第六章半导体材料
- 格式:ppt
- 大小:134.00 KB
- 文档页数:41
第六章习题6-1 解释欧姆接触,并说明形成欧姆接触的常用方法。
欧姆接触是指金属与半导体之间的电压与电流的关系具有对称和线性关系,而且接触电阻尽可能低,不产生明显的附加阻抗。
常用方法:扩散法和合金法扩散法:是在半导体中先扩散形成重掺杂区以获得N+N或P+P的结构,然后使金属与重掺杂的半导体区接触,形成欧姆接触。
合金法:是利用合金工艺对金属互联线进行热处理,使金属与半导体界面形成一层合金层或化合物层,并通过这一层与表面重掺杂的半导体形成良好的欧姆接触。
6-2 列出并描述集成电路制造中对金属薄膜的要求。
要求:(1)具有高的导电率和纯度(2)与下层衬底(通常是二氧化硅或氮化硅)具有良好的粘附性(3)与半导体材料连接时接触电阻低(4)能够淀积出均匀而且没有“空洞”的薄膜,易于填充通孔(5)易于光刻和刻蚀,容易制备出精细图形(6)很好的耐腐蚀性(7)在处理和应用过程中具有长期的稳定性6-3 列出半导体制造中使用的金属种类,并说明每种金属的用途。
种类:铝、铝铜合金、铜、阻挡层金属、硅化物和钨铝:作为金属互连的材料,以薄膜的形式在硅片中连接不同器件。
铝铜合金:有效解决电迁徙问题。
铜:作为互连线。
阻挡层金属:防止上下层材料相互扩散。
硅化物:减小接触电阻。
钨:填充通孔。
6-4 解释铝已被选择作为微芯片互连金属的原因。
(1)较低的电阻率(2)铝价格低廉(3)工艺兼容性(4)铝膜与下层衬底(通常是硅、二氧化硅或氮化硅)具有良好的粘附性6-5 哪种金属已经成为传统互连金属线?什么是它的取代物?铝已经成为传统互连金属线,铝铜合金是它的取代物6-6 描述结尖刺现象,如何解决结尖刺问题?由于硅在铝中的溶解度比较高,形成合金时,硅会从衬底向铝中溶解,这样就在接触区下层的硅中留下空洞,从而有可能发生尖刺效应。
解决方法:在接触区引入阻挡层金属可阻止上下层材料互相混合。
6-7 描述电迁徙现象,如何解决电迁徙现象?电迁徙现象:在大电流密度的情形下,大量电子对金属原子的持续碰撞,会引起原子逐渐而缓慢的移动。
第六章半导体的物质结构和能带结构第6章异质结和纳米结构1、试讨论用窄禁带n 型半导体和宽禁带p 型半导体构成的反型异质结中的能带弯曲情况,画出能带图。
答:2、仿照第4章对pn 同质结的讨论方法,完成突变pn 异质结接触电势差表达式(6-5)和势垒区宽度表达式(6-7)的推导过程。
解:设p 型和n 型半导体中的杂质都是均匀分布的,其浓度分别为N A1和N D2。
势垒区的正负空间电荷去的宽度分别为(x 0-x 1)=d 1,(x 2-x 0)=d 2。
取x=x 0为交界面,则两边势垒区中的电荷密度可以写成-=<<-=<<22201101)(,)(,D A qN x x x x qN x x x x ρρ 势垒区总宽度为211002)()(d d x x x x X D +=-+-=势垒区的正负电荷总量相等,即Q x x qN x x qN D A =-=-)()(022101Q 就是势垒区中单位面积上的空间电荷数值。
因此上式可以简化为120210)()(A D N N x x x x =-- 设V(x)代表势垒区中x 点得电势,则突变反型异质结交界面两边的泊松方程分别为)()(0111212x x x qN dx x V d A <<=ε )()(2022222x x x qN dx x V d D <<=ε ε1ε2分别为p 型及n 型半导体的介电常数。
对以上两式分别积分一次得)()(011111x x x C x qN dx x dV A <<+=ε )()(202222x x x C x qN dx x dV D <<+=ε C1‘C 2是积分常数,有边界条件决定。
因势垒区外是电中性的,电场集中在势垒区内,故边界条件为0)(1111=-==x x dx dV x E0)(2222=-==x x dx dV x E注意,在交接面处的电场并不连续,但电位移连续[即)()(022011x E x E εε=]。