到菇床和段木上。
6、药剂防治如发现菇床局部受线虫侵害,应先将病区周围划沟,与未发病部分隔离;然后病区停水,使其干燥,也可用1%的醋酸或25%的米醋喷洒。
二、软体动物及其防治危害食用菌的软体动物主要是蛞蝓,俗称鼻涕虫,属软体动物门的蛞蝓科。
常见的有野蛞蝓、双线嗜粘液蛞蝓及黄蛞蝓三种。
各种食用菌均会受害,以平菇、草菇、双孢蘑菇、香菇、木耳及银耳受害较重。
防治方法:1、搞好菇房内外的环境卫生清除蛞蝓白天躲藏的栖息地;菇房地面或周围撒一层石灰。
2、菇床保护,在菇床周围撒一圈0.5~1.0cm厚的石灰粉,以阻止蛞蝓爬入。
3、人工捕捉,晚上9~10点是蛞蝓集中活动的时间,可进行人工捕捉;也可用5%的食盐水或5%的碱水滴杀。
线虫养殖方法与注意事项摘要:线虫是一种重要的实验生物,也有着广泛的应用前景。
本文将介绍线虫养殖的方法与注意事项,包括养殖设备的准备、菌种的选择与培养、合适的培养基及培养环境的维护,以及饲养过程中需要注意的事项。
希望通过本文的介绍,能够帮助读者更好地了解和掌握线虫的养殖技术。
正文:一、准备养殖设备养殖线虫需要一些基本的设备,包括培养皿、培养箱、显微镜等。
培养皿应选择带盖的培养皿,以保持培养环境的湿润和无菌。
培养箱需要具备恒温和恒湿功能,保持适宜的温度和湿度有利于线虫的繁殖和生长。
显微镜是观察线虫的必备工具,可选择放大倍率适中的立体显微镜或倒置显微镜。
二、选择与培养菌种线虫菌种的选择很重要,优质的菌种能够提供健康的线虫群体。
常用的线虫菌种有自然分离的野生菌株和经过培养的缺陷突变菌株等。
采集野生菌株需要注意环境的无菌和卫生,并选择具有较高迁移能力和繁殖力的线虫进行培养。
缺陷突变菌株是通过基因突变获得的,可选择具有特定突变表型的菌株进行养殖。
培养菌种的基本步骤包括:将菌株转染到寡核多核苔藓中,培养一段时间后观察菌株的生长和健康情况,再将线虫转移到添加培养基的培养皿中。
培养基的选择应根据线虫的生态特性,包括食物、温度和pH等因素进行调节。
三、合适的培养基与培养环境维护合适的培养基是线虫养殖的关键之一。
常用的培养基包括NGM培养基、S-medium培养基等。
NGM培养基富含大豆蛋白胨和琼脂,提供线虫所需的营养物质;S-medium培养基则富含葡萄糖和酵母提取物,适合用于繁殖线虫。
另外,线虫的生长与环境的平衡密切相关。
保持培养箱的恒温和恒湿性能,避免温度和湿度的波动,同时减少异味的产生,有助于提供一个稳定的养殖环境。
养殖箱内应保持清洁,并注意消毒措施,以避免细菌污染。
同时定期更换培养基,降低培养皿中有害物质的积累。
四、养殖过程中的注意事项在线虫的养殖过程中,还需要注意以下事项以确保养殖效果:1. 注重饲养密度:适量的线虫数量有助于维持一个稳定的养殖环境,太多或太少都可能对线虫繁殖产生不利影响。
草坪线虫的防治方法草坪线虫的防治方法——线虫又叫蠕虫,是土壤中最丰富的一类线形低等动物。
草坪草病原线虫是不分节的透明线形体。
有些种的雌虫呈梨形或柠檬形。
线虫虫体分头部、颈部、腹部和尾部4个部分。
头部位于虫体前端,包括唇、口腔、口针和侧器等,颈部是从口针基部球到肠管前端的一段体躯,包括食道、神经环和排泄孔。
腹部是从后食道球到肛门间的一段体躯,包括肠和生殖器官等。
尾部是从肛门到虫体末端的部分,包括尾腺、侧尾腺和肛门等。
线虫缺乏呼吸系统,其功能由体液完成。
草坪线虫生活史简单,少数线虫孤雌生殖,绝大多数线虫在经过两性交配后雌虫排出成熟卵,卵多在土壤中,也有的存在于植物体内,卵孵化为幼虫,再经3~4次蜕皮后成为成虫。
线虫完成一代所需时间不同,这与线虫种类和环境条件有很大关系。
大多数采食土壤中的真菌、细菌、小的无脊椎动物,对草坪不构成危害,但有许多是寄生在高等植物上,以高等植物的某些组织、器官为食,如果存在于草坪中,则会危害草坪。
多数寄生草坪草的线虫主要危害草坪草的根系和地下器官(个别线虫也危害地上器官)。
线虫的口针在取食时刺伤草坪草组织,口针的分泌物对草坪草的细胞和组织起着多方面的损害作用,从而使草坪草产生诸如巨型细胞、肿瘤、畸形等多种病变。
有的抑制顶端分生组织引起枯死,有的降解中胶层,溶解细胞壁引起组织坏死,总体上引起全株生长不良,使草坪草矮化、变黄。
此外,线虫造成的伤口常为土壤真菌病原物的侵染提供方便,引起草坪病害的发生。
因此,某些草坪草常因线虫群体的大量寄生而引起严重危害。
防治线虫首先要保证使用无线虫的种子、无性繁殖材料和土壤来建植草坪,对已被线虫危害过的土壤要事先消毒。
也可用浇水来控制线虫病害,但浇水要少量多次,主要是被线虫危害的草根系较浅,少量的水即可保证根系周围的土壤不受干旱,就可阻止线虫的蔓延。
合理施肥,增施磷钾肥,适时松土,清除枯草层。
除去草坪杂草,保持草坪机具清洁卫生对预防线虫病的传染也有一定的作用。
线虫实验指南Michael Koelle's C. elegans ProtocolsDOWNLOAD FROM:/mbb/koelle/protocol_list_page.htmlAugust 8, 2009Culturing Wormsby Michael Koelle1. Bacterial strain for feeding worms: OP50, a uracil auxotroph. Streak OP50 out on a 9 cm NGM agar plate, grow overnight at 37°. Can then parafilm the plate and keep it at 4° for months. To make bacteria for seeding plates, use a flamed wire loop to pick a single OP50 colony into a 100 ml bottle of B broth. Set the bottle (no shaking) at 37° overnight. It should be cloudy the next day. This bottle can be stored at 4° and used for ~3 months.2. Seeding plates. NGM plates should be allowed to sit out at room temperature in a closed box for a couple of days after pouring to allow them to dry, and so that plates with bacterial or fungal contaminants become obvious. Using a sterile pipette, drop 1-2 drops OP50 suspension on the middle of each 5 cm NGM plate. It is best if the bacterial lawn does not touch the side wall, as worms then tend to crawl up the wall and die. (Don't move the plates soon after seeding, or the puddle of bacteria will definitely slosh against the wall). Take care not to damage the surface of the agar with the pipette tip; worms will then burrow under the surface. Let the plates sit overnight to form a bacterial lawn before using. Plates can be used for about 7 days after seeding, and are best 2-4 days after seeding.To seed large (9cm) NGM plates: drop 5 drops OP50 in the middle of a plate. Use a sterile pipette at a very shallow angle to spread the OP50 liquid around so that a thin pool of liquid covers the middle 2/3 of the plate. Set the seeded plates at 37°overnight, or at room temp. for 2 days. (Many people try to seed large plates by dropping a huge amount of OP50 on the plates, until the thick pool of liquid covers a large portion of the plate; this results in a wet mess that takes several days to dry into a mealy-looking lawn.)3. Transferring worms. Use a platinum wire pick. To construct this, take a hammer and bang on a piece of ~32 gauge platinum wire to flatten it. Others use pliers to flatten the end of the wire. Then cut the wire so that only a few millimeters of flat wire are left attached to a longer section of round wire. Can use a razor blade to slice off the sharp corners of the flat end. Then bend the flat section so that it is at a shallow angle to the rest of the wire. Finally, place the non-flattened end inside of a short Pasteur pipette, and seal into the glass over a Bunsen burner. About 2 cm of wire should protrude from the glass, but personal preferences vary. Eventually the end of the pick wears out, and the end can be cut off and a new end flattened and bent.To pick up worms, flame the wire to sterilize it, and drag the pick along a bacterial lawn to coat the under side of the pick with bacteria. Goopy, several day old bacterial lawns are the best for this; some keep old plates next to the microscope especially for coating their picks. Gently brush against the worm to be picked up so that it sticks to the bacteria on the pick. To set the worm down, gently brush against the new plate, and allow the worm to crawl off. The worm should be immediately active on the new plate if it is undamaged. It is possible to pick up at least ten worms at a time, however, you don't want the worms to spend too much time on the pick, as they will dry out.4. Worms are typically cultured in a 20° room, with the plates upside down, stored in old scintillation vial boxes. The dividers in the boxes can be reconfigured to fit the 5 cm worm plates. The boxes and dividers are baked at 65° for >1 hour before use to sterilize . Worms can be cultured between 15° and 25°, and will grow slower or faster, respectively, at these temperatures. To keep a stock available for a long time without maintenance, parafilm the plate and set it at 15°. Can then recover the worms for ~5 months afterwards. The limiting factor is that the worms die eventually of dessication when the plate dries.If you're leaving town for a while a good way to keep your worms is to put the plates in a 12.5° C incubator. The worms will be almost in stasis, and will show only barely perceptable development after 1 week. Apparently prolonged incubation at 12.5° kills worm stocks by sterilizing them. One week is certainly safe, and after 2-3 weeks you'll probably still have some fertile worms.5. To transfer a stock to a new plate, typically you "chunk it out" instead of transferring worms with a pick. Keep small capped bottle of EtOH by your microscope, and a small spatula. Dip the spatula in EtOH, then place the spatula in the bunsen burner flame for ~15 seconds: the EtOH will burn off and then the spatula should get almost red hot. (If you just quickly let the EtOH burn off this won't sterilize the spatula, and you will always end up contaminating your worms). Dip the hot spatula back in the EtOH until the spattering and fizzling stops- this cools it off so the heat won't kill the worms. Then quickly pass the spatula through the flame to ignite the EtOH, which will burn off without heating the spatula much. Use the now sterile spatula to cut a ~1 cm square chunk of the old plate and place it upside down on the new plate. Worms will crawl out onto the fresh bacterial lawn.NGM agar: 3 g NaCl17 g agar2.5 g peptone1 ml cholesterol (5 mg/ml in EtOH)975 ml H20Autoclave, and then sterilly add the following, mixing after each addition:1 ml 1 M CaCl21 ml 1 M MgSO425 ml 1 M potassium phosphate pH 6Typically pour 5 and 9 cm plates. Store in plastic boxes with covers at room temperature for a couple days before use to allow the plates to dry.B broth: 10 gm bactotryptone5 gm NaCl1 liter dH20dissolve over bunsen burner.Then distribute to 100 ml bottles and autoclave.Freezing Wormsby Michael Koelle6/27/94I. The preferred method1. Wash worms off of 1 large plate or 3 small plates in 3 mls S Basal into a sterile 15 ml disposable centrifuge tube. Worms should be harvested off of just starved plates which are predominantly L1 and L2. This should be 1 day after the bacteria have been exhausted. The worm book says dauers don't freeze, but E. Jorgenson says he freezes from really old plates and it works fine. Rumor has it that if the plates aren't completely starved, the freezing won't work - i.e. food in the gut somehow prevents the worms from surviving. To wash the worms off plates, add ~2 mls S Basal to each small plate (w/sterile 5 ml glass pipette and a pasteur pipette bulb), swirl briefly to dislodge worms, and suck off the suspension with the sterile glass pipette and place into a 15 ml sterile plastic centrifuge tube.2. Spin down in a clinical centrifuge for ~30 sec. Remove all but 1.5 ml of the supernatant.3. Add 1.5 ml freezing solution, mix well, and aliquot 1 ml each into 3 sterile freezing vials (Nunc CryoTubes #363401).4. Freeze slowly to -80°. This is accomplished by placing the vials in a styrofoam rack (the kind that 15 ml disposable sterile centrifuge tubes come in), placing another inverted such rack on top of the first, fastening the two racks together with rubber bands, and placing in a -80° freezer.5. The next day, move two vials to a permanent location. Record the strain number, genotype, and comments in a computer database. We use "FileMaker Pro" software. Na An tells me that freezing in a liquid N2 freezer truly is preferable -80°; she gets excellent thaws from 15 year old vials stored in liquid N2, but less good thaws from old -80° vials.6. The third vial should be used for a test thaw. Take the vial out of the freezer, thaw quickly by holding in your hand or in a 37° water bath (leave in the bath only until the ice is gone so as not to heat it up). Can dump the whole vial out in a seeded large plate, or use a sterile 200µl pipetteman tip to withdraw the bottom 200µl (containing the settled worms) and place it on a small plate. The next day, pick live worms to a new plate.II. The agarose method. This gives much lower viability than the above method in most people's hands, but has the advantage that one doesn't need to thaw an entire vial at a time. On balance, I don't think it is worth risking losing strains (especially risky with heterozygous mixtures) to get this minor savings. However, some people seem to have better luck with this method than me. Leon Avery says the agar method works better for him than the non-agar method. He suggests being especially careful when thawing not to break the worms by scraping, but rather to be sure to actually take an unbroken frozen chunk of worm suspension out of the tube.1. Melt freezing solution + agarose in microwave (carefull to fully melt but not boil over).2. Put FS + agar bottle on the bench to cool. Some people place it in 50° water bath for ~15'. The idea is to have it cooled to ~50° by the time you use it, but to use it while it is still liquid.3. Wash worms off of 1 large plate or 3 small plates in 3 mls S Basal into a sterile 15 ml disposable centrifuge tube. Worms should be harvested off of just starved plates which are predominantly L1 and L2. This should be 1 day after the bacteria have been exhausted. The worm book says dauers don't freeze, but E. Jorgenson says he freezes from really old plates and it works fine. To wash the worms off plates, add ~2 mls S Basal to each small plate, swirl briefly to dislodge worms, and suck off suspension with a sterile glass pipette and place into a 15 ml sterile plastic centrifuge tube.5. Chill on ice 15' or longer.4. Spin the worms down (30 sec. in a clinical centrifuge), and remove all but 3 mls of supernatant with a sterile pipette.6. Pipette 3 ml FS + agar into a tube of worms and immediately mix by inversion of tube 8-10X.7. Pipette 1.8 ml of the mixture into 3 prepared freezer vials.8. Repeat steps 6 and 7 for each strain.9. Freeze slowly to -80°. This is accomplished by placing the vials in a styrofoam rack (the kind that 15 ml disposable sterile centrifuge tubes come in), placing another inverted such rack on top of the first, taping them tightly together, and placing in a-80° freezer.10. The next day, move two vials to a permanent location. (Or, to a box in the -80°, and when the box is full, move all the vials to a liquid N2 freezer). Record the strain number, genotype, and comments in a computer database.11. The third vial should be used for a test thaw. Can either thaw the whole vial and dump on a large plate. Or, using a flamed spatula, dig a ~0.1 ml chunk of frozen worms onto a small plate, and put the remainder of the vial back in the freezer. Leon Avery says to be sure not to scrape flakes of frozen stuff out of the tube; this will break all the frozen worms. Instead, run the spatula around the edge of the tube and break out an intact chunk of worm suspension.Freezing Solution200 ml 1M NaCl100 ml 1M KPO4, pH 6.0600 ml glycerolBring to 2 liter w/ dH20Distribute to 200 ml bottles; autoclaveAdd 0.06 ml sterile 1M MgSO4 per 200 ml bottle(N.B. in Horvitz lab the stuff Na An supplies does not have MgSO4 added yet!) Freezing solution with agarosefreezing solution with 0.4 g agarose added per 100 ml and reautoclaved for 20 min.M9 buffer (Horvitz lab version)Na2HPO4 5.8 gKH2PO4 3.0 gNaCl 0.5 gNH4Cl 1.0 g dH20 to 1lResponse to food assayby Meng-Qiu Dong 1/1/2000Wild type worms adjust egg-laying behavior in response to food. They lay eggs when they are fed and stop laying eggs when they are starved. If starved wild type worms are put back on food, they resume egg laying almost immediately. I use the following assay to determine how well worms regulate egg laying in response to food quantitatively.Measure the # of eggs laid by 10 worms in 30 min under three conditions:1, starved; 2, starved then re-fed; 3, never starved.Note:∙Transfer of worms in liquid should be done with a glass pasteur pipette, not plastic pipette to which worms stick.∙Always use dry and non-cracked NGM plates. The plates need to quickly absorb a few drops of liquid placed on them.1. Pick large dark-looking late L4 larvae, ~60 L4s/plate x 2 plates. L4s are recognized by a white crescent in the presumptive vulval region, which acquires a black central dot in late L4. Worms need to be staged as precisely as possible, because this seems to reduce fluctuation.2. Incubate worms at 20 ºC for 30 hrs.3. Wash worms off plates with 2.5 ml M9 buffer at a time x 2 times, combine the washes in a 15 ml falcon tube.4. Spin down worms in a clinic centrifuge for 10 sec at maximal speed.5. Remove supernatant by aspiration, leave ~0.5 ml liquid. (so you don't lose worms during washing)6. Rinse worms with ~7 ml M9, spin 10 sec, remove supernatant by aspiration and leave about 0.5 ml liquid.7. Then carefully remove as much sup as possible with a pasteur pipette, usually about 100ul liquid is left in the tube.8. Take a 5 cm NGM plate seeded with a lawn of O.P.50 bacteria, drop on the edge of the agar 2-3 drops of 4M fructose from a pasteur pipette and rotate the plate so that the solution flows along the very edge and makes a fructose circle. Take an unseeded plate and do the same to circle the edge with fructose. You can do step 7 while you are waiting for the centrifuge to stop. The 4M frunctose creates an osmotic barrier that prevents worms from crawling off the plate and dying.9. Under a dissecting scope, use a pasteur pipette to transfer 20-30 worms to the seeded plate from step 7. I count the # of worms transferred because I don't want to waste too many worms on this plate. Put worms down near the bacterial lawn and let the liquid be absorbed into the plate. I come back to this plate a few minutes later and move any worms that are off food back on food using a worm picking coated with bacteria. Transfer the remaining ~90 worms to the unseeded plate from step 7.10. Incubate the worms at 20 ºC for 2 hrs. Near the end of the 2 hrs, prepare 6 fructose circled plates (4 seeded + 2 unseeded) in the same way as step 7.11. Transfer 20 starved worms to 2 unseeded plates from step 9 with a bare platinum worm pick (no bacteria!), 10 worms/plate. (Here is my way doing it: Use a short flat-ended worm pick, press against the agar beside a worm so that some liquid gets squeezed out to lubricate. Shove the worm pick underneath the worm and pick it up. On a new plate put down the worm pick [with a worm on top of it] against the agar and squeeze out some liquid. The worm will float up and swim off. Don't tear the agar surface when you put down a worm, just make a dent.)12. Transfer 20 starved worms to 2 seeded plates with a worm pick coated with bacteria, 10 worms/plate.13. Transfer 20 nonstarved worms to 2 seeded plates with a worm pick coated with bacteria, 10 worms/plate.14. Wait for 30 min at room temperate (should be close to 20 ºC). Then count the # of eggs laid on each plate. You can just remove the worms and count eggs later if you don't have enough time. Maximum of 3 strains can be assayed at a time.15. Repeat the procedure 4 times (8 repetitions total) and average the results. For unknown reasons, there is some fluctuation in this assay that requires this number of repetitions to average out.M9 (without glucose or MgSO4):MRC recipe; is basically M9 for bacteria without 20% glucose. used as M9 in Horvitz lab, e.g. for egg-laying assays, everything else. Not same as M9 buffer in worm book.Na2HPO4 5.8 gKH2PO4 3.0 gNaCl 0.5 gNH4Cl 1.0 gdH20 to 1lM9 buffer (Worm book recipe):also MRC recipe; Is basically M9 buffer with high NaCl to make up osmolarity for no glucose. Not used in Horvitz lab.KH2PO4 3.0 gNa2HPO4 6.0 gNaCl 5.0 g1M MgSO4 1.0 mldH20 to 1lN2 development times at different temperaturesby Michael KoelleDetermined empirically; times in hours are given from the first division of the zygote.L4's can be easily recognizedand staged to within a few hoursof development. By picking L4'sand then aging them, a fairlysynchronous population of adultsof known age can be obtained;this is especially useful forbehavioural assays, the results ofwhich may depend on age.L4 hermaphordites are recognized by a white crescent shape at the location of thedeveloping vulva, about 2/3 of the way towards the posterior of the animal, on it's"side" as it lies on the plate. This stands out in contrast to the darker yellow gray ofthe surrounding body. Over time, the L4's get fatter relative to their length, a dark spotappears in the middle of the white crescent, and finally the white crescent collapsesprior to the L4 molt. Thus substages of L4 are recognizable.L4 males are recognized by a tail that is just beginning to acquire a spade shape,but has not achieved the well defined sharply cornered spade-tail of the adult. Sinceyoung males are better at mating, it is best to set up matings with L4 males.Liquid culture of wormsBy Michael Koelle and Tory Herman, adapted from Mir Hengartner4/6/94Media1) superbroth (5 X 2 1/2 liters autoclaved in 6 liter flasks)5 X 30 g Bactotryptone5 X 60 g yeast extract5 X 20 mL 50% glycerol stock solution5 X 2.25 liters DDWHint: use a funnel to pour measured ingredients into the flasks.Autoclave 30 minutes. Cool to < 60 °C.Then add 250 mL of sterile 0.17M KH2PO4, 0.72M K2HPO4 to each flask.To prepare 0.17M KH2PO4, 0.72M K2HPO4 :46.2g KH2PO4250.8g K2HPO4 per 2 liters; make 250 mL aliquots and autoclave.2) S- medium (4 X 500mls autoclaved in 2 liter flask)0.5 L 2 L2.9g 11.6 g NaCl25 mL 100 mL 1M potassium phosphate, pH 6.0136.1 g KH2PO4 per 1000 mL; start with 800 mL and adjust to pH 6.0 with solid KOH (approx. 15g) before bringing up to volume.475 mL 1.9 L DDW0.5 mL 2 mL 5 mg/mL cholesterol in 95% EtOHWarm to 37°C O/N to dissolve. When this is added to an aqueous solution some cholesterol will precipitate; don't worry about this.Aliquot to four 2L flasks; Swirl to disperse; autoclave.Sterilely supplement EACH 500 mls with:1.5 mL 1M MgSO43 mL 0.5M CaCl25 mL 100X trace metals solution0.346 g FeSO4.7H200.930 g Na2EDTA0.098 g MnCL2.4H200.144 g ZnS04.7H200.012 g CuSO4.5H20 per 500 mLAutoclave. Keep in dark (wrap in aluminum foil).5 mL 1M KCitrate, pH 6.021.01 g citric acid, monohydrate per 100 mL; start with 80 mL and adjust to pH 6.0 with solid KOH (approx. 17 g) before bringing up to volume. Autoclave to sterilize.5 mL Gibco 100X Pen/Strp/Neo (, buy from Gibco, keep in freezer)5 mL 100X Nystatin (buy from Gibco, keep in freezer).3) worm plates- approximately 5 large plates of N2 (more for sick mutants) are needed to start each liter of liquid culture.Grow until the plates almost starve, or if you want to stage the worms, grow until the plates starve (they'll be mostly L1s).GROWING THE BACTERIA (WORM FOOD)1) Prepare 5 x 2.5 L of Superbroth in 5 x 6 L flasks (see above for recipe)2) Innoculate ~5 mL of HB101 in Superbroth into each of the 5 6-liter flasks; grow O/N @ 37° C with shaking.Warning: Be sure to have enough worm food! It is very bad to run out of food in the middle of a growth.3) Spin down the bacteria in 1-liter jars in the J6B centifuge (15 min / 4000 rpm / 4°C). This will require two spins of 6 bottles each ; just pour off the first sup. and add the rest of the culture on top of the first pellets and spin again. Resuspend the combined pellet in a bit (3 mL per bottle works fine) of S Medium. A convenient method is to put the 1-liter jar back on a platform shaker for ~15 minutes. Transfer to a 50 mL polypropylene tube and store in fridge for up to 2 weeks, or store @ -20 or -80 °C for unlimited time. The yield of bacteria per volume of superbroth is disappointing in these large cultures relative to what you would get in a 2 ml tube, presumably because of aeration problems. We have been getting about 9 mls of this bacterial suspension per liter of culture.GROWING THE WORMSStart with 5-8 almost starved large plates of N2 (more of mutant) containing a mixture of adults and young larvae. Wash the worms off the plates with S medium, and wash the plates again with more S medium to be sure to get all the worms. Add the worms to 1 liter of S-medium (in two 2 liter flasks containing 500 ml each.) Add 12.5 mls of bacteria to each flask. Shake @ 20° C on a platform shaker at ~240 RPM. You may need to start the shaker at slower RPMs and slowly turn it up to 240 in order to get the liquid swirling correctly in the flasks. Take approx. 200 µl aliquot every day and dump it on an unseeded worm plate to check that the worms are growing and whether they need more food. After a couple of days you will see tons of oval browinish pellets in the culture, presumbly worm debris and/or waste. If dauers are forming you need more food. Our regimen has been to add 25 mls more of bacteria to each flask after two days, and to harvest the culture 4-4.5 days after it was started. If there aren't enough worms, it is possible to wait 1-3 extra days to harvest. Some mutants grow more slowly than N2 and will definitely require these extra days of growth.Judging when the culture is ready to harvest takes a bit of experience. In the very best cultures, the bacteria are beginning to clear at the time of harvest (culture turns from milky to a clearer yellowish greenish brownish, and bacteria are less evident under the microscope), the worms are extremely dense, all stages of worms are present, and no dauers visible. If the worms get too dense all the worms will go dauer even if the food hasn't run out due to the accumulation of dauer pheromone. Of couirse, if the food runs out, the worms will also go dauer. Looking at 200 µl of liquid culture dumped onto an unseeded plate, when the culture is ready to harvest you should see about as many worms as you would find on a plate of worms (grown normally, on a seeded plate) that is about 0.5-1 days before starving.AFTER THE CULTURE HAS GROWN0) Prepare some ice cold 0.1 M NaCl (500 ml), and ice cold 60% sucrose (100 ml).1) Spin down worms in 3 500 mL jars 3K for 3 min in a Beckman JA-10 rotor. The speed and timing of this and the subsequent spins are fairly critical; we start the timing when the rotor is up to speed, then turn the machine off to start the deceleration when 3 minutes is up. Pour off the supernatant, being very careful and leaving some liquid in order not to lose any of the soft pellets. Expect a huge pellet with tons of bacteria, containing several different colored layers..2) Resuspend the pellets in 0.1 M NaCl, combine in one jar, and make up to 500 mls with 0.1 M Nacl. Spin again, this time at 2 K for 3 min in the JA-10, timing after the machine is up to speed as above. Pour off the supernatant, again being careful not to lose any, leaving some liquid.3) Swirl the flask to resuspend the pellet. Add more 0.1 M NaCl to make up to a total volume of 50 mls. Distribute 25 mls into each of two 50 ml centrifuge tubes, and place on ice for several minutes to chill. Add 25 mls ice cold 60% sucrose to each tube, mix, and spin 3.5 K for 5 minutes in a table top centrifuge. The sucrose solution damages and eventually kills the worms; work fast here.4) After the spin you should see a large dark brown pellet at the bottom of the tube (bacteria, debris, dead worms), and a large light brown layer of worms floating at the top. Use a broken off Pasteur pipette to carefully remove the worms, to a new centrifuge tube (it's ok to take about the top 20 mls of liquid here).5) Quickly dilute the worm suspension 4 fold with ice cold 0.1 M NaCl, and spin 3.1 K 3 min. Remove the supernatant. The pellet should contain reasonably clean worms.6) Resuspend the worms in 100 mls (i.e. fill up two 50 ml tubes) of ice cold 0.1 M NaCl, and spin 3.1 K for 3 min. to remove more sucrose. Pour the supernatant off the very soft pellet with great care. At this point the pellet should contain almost entirely healthy worms, with only a very small amount of debris and bacteria. The pellet can now be flash frozen in liquid nitrogen to later prepare RNA, or eggs can be prepped to start synchronized liquid cultures. Note that this last pellet is extremely soft, especially when it contains older worms, so it is impossible to pour off all the supernatant without losing the worms. Just do the best you can do, and freeze orproceed to prep the resulting suspension, which will be about 50% worms, 50% 0.1 M NaCl. If the worms will be used for an RNA prep, it is best to have less than 5 mls of worms in a 50 ml tube, to allow room to add the necessary guanidinium solution.7) The above prep takes two hours.8) Expected yield: about 15-20 mls of purified, packed, mixed stage worm pellet per liter of liquid culture. The contaminating bacteria should be <5% of the mass of the worms.PREPARING EGGS TO START SYNCHRONIZED LIQUID CULTURES1) Start with 20 mls of packed worms prepared as above. Make sure that this contains lots of gravid adults.2) Resuspend the worms in 1.5 N NaOH, 12% NaOCl, to a total volume of 100 ml (in two 50 ml centrifuge tubes). Mix gently at room temperature for 5 minutes. This will kill all the adults and larvae, but not the eggs, which are protected by their shells.3) Spin in a table top centrifuge 3.1 K for 5 min. Pour off the sup. and wash in 100 mls 0.1 M NaCl. Spin again, and wash again twice more in 50 mls 0.1 M NaCl each time, consolidating into one tube.4) Resuspend in 45 mls of S medium. Examining in the microscope at this point, you will see lots of flaccid dead worms, and very few free eggs. Most of the (viable) eggs are inside the dead adults.5) Our regimen has been to set up four 500 ml cultures from the eggs, and to harvest these synchronized cultures over the next 4 days to get variously staged worms. In order to get an equal mass of worms from the various stages we seed the cultures with 30, 9, 3, and 3 mls of the 45 ml egg suspension. These cultures are havested after 1, 2, 3, and 4 days respectively. Each 500 ml culture is initially fed with 25 mls of packed bacteria. Harvesting the first flask after 21 hours we got ~2 mls of packed L1/L2s (mostly L2s). Harvesting the second flask after 48 hours we got ~4 mls of packed L3s and early to mid L4s. Harvesting the 3rd flask after 72 hours we got ~ 4 mls packed adults, a mixture of ~2/3 young gravid adults and ~1/3 pregravid young adults.Lethal phase determination1. Pick a bunch of heterozygote L4 hermaphrodites to a new plate.2. The next day, there will be eggs on the plate; pick exactly 20 of these to each of a few plates. Make sure to use first day eggs like this: wild-type animals eventually run out of sperm and lay unfertilized eggs that don't develop, and you want to avoid confusing these with dead fertilized eggs. Line up the sets of 20 eggs in a row just beyond the edge of the seeded portion of the plate.3. The next day and succeeding days, examine the plates for unhatched eggs, dead worms, and live worms.4. If the worms hatch, but may be dying as young larvae, it can be difficult to distinguish between worms being "gone" because they died and the dead larvae are hard to find, or because live worms just crawled up the side of the dish and disappeared. To help this problem, you can keep the worms from crawling off the bacterial lawn by using a P-20 to ring the lawn with a line of 10 mg/ml palmitic acid in EtOH, which precipitates on the plate and forms a barrier the worms won't cross.。