太阳位置计算
- 格式:doc
- 大小:327.00 KB
- 文档页数:14
计算日出日落的方位角度公式要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式:方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。
例如,北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得方位角=31度意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。
说明:1本公式是在理想条件下推导出来的,即假设地球是个标准球体。
而实际上地球两极略扁,而且各地也有高山、洼地等,所以计算结果可能与实测结果有一点误差。
2 太阳围绕地球旋转的轨迹实际上是螺旋线(好象在地球外面套一根弹簧),所以实际上每天日出和日落的方位角稍微有点差别。
例如,在春分到夏至这段时间,日出方位角要略小于日落方位角。
昼夜长短的计算公式:Cost=-tgδ*tgφ太阳视位置太阳视位置指从地面上看到的太阳的位置,用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角,其值在0°到90°之间变化,日出日落时为零,太阳在正天顶上为90°(本万年历中显示的高度角均已进行了蒙气差的订正,蒙气差值取自天文年历)。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为-90°,在正东北方时,方位为-135°,在正西方时方位角为90°,在正北方时为±180°。
实际上太阳并不总是东升西落,只有在春秋分两天,太阳是从正东方升,正西方落。
在北半球,从春分到秋分的夏半年中,太阳从东偏北的方向升(方位角为-90°到-180°之间),在西偏北的方向落(方位角为90°到180°之间);而从秋分到下一年春分的冬半年中,太阳从东偏南的方向升(方位角为-90°到0°之间),在西偏南的方向落(方位角为0°到90°之间)。
一种太阳位置计算摘要一种新的太阳位置的准定算法。
在考虑高浓度热力系统情况下,准确的太阳位置跟踪是非常重要的。
在许多文献中发现简单的太阳位置的算法精确度在0.01度,而复杂的天文算法精度能0.0003度,但需要大量的计算。
在本文中提出的算法是一个精密度在两者之间的情况(最大误差0.0027度),可以应用在所有的太阳能工程应用方面的计算当中,在太阳能工程计算中比较方便的快速算法。
1.引言这项太阳的位置算法的精度高(在2003-2023年这一段时间内,最大的误差0.0027度)和不复杂的算法。
这种准确度应该够所有生活中太阳能工程的需要。
在文献中找到的许多快速计算太阳位置的算法,用于工程应用。
才发现他们需要的计算量较小,但他们最大的不足是通常误差大0.01度。
Spencer公式(Spencer,1971年)达到最大误差超过0.25度;Pitman和Vant-Hull算(Pitman和Vant-Hull,1978年)减小误差到0.02度;Walraven算法(Walraven,1978年),Walraven随后的修正,改进(Walraven,1979年,Archer,1980年;Wilkinson,1981年,1983年;Muir,1983年),误差在0.013度。
Michalsky算法(Michalsky,1988年),用于比较准确的工作,最大误差0.011度;最后一个算法,SPA算法(Blanco-Muriel et al,2001年)最大误差0.008度。
所有这些算法正确的计算时间为有限周期时间。
例:1950-2050用Michalsky算法, 1995-2015用SPA算法。
也有一些高精度天文算法,如Meeus(1988年)提出的数值计算方法, Reda和Andreas (2004年)有一种适合太阳能应用算法,众所周知的SPA(太阳的位置算法)。
在很长一段时见(2000b.C.- 6000a.C)该算法最大误差小于0.0003度,但需要大量的计算。
第24章太阳位置计算[许剑伟于家里2008-3-30下午]一、低精度计算:当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下。
设JD是儒略日数,可以用第7章表述的方法计算。
T为J2000起算的儒略世纪数:T = (JD-2451545.0)/36525计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。
接下来,太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3 地球轨道离心率:e = 0.016708617 - 0.000042037*T - 0.0000001236*T^2太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) * sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)那么,太阳的真黄经是:Θ= Lo + C真近点角是:v = M + C日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式式中的分子部分的值变化十分缓慢。
它的值是:0.9997190 1800年0.9997204 1900年0.9997218 2000年0.9997232 2100年太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。
计算日出日落的方位角度公式要计算任意一个地方在任意一天日出日落的方位角度,可以用下面的公式:方位角=90 - 0.5arccos[2(sinM/cosN)^2- 1]公式中,M表示的是某天太阳直射的纬度,N表示的是某地的纬度,^2表示平方。
例如,北京在北纬40度,则N=40,夏至这一天太阳在北纬23.5度(太阳直射北纬23.5度),即M=23.5,把N和M的值代入上式,可求得方位角=31度意思是,夏至这一天,在北京的人看来,太阳是从东偏北31度的方位升起的,是在西偏北31度的方位落下的。
说明:1本公式是在理想条件下推导出来的,即假设地球是个标准球体。
而实际上地球两极略扁,而且各地也有高山、洼地等,所以计算结果可能与实测结果有一点误差。
2 太阳围绕地球旋转的轨迹实际上是螺旋线(好象在地球外面套一根弹簧),所以实际上每天日出和日落的方位角稍微有点差别。
例如,在春分到夏至这段时间,日出方位角要略小于日落方位角。
昼夜长短的计算公式:Cost=-tgδ*tgφ太阳视位置太阳视位置指从地面上看到的太阳的位置,用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角,其值在0°到90°之间变化,日出日落时为零,太阳在正天顶上为90°(本万年历中显示的高度角均已进行了蒙气差的订正,蒙气差值取自天文年历)。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
方位角以正南方向为零,由南向东向北为负,由南向西向北为正,如太阳在正东方,方位角为-90°,在正东北方时,方位为-135°,在正西方时方位角为90°,在正北方时为±180°。
实际上太阳并不总是东升西落,只有在春秋分两天,太阳是从正东方升,正西方落。
在北半球,从春分到秋分的夏半年中,太阳从东偏北的方向升(方位角为-90°到-180°之间),在西偏北的方向落(方位角为90°到180°之间);而从秋分到下一年春分的冬半年中,太阳从东偏南的方向升(方位角为-90°到0°之间),在西偏南的方向落(方位角为0°到90°之间)。
第24章太阳位置计算[许剑伟于家里 2008-3-30下午]一、低精度计算:当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下。
设JD是儒略日数,可以用第7章表述的方法计算。
T为J2000起算的儒略世纪数:T = (JD-2451545.0)/36525计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。
接下来,太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3地球轨道离心率: e = 0.0 - 0.000042037*T - 0.0000001236*T^2太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) * sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)那么,太阳的真黄经是:Θ = Lo + C真近点角是: v = M + C日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式式中的分子部分的值变化十分缓慢。
它的值是:0.9997190 1800年0.9997204 1900年0.9997218 2000年0.9997232 2100年太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。
用天文测量简历精确计算太阳位置的方法天文测量是一种精确测量天体位置和运动的科学技术,是太空探索和星际旅行的重要基础。
太阳作为地球最为重要的天体之一,它的位置对于日常生活、导航、气象预测以及科学研究都具有重要意义。
本文将介绍几种通过天文测量精确计算太阳位置的方法。
方法一:日晷法日晷是一种将太阳高度角与时间联系起来的仪器,经过精确测量,可以用来计算太阳在天空中的位置。
日晷的基本原理是利用太阳的影子来测量时间。
根据太阳影子在地面上的轨迹以及影子长度的变化,可以确定太阳的高度角和方位角。
通过对太阳高度角和方位角的测量和计算,可以确定太阳在天空中的位置。
方法二:天文学三角测量法天文学三角测量法是利用三角形中的角度和边长来计算未知角度和边长的一种方法。
在天文学中,通过观测天体的位置和运动轨迹,可以使用天文学三角测量法来测量它们的距离、速度和位置等信息。
其中,使用天文学三角测量法测量太阳的位置,是通过观测太阳在两个不同地点的高度角和方位角,以及两个地点的距离来计算太阳在天空中的位置。
方法三:望远镜观测法望远镜观测法是利用望远镜来观察太阳,通过测量太阳的大小和位置,来计算太阳在天空中的位置。
望远镜可以提供更加精确和详细的太阳图像,同时也可以通过望远镜的调节和校正来消除大气的影响,进一步提高观测精度。
方法四:地球磁场观测法地球磁场观测法是利用地球磁场的变化来精确测量太阳位置的一种方法。
太阳活动会影响地球磁场,因此,通过观测地球磁场的变化,可以获得太阳活动的信息。
通过计算地球磁场的变化,以及太阳、地球和观测点的位置,可以计算出太阳在天空中的位置。
以上四种方法是通过天文测量精确计算太阳位置的常用方法。
不同的方法适用于不同的场景和精度要求。
无论使用哪种方法,天文测量的基础仍然是精确测量和计算。
因此,天文学家和测量技术人员需要具备精确测量和计算的技能,以及对天文学的深刻理解和热爱。
相关数据是指对研究对象进行的各种观测、测量、实验等数据,是进行科学研究和分析的基础。
太阳直射点经纬度计算公式1太阳直射点的经纬度计算大家都知道,地球运行时它会不断地运动。
而太阳又永远保持在绝对静止的位置,而绕地球行转一圈等于一天时间。
这就意味着,在一天之内,太阳在地球上有一个“直射点”,它就是日光为期一天的移动所画出的圈上有许多直线,有一个处于东南方的经纬度永远处于太阳直射点。
因此,计算太阳最终直射点的经纬度就成为一个有趣的问题。
无论多么复杂,只要理解了一些基本的原理,就可以计算出结果。
1计算地球的轨道倾角由于太阳的轨道是非平行的,运动的方向也有所变化,所以想要计算出太阳最终直射点的经纬度,首先应该确定出地球轨道的倾角。
具体来说,通过观察太阳最终直射点位置,可以得出它的轨道倾角。
而地球轨道的正确倾角大约是23.4°,这也是太阳在每一天经过的最大角度。
2计算太阳在不同经度下的高度当我们确定了地球轨道的倾角后,就可以计算出太阳在不同的经度下的高度了。
具体来说,只要根据坐标系中的单位弧度确定都经度,确定每一经度对应的太阳升高角,每个日出时刻经度就可以绘制出一条太阳高度曲线。
不难看出,太阳在一天中心经度的最高点就是太阳直射点,其太阳升高角也比其他经度稍高一些。
3计算太阳直射点的经纬度当我们确定了太阳在不同经度下的高度,就可以计算出太阳最终直射点的经纬度了。
具体来说,要首先确定整个斜率的参数,然后将太阳最终直射点放在斜率上,以此来确定太阳最终直射点的经纬度。
到这里,就可以计算出太阳最终直射点的经纬度,有的的这两个经度坐标就可以根据自己的情况,将太阳最终直射点的位置移动过去了。
总之,要计算太阳最终直射点的经纬度,首先要确定地球轨道的倾角,然后计算太阳在不同经度下的高度,最后将太阳最终直射点放在斜率上,以此来计算其经纬度的坐标。
计算方法虽然不难,但一定要理解核心原理,才能准确地计算出最终的结果。
太阳方位角/高度角计算公式2014/4/14Micheal-Yang1. 太阳高度角sinHs sin sin cos cos cost ϕδϕδ=⋅+⋅⋅式中,表示太阳高度角,表示地理纬度,表示太阳赤纬,表示时角。
(太阳赤纬和时角的概念请自行百度。
)由式中可见,地理纬度,还需要求太阳赤纬和时角。
太阳赤纬和时角的求法见下。
2. 太阳方位角()()/cosAs sinHs sin sin cosHs cos ϕδϕ=⋅−⋅式中,表示太阳高度角,表示地理纬度,表示太阳赤纬。
3. 太阳赤纬设太阳赤纬为delta ,有:delta(deg)=[0.006918-0.399912cos(b)+0.070257sin(b)-0.006758cos(2b)+0.000907sin(2b)-0.002697cos(3b)+0.00148sin(3b)](180/pi)其中delta 的单位为度(deg);pi=3.1415926为圆周率;b(deg)=360N/365,单位为度(deg); N 为日数,自每年1月1日开始计算。
4. 时角时角由太阳时求得。
太阳时角在正午时约为零,上午为负,下午为正,日出时约为-90°,日没时约为90°。
平均每小时时角变化15°。
太阳时角t = ( 真太阳时(called True Time) - 12 ) * 15°我们知道,一般情况下,我们的时钟显示12:00时,太阳并没有位于正中间,这是因为我们的时钟时间(也叫“平太阳时”)与真太阳时有一定的偏差,而真太阳时的12:00正是太阳位于正中,即方位角为0的时间。
真太阳时=平太阳时+真太阳时时差。
还有一点我们要注意,由于我国全国使用的都是“北京时间”,因此在计算真太阳时时,还要计算由于经度不同带来的时差。
虽然是“北京时间”,但“北京时间”是根据东经120°测得的,因此计算时差时,要以东经120°为标准。
太阳位置求算公式与计算举例默认分类2022-11-14 21:04:44阅读393评论2 字号:大中小订阅太阳位置求算公式与计算举例杨齐聪在新农村建设和城市高楼群落的规划设计中,为了解决土地采用率与满意采光通风最低要求的冲突,常会遇到各幢楼房各部位的采光时间和日墙方位角的计算。
太阳位置可由太阳高度角hs和方位角as打算,依据球面三角基本公式可得:一、太阳高度角hs求算公式Sinhs=sinδsinφ+cosδcosφcosω (1)式中δ为太阳赤纬,表示太阳光线与地球赤道面的夹角,一年四季每天都在变动着,冬至B δ=-23o27,,春分日和秋分日δ=0°,夏至日5二23。
27';φ为测点纬度,如北京φ=39°48'∖西安φ=34°18;上海φ=31o10∖杭州φ=30°19;临海φ=28°51'∖福州φ=26°05'∖台北φ=25°20'∖广州φ=23°08∖3为太阳时角,以当地正午为0。
,上午为负,每小时一15。
,下午为正,每小时+15。
,ω在赤道面上每小时变化为=15°, 3所表示的是真太阳时;与时钟不同。
现举例计算于下:1.求北纬30。
地方冬至日正午时刻和下午1时、2时(均指地方时)的太阳高度角。
①正午时刻太阳时角为0。
,即3=0°将5=—23°27'、φ=30∖ 3=0。
代入(1)式得Sinh !E^=sin(-23027,)sin300+cos(-23027,)cos300cos00=-0.3979×0.5+0.9175×0.8660×1=-0.19895+0.79456=0.5956h正午=36°33'(查正弦数学用表所得,下同)则北纬30。
地方冬至日正午时刻的太阳高度角为36。
33:②下午1时(上午11时与此高度角同),太阳时角为15°,即ω=15o得Sinh 下午 1 0'J =sin(-23o27,)si∩3O o+cos(-23o27,)cos3O o cos15°=-0.19895+0.79456×0.9659=-0.19895+0.7675=0.5685h下午1时二34°39'则北纬30。
假如给出当前位置的经度、纬度和准确的天文时间,用什么方式计算出太阳当前的位置呢?例如算出类似于方位角和高度角的数据?实际中使用希腊字符表示经纬度,不过为了输入方便,我改用XYZ表示.X是地方纬度,Y是太阳赤纬,t是时角,z=90度-h高度h,方位角A,则sinh=sinXsinY+cosXcosYcostsinA=cosYsint/coshcosA=(sinXsinh-sinY)/(cosXcosh)具体的可以在网上搜示意图或这本书《天文学新概论》苏宜编著华中理工大学出版社 2000年8月第一版 P52的章节第24章太阳位置计算[许剑伟于家里 2008-3-30下午]一、低精度计算:当计算精度要求为0.01度,计算太阳位置时可假设地球运动是一个纯椭圆,也就说忽略月球及行星摄动,计算表达如下。
设JD是儒略日数,可以用第7章表述的方法计算。
T为J2000起算的儒略世纪数:T = (JD-2451545.0)/36525计算时要保留足够的小数位数,5位小数是不够的(除非所需的太阳黄经的精度要求不高),注意,T表达为儒略世纪数,所以T误差0.00001相当于0.37日。
接下来,太阳几何平黄经:Lo = 280°.46645 + 36000°.76983*T + 0°.0003032*T^2 (Date平分点起算)太阳平近点角: M = 357°.52910 + 35999°.05030*T - 0°.0001559*T^2 -0°.00000048*T^3地球轨道离心率: e = 0.016708617 - 0.000042037*T - 0.0000001236*T^2太阳中间方程:C = +(1°.914600 - 0°.004817*T -0°.000014*T*T) * sin(M)+(0°.019993 - 0°.000101*T) * sin(2M)+ 0°.000290*sin(3M)那么,太阳的真黄经是:Θ = Lo + C真近点角是: v = M + C日地距离的单位是"天文单位",距离表达为:R = 1.000001018 (1-e^2) / (1+e*cos(v)) ……24.5式式中的分子部分的值变化十分缓慢。
它的值是:0.9997190 1800年0.9997204 1900年0.9997218 2000年0.9997232 2100年太阳黄经Θ可由上述的方法算出,它是Date黄道分点坐标中的真几何黄经,需通过计算地心坐标星体位置也可算出。
要取得Date黄道坐标中太阳的视黄经λ,还应对Θ进行章动修正及光行差修正。
如果精度要求不高,可用下式修正:Ω = 125°.04 - 1934°.136*Tλ = Θ - 0°.00569 -0°.00478*sin(Ω)某此时候,我们需要把太阳黄经转到J2000坐标中,在1900-2100年范围内可利用下式进行: Θ2000 = Θ - 0°.01397*(year-2000)如果还想取得更高的转换精度(优于0.01度),那么你可以使用第25章的方法进行坐标旋转。
Date黄道坐标中的太阳黄纬不超过1".2,如果对精度要求不是很高,可以置0。
因此,太阳的地心赤经α及赤纬δ可以用下式(24.6式,24.7式)计算,式中ε是黄赤交角(由21章的21.2式计算)。
tanα = cosεsinΘ / cosΘ ……24.6式sinδ = sinεsinΘ ……24.7式如果要想得到太阳的视赤经及赤纬,以上二式中的Θ应换为λ,ε应加上修正量:+0.00256*cos(Ω)[译者注]:实际上就是对Θ补上黄经章动及光行差,ε补上交角章动后再转到赤道坐标中。
也可在赤道坐标中补章动及光行差,但公式不同。
公式24.6当然可以转为:tan(α) = cos(ε)*tan(Θ),接下来,我们要注意α与Θ应在同一象限。
然而,如果你使用计算机语中有ATN2函数(C语言是atan2),那最好保持24.6式不变,这样就可直接利用ATN2函数算出α,即:α = ATN2( cos(ε)*sin(Θ),cos(Θ) )例24.a——计算1992-10-13,0点,即力学时TD=JDE 2448908.5时刻的太阳位置。
我们算得:T = -0.072183436Lo= -2318°.19281 = 201°.80719M = -2241°.00604 = 278°.99396e = 0.016711651C = -1°.89732Θ= 199°.90987 = 199°54' 36"R = 0.99766Ω= 264°.65λ= 199°.90897 = 199°54' 32"εo= 23°26'24".83 = 23°.44023 (由21章的21.2式算得)ε= 23°.43999α视= -161°.61918 = +198°.38082 = 13h.225388 = 13h 13m 31s.4δ视= -7°.78507 = -7°47' 06"使用VSOP87行星理论计算出的的正确值是:(请与上面的结果做一下比较)Θ= 199°54' 26".18λ= 199°54' 21".56β= +0".72R = 0.99760853α视= 13h 13m 30s.749δ视= -7°47' 01".74基于单片机EM78247的光伏发电系统太阳自动跟踪器摘要:由于太阳位置随时间而变化,使光伏发电系统的太阳能电池阵列受光照强度不稳定,从而降低了光伏电池的效率,因此,设计太阳自动跟踪器是提高光伏发电系统工作效率的有效措施。
本文采用单片机EM78247为控制核心,设计了一个双轴太阳自动跟踪器,配合两台交流伺服电机实现光伏电池阵列与阳光照射之间的同步跟踪。
该控制器在硬件和软件各方面采取了多项抗干扰措施,使其具有较好的跟踪效果和较强的抗干扰能力,且运行可靠稳定,具有较高的实际应用价值。
关键词:光伏发电系统;EM78247;太阳自动跟踪器当今社会人们的环保意识越来越强,光伏发电系统的应用普遍受到各国政府重视。
因为它不仅能为我们提供用之不竭的可持续再生电能,并更好地保护人类赖以生存的环境。
但其发电效率较低,发电成本相对较高仍然足制约其大规模应用的重要因素。
在没有出现高效的光伏电池材料之前,研制具有实用价值的阳光随动系统以降低成本,是促进太阳能广泛应用的主要途径之一。
据研究,双轴系统可提高发电量35%左右,单轴系统也可提高20%左右。
国外在20世纪80年代就对太阳跟踪系统进行了研究,如美国、德国在单双轴自动跟踪、西班牙在2倍聚光反射跟踪等方面开发出了相应的商品化自动阳光跟踪器[1]。
我国于20世纪9 0年代左右也对其进行了大量的研究,但一直没有稳定可靠的商品化产品出现,主要原因在于:首先,系统的运行可靠性不高,无法满足使用要求。
由于大部分光伏电站都安装在偏远地区,环境非常恶劣,维护困难,跟踪系统增加了旋转机构与相应的机械机构,可靠性明显下降,如果不能保证整个系统的在各种环境下都能可靠稳定运行,对整个光伏系统反而是灾难性的打击;其次,跟踪器的控制误差偏大。
尤其对反射聚光的跟踪器,如果跟踪误差偏大,不但不能提高发电效率,反而会使太阳能电池组件的受光面积变小,产生热斑等不利影响,从而降低太阳能电池组件的使用寿命;第三是采用进口技术和器件使成本过高。
全部购买国外成熟的技术,大大提高系统的硬件成本与维护成本,使推广更加困难。
本文以EM78247微处理器为核心,针对光伏发电系统的电池组件,设计开发了一种双轴阳光随动控制器,它具有运行稳定可靠、跟踪误差小、成本低等优点,具有很高的推广应用价值。
1 阳光随动控制的基本原理阳光随动控制器,顾名思义其基本功能就是使光伏阵列随着阳光而转动,基本原理框图如图1所示。
图1 光伏阵列阳光随动系统原理框图该系统时刻检测太阳与光伏阵列的位置并将其输入到控制单元,控制单元对这两个信号进行比较并产生相应的输出信号来驱动旋转机构,使阳光时刻垂直入射到光伏阵列的表面上,使光伏阵列始终处于最佳光照条件下,发挥最大光伏转换效率。
虽然太阳在天空中的位置时刻都在变化,但其运行却具有严格的规律性,在地平坐标系中,太阳的位置可由高度角α与方位角ψ来确定,公式如下:(1)式中:δ为太阳赤纬角;φ为当地的纬度角;α为时角。
太阳赤纬角与时角可以由本地时间确定,而对确定的地点,本地的纬度角也是确定,因此只要输入当地相关地理位置与时间信息就可以确定此时此刻的太阳位置。
2 系统的整体设计方案EM78247是一款具有RISC结构的高性能中档单片机,仅有35条单字指令,8 k×14个字节FLASH程序存储器,368×8个字节RAM数据存储器,256×8个字节E2PROM数据存储器,14个中断源,8级深度的硬件堆栈,内部看门狗定时器,低功耗休眠模式,高达25 mA的吸入/拉出电流,外部具有3个定时器模块,2个16位捕捉器/16位比较器/10位PWM模块,10位多通道A/D转换器,通用同步异步接收/发送器等功能模块。
自动阳光跟踪器的控制方式主要有微处理器控制、PLC控制、DSP控制与模拟电路控制4种形式,根据以上原理,本文选择性价比较高的EM78247单片机为控制核心,系统实现的具体原理框图如图2所示。
整个控制器主要由控制单元与驱动执行机构两部分组成。
控制单元由角度计算及反馈控制、启动信号产生、电机驱动信号产生、保护信号处理与人机通讯5个部分组成。
系统功能说明如下:单片机循环检测光伏阵列的位置,并将其与计算出的此时本地太阳的高度角与方位角进行比较来确定光伏阵列是否跟踪上太阳的位置,如果没有启动信号满足启动条件,单片机就发出指令驱动电机转动;保护信号是保证系统在外界以及其他非人为因素情况下所执行的一种操作指令,以确保系统不受损坏,从而提高了整个系统的可靠性。
驱动执行单元主要功能是用来实现电机驱动与旋转,并通过机械传动机构带动光伏电池阵列转动。
2.1 控制单元的硬件设计由于采用了单片机作为主控制单元,大部分工作都由单片机在软件中实现,从而简化了控制电路的硬件设计,简要说明主要控制部分的实现过程。