抽象函数问题的解题策略 (2)
- 格式:doc
- 大小:85.50 KB
- 文档页数:8
抽象函数问题解法抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则的函数。
它与函数的奇偶性、单调性、周期性、对称性等函数性质联系在一起,具有很强的抽象性。
这类问题主要考查数学思想方法的运用能力,以及对数学语言以及符号的阅读理解能力。
本文结合具体问题分类剖析这类问题的求解策略。
一、利用函数性质的解题思想函数性质是反映函数特征的主要途径,充分利用题设条件中已表明或隐含的函数性质,选择适当的方法解决抽象函数问题。
1.利用对称性,数形结合例1:已知函数f(x)对一切实数x都有f(2+x)= f(2-x),如果方程f(x)=0恰好有4个不同的实根,求这些实根之和。
策略:由f(2+x)= f(2-x)可知是函数图像关于直线x=2对称。
又f(x)=0四个根按由小到大的顺序可设为x1、x2、x3、x4,则x1+x4=2×2=4,x2+x3=2×2=4,∴x1+x2+x3+x4=8。
2. 利用奇偶性分析函数特征例2:已知函数f(x)=ax+bsinx+3,且f(-3)=7,求f(3)的值。
策略:注意到g(x)=ax+bsinx=f(x)-3是奇函数,可得g(-3)= -g(3),即f(-3)-3= -[f(3)-3],f(3)=6-f(-3)= -1。
3. 利用单调性等价转化例3:已知奇函数f(x)在定义域(-1,1)上是减函数,试求满足不等式f(1-a)+f(1-a2)4.利用周期性研究函数特征例4:已知f(x)是定义在正整数集上的函数,对任意正整数x 都有f(x)=f(x-1)+f(x+1),且f(1)=2002,求f(2002)。
分析:根据x的任意性,判断函数的周期。
略解:由f(x)=f(x-1)+f(x+1),可得:f(x+3)=-f(x)。
∴f(x+6)=-f(x+3)=[-f(x)]=f(x),∴f(x)是以6为周期的周期函数,∴f(2002)=f(333×6+4)=f(4)=f(3+1)=-f(1)=-2002。
高考数学抽象函数的6大快速解题技巧1.换元法换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2)故f(x)=-x 2+3x+1 (0≤u ≤2)2.方程组法运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。
例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x1)x (f 2)x1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥⨯-≥∆得由例3.f(x).1),x 0(x ,x 1)x1x (f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x1x (f )x (f ≠≠+=-+且 ,x1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x-11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x1x 2)x (f )x -11f( ,x 111)x111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x).解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1.4.赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
抽象函数的性质问题解析抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
1、 定义域:解决抽象函数的定义域问题——明确定义、等价转换。
材料一:若函数)1(+=x f y 的定义域为)3,2[-,求函数)21(+=xf y 的定义域。
解析:由)1(+=x f y 的定义域为)3,2[-,知1+x 中的)3,2[-∈x ,从而411<+≤-x ,对函数)21(+=x f y 而言,有1124x -≤+<,解之得:),21(]31,(+∞--∞∈ x 。
所以函数)21(+=x f y 的定义域为),21(]31,(+∞--∞总结:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1+x 与21+x的范围等同。
2、 值域:解决抽象函数的值域问题——定义域、对应法则决定。
材料二:若函数)1(+=x f y 的值域为]1,1[-,求函数)23(+=x f y 的值域。
解析:函数)23(+=x f y 中定义域与对应法则与函数)1(+=x f y 的定义域与对应法则完全相同,故函数)23(+=x f y 的值域也为]1,1[-。
总结:当函数的定义域与对应法则不变时,函数的值域也不会改变。
3、 对称性:解决抽象函数的对称问题——定义证明是根本、图象变换是捷径、特值代入是妙法。
材料三:设函数)(x f y =定义在实数集上,则函数)1(-=x f y 与)1(x f y -=的图象关于( )A 、直线0=y 对称B 直线0=x 对称C 直线1=y 对称D 直线1=x 对称 解法一(定义证明):设点),(00y x P 是函数)1(-=x f y 的图象上的任意一点,则)1(00-=x f y ,),(00y x P 关于直线m x =的对称点为),2(00/y x m P -,要使点),2(00/y x m P -在函数)1(x f y -=的图象上,则)21()]2(1[000m x f x m f y -+=--=,应有121-=-m ,故1=m ,所以函数)1(-=x f y 与)1(x f y -=的图象关于直线1=x 对称。
解题宝典抽象函数问题的难度一般不大.常见的抽象函数问题有求抽象函数的值域,求抽象函数的定义域,判断抽象函数的周期性、单调性、奇偶性等.下面结合实例,谈一谈三类常见的抽象函数问题的解法.一、求抽象函数的值域求抽象函数的值域问题,往往要求根据已知关系式和定义域来求函数的值域.解答此类问题,需对已知关系式进行赋值,以便根据函数单调性的定义,判断出函数的单调性,然后根据函数的单调性求得函数在定义域内的最值,即可确定函数的值域.若定义域包含了多个单调区间,则需在每个区间内讨论函数的单调性,再比较各个区间上的最大、最小值,即可解题.例1.若对任意实数x ,y 都有f ()x +y =f ()x +f ()y ,当x >0时恒有f ()x >0,且f ()-1=-2,求函数f ()x 在区间[]-2,1上的值域.解:令x 1=y ,x 2=x +y ,可得x 2-x 1>0,∵f ()x 2-f ()x 1=f ()()x 2-x 1+x 1-f ()x 1=f ()x 2-x 1+f ()x 1-f ()x 1>0,∴f ()x 1<f ()x 2,可得f ()x 在R 上单调递增,∴当x ∈[]-2,1时,f ()-2≤f ()x ≤f ()1,∵f ()-2=f ()-1-1=f ()-1+f ()-1=-4,f ()1=f ()-1+2=f ()-1+f ()2=f ()-1+f ()1+f ()1=2,∴f ()x 在区间[]-2,1上的值域为[]-4,2.解答本题,需对已知关系式f ()x +y =f ()x +f ()y 进行赋值,令x 1=y ,x 2=x +y ,通过等量代换判断出f ()x 2-f ()x 1的符号,便可判断出函数f ()x 的单调性.再根据函数的单调性,即可求得抽象函数的值域.二、抽象函数的单调性问题抽象函数的单调性问题通常要求根据已知关系式或函数的性质判断函数的单调性,求得函数的单调区间.解答此类问题,需灵活运用单调性的定义.解题的基本思路为:①在定义域内任选两个数x 1、x 2,且使x 1<x 2,②结合已知条件,化简f ()x 2-f ()x 1或f ()x 2f ()x 1,并将其与0、1比较,③得出结论.若f ()x 2>f ()x 1,则函数在定义域上单调递增;若f ()x 2<f ()x 1,则函数f ()x 单调递减.例2.已知对任意x ∈R ,恒有f ()x >0,当x >0时,f ()x >1.对任意x ,y ∈R ,均有f ()x +y =f ()x f ()y ,试证明:f ()x 在R 上单调递增.分析:我们需先设出x 1,x 2,然后通过等量代换,判断出f ()x 2f ()x 1与1的大小关系,以便根据函数单调性的定义证明抽象函数f ()x 在R 上单调递增.证明:令x 1<x 2,则f ()x 2>0,f ()x 1>0,x 2-x 1>0,f ()x 2f ()x 1=f ()x 2-x 1+x 1f ()x 1=f ()x 2-x 1f ()x 1f ()x 1=f ()x 2-x 1>1,所以f ()x 2>f ()x 1,故函数f ()x 在R 上单调递增.三、抽象函数的奇偶性问题对于抽象函数的奇偶性问题,通常需根据奇偶函数的定义来求解.在解题时,要首先对已知关系式进行赋值,如令x =0、1、-1、-x 等,并将其代入式子中,以便判断出f ()-x 与f ()x 之间的关系.若f ()-x =f ()x ,则函数为偶函数;若f ()-x =-f ()x ,则该函数为奇函数.例3.若函数f ()x ,g ()x 的定义域为R ,对于任意x ,y ∈R ,均有f (x +y )+f ()x -y =2f ()x f ()y ,且f ()0≠0,试判断函数f ()x 的奇偶性.解:令x =y =0,由f (x +y )+f ()x -y =2f ()x f ()y 可得2f 2()0=2f ()0,因为f ()0≠0,所以f ()0=1,令x =0,可得f ()0+y +f ()0-y =2f ()0f ()y =2f ()y ,则f ()y =f ()-y ,故函数f ()x 为偶函数.要判断出函数的奇偶性,需令x =y =0,通过多次赋值,才能判断出f ()-x 与f ()x 之间的关系.总之,抽象函数是一类较为特殊的函数,它没有具体的解析式和图象,因而在解答抽象函数问题时,需重点研究已知关系式和抽象函数的性质,从中找到解题的突破口.(作者单位:云南省曲靖市会泽县实验高级中学)方琼41。
抽象函数问题的解决策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。
抽象函数问题是高中数学函数部分的难点,也是高中与大学函数部分的衔接点。
由于这类试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识,因而备受高考命题者的青睐。
然而由于这类问题本身的抽象性及其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。
为使抽象函数问题解决有章可循,有法可依,本文主要介绍抽象函数问题的常见方法。
一、“赋值” 策略对于抽象函数,根据函数的概念和性质,通过观察与分析,将变量赋予特殊值,以简化函数,从而达到转化为要解决的问题的目的。
【例1】若奇函数()()f x x R ∈,满足(2)1,(2)()(2)f f x f x f =+=+,则(1)f 等于( )A .0B .1C .12- D .12解:对于)2()()2(f x f x f +=+,令1-=x ,得)2()1()1(f f f +-=即1)1()1(+-=f f , 从而1)1(2=f ,所以21)1(=f ,选D 。
【例2】设对任意实数1x 、2x ,函数)(x f y =)0,(≠∈x R x 满足)()()(211x x f x f x f ⋅=+。
(1)求证:0)1()1(=-=f f ;(2)求证:)(x f y =为偶函数。
解:(1)令121==x x ,得)1()11()1()1(f f f f =⨯=+,所以0)1(=f 。
令121-==x x ,得0)1()1()1(==-+-f f f ,所以0)1(=-f 。
(2)令x x x ==21,得)()(22x f x f =,令x x x -==21,得)()(22x f x f =-,从而我们有:)()(x f x f =-, 所以,)(x f y =为偶函数。
抽象函数是数学中一个重要的概念,它用于表达抽象问题。
抽象函数可以帮助我们解决各种复杂问题,但如何正确地使用它们来解题是一个棘手的问题。
在本文中,我们将探讨抽象函数的解题策略,以帮助读者正确地解决抽象函数问题。
首先要明白,抽象函数是一种推理。
它们帮助我们找出一个函数的一组可能的值,这些值可以满足给定约束条件。
因此,使用抽象函数解决问题的关键是,要确定函数的可能值范围,只有这样,你才能选择一个最优解。
具体来说,要解决一个抽象函数问题,可以按以下步骤:
1. 首先,对函数的参数进行推断:它们是何种参数,可以取的范围是多大?比如说,整数型参数是否有范围限制?
2. 确定函数的参数大致范围,以限定函数的范围。
3. 测试函数取值。
试着进行一些取值测试,观察函数的输出,以期找到函数的最优解。
4. 通过观察函数的取值,识别它的模式。
5. 作出结论,确定函数的最优解。
此外,在解决抽象函数问题时,你还可以使用一些数学工具,比如图像、积分、极限、微分等。
只有理解了这些工具,你才能更好地探索和解决抽象函数问题。
总之,抽象函数是一种有力的推理工具,可以用来描述问题的解决过程。
解决抽象函数问题的核心是确定函数的可能值范围,这可以使用一些数学工具,比如图像、积分、极限、微分等。
当你掌握了这些技能,就可以更好地研究并解决抽象函数问题。
抽象函数题的十种解题策略湖南省冷水江市第六中学(417500)邓赞武我们把未给出具体解析式的函数称为抽象函数。
由于它既能考查函数的概念与性质,又能考查学生的思维能力及对函数思想的理解程度,因而在高考中备受青睐。
本文结合实例,介绍求解抽象函数题的十种常用策略。
策略一:活用定义与性质以函数“三性”为突破口,紧扣其定义及性质间的相互联系,经推理或计算求解问题。
例1:己知定义在R上的函数f(x)满足条件f(x+32)=-f(x)且y=f(x-34)是奇函数,给出以下四个命题:(1)函数f(x)是周期函数,(2)函数f(x)的图象关于点(-34,0)对称,(3)函数f(x)是偶函数,(4)函数f(x)是R上的单调函数,以上四个命题中,真命题序号是。
解析:∵f(x+32)=-f(x) ∴f(x)=-f(x-32)两式相减得:f(x+32)= f(x-32)即f(x+3)=f(x)故(1)正确∵y=f(x-34)是奇函数所以f(-x- 34)= -f(x-34)即f(-x- 34)+f(x-34)=0 即f(x)的图象关于点(-34,0)对称。
故(2)正确;又由f(-x- 34)= -f(x-34)用x-34代替x得:f(-x)=-f(x+32) 而f(x+32)=-f(x) ∴f(-x)=f(x) 故(3)正确,从而(4)错误∴真命题是(1)、(2)、(3)策略二:巧妙赋值抽象函数常以函数方程的形式出现,求解这类问题常赋予变量恰当的数值或代数式,经运算与推理,得出结论:例2、己知定义在R上的函数f(x)对任意x1,x2,满足关系f(x1+x2)=f(x1)+f(x2)+2,(1)证明f(x)的图象关于点(0,-2)成中心对称,(2)若x>0,则有f(x)>-2,求证:f(x)是R 上的增函数。
证明:(1)令x1=x2=0,则f(0)=-2,对任意实数x,令x1=x,x2=-x,则有f(x-x)=f(x)+f(-x)+2即f(x)+f(-x)=-4,故f(x)的图象关于点(0,-2)成中心对称。
一、赋值法赋值法的基本思路是:将所给函数的性质转化为条件等式,在条件等式中对变量赋予一些具体的值,构造出所需条件或发现某些性质,其中f(0)、f(1)是常常起桥梁作用的重要条件。
例1设函数f(x)的定义域为(0,+∞),且对于任意正实数x,y都有f(xy)=f(x)+f(y)恒成立。
若已知f(2)=1,试求:(1)f(1/2)的值;(2)f(2 - n)的值,其中n为正整数。
思路:合理赋值,化抽象为具体,发现递推规律。
解:(1)令x=y=1,则f(1)=f(1)+f(1)∴f(1)=0再令x=2,y=1/2,则f(1)=f(2)+f(1/2)∴f(1/2)= -f(2)= -1(2)由于f(2 - 2)=f(1/2)+f(1/2)= -2,f(2 - 3)= f(1/2)+f(1/2)+f(1/2)= -3,依此类推就有f(2 - n)= -n,其中n为正整数。
二、利用函数单调性解抽象函数不等式,要设法将它转化成显性的不等式求解.这需要具备两个条件:一是要把不等式化为f(□)>f(△)的形式,二是要判断函数的单调性。
再根据函数的单调性,将抽象函数不等式的符号"f"去掉,得到具体的不等式求解.例2 若f(x)是定义在(0,+∞)上的减函数,且对一切a,b∈(0,+∞),都有f(a/b)=f(a)-f(b),且f(4)=1,试解不等式f(x+6)-f(1/x)>2.思路:逆用函数单调性,将不等式中的函数关系转化为自变量之间的关系.解:因为f(a/b)=f(a)-f(b),且f(4)=1,所以f(x+6)-f(1/x)>2则f(x+6)-f(1/x)>2f(4)则有f(x 2+6x)-f(4)>f(4)故f[(x 2+6x)/4]>f(4).由于f(x)是(0,+∞)上的减函数,因此由1/x>0x+6>0(x 2+6x)/4<4同时成立解得0<x<2,故原不等式的解集是(0,2).三、利用函数的对称性例3 设函数y=f(x)对一切实数x都满足f(x+3)=f(3-x)且方程f(x)=0恰好有6个不同的实根,这6个根的和为()A.18B.12C.9D.0解:由命题1知,y=f(x)的图象关于x=3对称,故6个根的和为18,故选A。
一、求解析式的一般方法 1、换元法例1:已知f(x+1)=x 2-2x 求f(x)解:令t=x+1则x=t-1 f(t)=(t-1)2-2(t-1)=t 2-4t-3∴f(x)=x 2-4x-3换元法是解决抽象函数问题的基本方法,换元法包括显性换元法和隐性换元法。
2、方程组法例2:若函数f(x)满足f(x)+2f(x1)=3x ,求f(x) 解:令x=x 1则f(x 1)+2f(x)= x 3 f(x)+2f(x 1)=3x =>f(x)= x 2-x2f(x)+f(x 1)=x 3∴f(x)= x2-x例3 .例43、待定系数法例5:如果f[f(x)]=2x-1则一次函数f(x)=______ 解:f(x)是一次函数∴不妨设f(x)=ax+b(a ≠0)则f[f(x)]=af(x)+b=a(ax+b)+b=a^2x+ab+b 又已知f[f(x)]=2x-1例6:已知f(x)是多项式函数,解:由已知得f(x)是二次多项式,设f(x)=ax2+bx+c (a≠0)代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x2-2x-1.如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。
二、判断奇偶性的一般方法在奇偶性的求解中,常用方法是赋值法,赋值法中常见的赋值有-1、0、1。
例7 定义在(-1、1)上的函数f(x)满足。
(1)对任意x、y∈ (-1、1) 都有f(x)+f(y)=f()(2)当x∈ (-1、0) 时,有f(x)>0求证(I)f(x)是奇函数,(II)f(证明:(1)令x=y=0,则2f(0)=f(0) ∴f(0)=0令y=-x,则f(x)+f(y)=f(x)+f(-x)=f(=f(0)=0∴f(-x)=-f(x) ∴f(x)是奇函数例8定义在R上的函数f(x),对任意 x,y属于R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1)求证f(0)=1 (2)求证y=f(x)是偶函数证明:(1)令x=y=0∴f(0)+f(0)=2×f(0)2∵f(0)≠0∴f(0)=1(2)令x=0则f(0+y)+ f(0-y)=2 f(0)f(y)f(y)+f(-y)=2f(y) =>f(-y)=f(y) =>y=f(x)是偶函数例9.对任意实数x,y ,均满足f(x+y2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+1)=f(0)+2f[(1)]2,三、单调性的求解方法例6:定义域为R 的函数f(x)满足:对于任意的实数x 、y 都有f(x+y)=f(x)+f(y)成立,且当x >0时,f(x)<0恒成立。
判断抽象函数单调性的四种策略抽象函数问题是指没有明确给出具体函数表达式的问题。
这类问题对开展学生思维能力,进展数学思想方法的渗透有较好的作用。
本文准备就四种常见的抽象函数单调性的判断策略做一小结,供大家解题时参考。
1 凑差策略紧扣单调函数的定义,利用赋值,设法从题设中“凑出〞“f(x1)-f(x2)〞,然后判断符号。
例1函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,试判断函数f(x)的单调性。
解:由f(x+y)=f(x)+f(y)得,f(x+y)-f(x)=f(y)令x+y=x2,x=x1,且x1<x2,如此有f(x2)-f(x1)=f(y)∵y=x2-x1>0,∴f(y)=f(x2-x1)>0,即f(x1)<f(x2),因此f(x)为增函数。
例2设函数f(x)的定义域为〔0,+∞〕,对任意正实数x、y均有f(xy)=f(x)+f(y),且当x>1时f(x)>0,判断函数f(x)的单调性并说明理由。
解:由f(xy)=f(x)+f(y)得,f(xy)-f(x)=f(y)令x+y=x1,x=x2,且x1>x2>0,如此有f(x1)-f(x2)=f(y),∵,∴即f(x1)>f(x2),因此f(x)为增函数。
2 添项策略瞄准题设中的结构特点,采用加减添项或乘除添项,以到达确定“f(x1)-f(x2)〞的符号的目的。
例3〔题同例1〕解:设x1<x2,如此x2-x1>0,∵当x>0时,f(x)>0,∴f(x2-x1)>0∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0即f(x1)<f(x2),因此f(x)为增函数。
例4〔题同例2〕解:设0<x1<x2<+∞,如此∵当x>1时f(x)>0,∴∴即f(x2)>f(x1),因此f(x)为增函数。
探索探索与与研研究究抽象函数是函数中的重要知识.这类函数通常没有具体的解析式,因而抽象函数问题具有较强的抽象性.那么如何求解抽象函数问题呢?下面重点谈一谈三类抽象函数问题的解法.一、求抽象函数的值由于抽象函数没有具体的解析式,所以在求抽象函数的值时,通常需根据函数的关系式、某个点的坐标,以及抽象函数的性质:单调性、周期性、奇偶性来求函数的值.同时要关注一些特殊点,如零点、原点、对称点等的值,以找到更多的条件,顺利获得相应的函数值.例1.已知f(x)的定义域为R,f(x+2)=1-f(x)1+f(x),f(-2)=1-3,则f(2006)=().A.2-3B.1-3C.2+3D.1+3解:∵f(x+4)=f()()x+2+2=1+1+f(x)1-f(x)1-1+f(x)1-f(x)=-1f(x),且f(x+8)=f()()x+4+4=1-11f(x)=f(x),∴函数f(x)为周期函数,且周期为8,∴f(2006)=f(8×250+6)=f(6)=f(-2+8)=f(-2)=1-3.∴本题的答案为B项.解答此题,需从已知的函数关系式入手,通过恒等变换,求得函数的周期.然后根据已知点的坐标和函数的周期性求函数的值.二、求抽象函数的定义域函数的定义域往往受函数的对应法则、自变量影响,要求抽象函数的定义域,需先明确函数的对应法则以及自变量.通常可通过变换函数的自变量,利用函数的单调性、周期性、奇偶性来进行等量代换,从而求得抽象函数的定义域.例2.已知函数f(x)的定义域为[0,3],求函数f(3x+2)的定义域.解:因为函数f(x)的定义域为[0,3],所以0≤x≤3,则0≤3x+2≤3,解得-23≤x≤13,故函数f(3x+2)的定义域为[-23,13].解答本题,关键要明确f(x)中的x与f(3x+2)的3x+2的意义相同,那么二者的取值范围一致,据此建立不等式,解该不等式即可求出函数的定义域.三、抽象函数的奇偶性问题对抽象函数的奇偶性问题,通常要先根据已知的函数关系式,函数的单调性、周期性来选择合适的值进行赋值、代换;再根据奇函数、偶函数的定义判断出函数的奇偶性.一般地,若f(-x)=-f(x)成立,则该函数为奇函数;若f(-x)=f(x)成立,则该函数为偶函数.赋值法是解答抽象函数问题的基本方法之一.例3.若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t满足f(ln t)+fæèöøln1t≤2f(1),那么t的取值范围是______.解:由于函数f(x)是定义在R上的偶函数,所以f(ln t)=fæèöøln1t,由f(ln t)+fæèöøln1t≤2f(1),得f(ln t)≤f(1).又函数f(x)在区间[0,+∞)上是单调递增的,所以|ln t|≤1,即-1≤ln t≤1,故1e≤t≤e.由于已知函数为偶函数,所以可以先根据偶函数的定义判断出f(ln t)与fæèöøln1t的关系;然后根据已知关系式判断出f(ln t)与f(1)的大小关系,进而根据函数单调性的定义判断出函数的单调性,建立关于t的不等式,求得问题的答案.例4.若定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则().A.f(2)>f(3)B.f(2)=f(6)C.f(3)=f(5)D.f(3)>f(6)解:∵y=f(x+4)为偶函数,∴f(-x+4)=f(x+4),∴y=f(x)的图象关于直线x=4对称,∴f(2)=f(6),f(3)=f(5).又y=f(x)在(4,+∞)上为减函数,∴f(5)>f(6),所以f(3)>f(6).故本题的答案为BCD.解答本题,需灵活运用抽象函数的单调性、奇偶性、对称性,并根据选项中的数值对函数进行赋值,才能顺利得到正确的答案.由此可见,解答抽象函数问题,关键在于研究已知关系式和函数的性质,必要时需对函数进行赋值,以得到更多的条件,为解题提供更多的依据.(作者单位:江苏省滨海中学)王颖53Copyright©博看网. All Rights Reserved.。
抽象函数问题的解题策略一、利用特殊模型有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法.例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y),f(-2)=f(1)≠0,则g(1)+g(-1)= .解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型,又f(-2)=f(1)≠0,则可取x x f 32sin)(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y),f(-3)=8,则不等式f(x)f(x-2)< 的解集为 .解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型,又 f(-3)=8,则可取∵f(x)f(x-2)<∴2)21()21(-x x <2561, 即22)21(-x <8)21(, ∴ 2x-2 >8, 解不等式,得 x>5,∴ 不等式的解集为 {x|x>5}.二、利用函数性质函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路转、化难为易.1. 利用单调性例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2.解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1,∴ 2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9),∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|8<x ≤9}.2. 利用奇偶性x>0, x-8>0,x(x-8)≤9,8<x ≤9,例4 已知函数f(x)=ax 5+bsinx+3,且f(-3)=7,求f(3)的值.分析 f(x)的解析式含有两个参数a 、b,却只有一个条件f(-3)=7,无法确定a 、b 的值,因此f(x)仍是抽象函数,但我们注意到g(x)=ax 5+bsinx 是奇函数,有g(-3)=-g(3).解 设g(x)=ax 5+bsinx,显然g(x)是奇函数,∵ f(-3)=7,∴ f(-3)=g(-3)+3=-g(3)+3=7 g(3)=-4,∴ f(3)=g(3)+3=-4+3=-1.3. 利用周期性例5 设函数f(x)在R 上是奇函数,f(x+2)=-f(x) ,当0<x ≤1时,f(x)=x,则f(7.5)= .解 由f(x+2)=-f(x) ,得 f(x+4)=-f(x+2)=f(x),则f(x)是以4为周期的周期函数,且是奇函数,于是 f(7.5)=f(2×4-0.5)=f(-0.5)=-f(0.5)=-0.5.例6 已知函数f(x)满足f(1)=2,f(x+1)=)(1)(1x f x f -+,则 f(2007)= . 解 ∵∴ f(x)是以4为周期的周期函数,4. 利用对称性例7已知f(x)是奇函数,定义域为{x|x ∈R,x≠0},又f(x)在区间(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x的取值区间是 .解依已知条件作出f(x)的大致图象,如图1所示,从图象中可看出,当f(x)>0时,x 的取值区间是(-1,0)∪(1,+∞).例8定义在(-,且函数y=f(x+2)为偶函数,则解设∵ F(x)为偶函数,∴ F(-x)=F(x), 即f(2+x)=f(2-x),∴函数f(x)的图象关于直线x=2对称,∴ f(-1)=f(5),∵ f(x)在(-∞,2)上是增函数,∴ f(x)在(2,+∞)上是减函数,∴ f(6)<f(5)<f(4), 即f(6)<f(-1)<f(4).三、利用特殊方法有些抽象函数问题,用常规方法来解决往往难于奏效,但用一些非常规方法来求解,常收到意想不到的效果.图11. 利用赋值法例9 函数f(x)的定义域为R,对任意x 、y ∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.(1)求证:f(0)=1;(2)求证:f(x)是偶函数;(3) ① 求证:对任意x ∈R,有f(x+c)=-f(x)成 立;② 求证:f(x)是周期函数.解 (1)令x=y=0,则有2f(0)=2f 2(0),∵ f(0)≠0,∴ f(0)=1.(2)令x=0,则有f(y)+f(-y)= 2f(0)f(y),∵ f(0)=1,∴ f(-y)=f(y),∴ f(x)是偶函数.(3)① 分别用22c 、c x + (c ≠0)替换x 、y, 有f(x+c)+f(x)=2f(2c x +)f(2c ). ∵ f(2c )=0,∴ f(x+c)= -f(x) .②由①知 f(x+c)=-f(x),用x+c替换x,有f(x+2c)=-f(x+c)=f(x),∴ f(x)是以2c为周期的周期函数.2. 利用递推法例10设函数f(x)的定义域为R,且对任意实数x,都有f(x)=f(x+1)-f(x+2),求证:f(x)是周期函数.解∵ f(x)=f(x+1)-f(x+2),∴ f(x+1)=f(x+2)-f(x+3),将以上两式相加,得 f(x+3)=-f(x),∴ f(x+6)=-f(x +3)=f(x),∴ f(x)是周期函数,6是它的一个周期.例11 f(x)是定义在正整数集的函数,且满足f(x+y)=f(x)+f(y)+xy ),f(1)=1,求函数f(x)的解析式.(x,y∈N+解令y=1,∵ f(1)=1,∴ f(x+1)=f(x)+f(1)+x, 即f(x+1)-f(x)=x+1,则 f (2)-f(1)=2,f (3)-f(2)=3,……f(x)-f(x-1)=x.将以上各式相加,得 f(x)-f(1)=2+3+4+ (x)∴ f(x)=1+2+3+4+ (x)21x(x+1) (x ∈N +). 3. 利用反证法例12 已知函数f(x)在区间(-∞,+∞)上是增函数,a,b ∈R,若f(a)+f(b)≥f(-a)+f(-b).求证:a+b ≥0.证明 假设a+b<0,则a<-b,b<-a,∵ 函数f(x)在区间(-∞,+∞)上是增函数,∴ f(a) <f(-b),f(b) <f(-a),∴ f(a)+f(b)<f(-a)+f(-b),这与已知矛盾,∴ a+b<0不成立,即a+b ≥0.例13 设函数f(x)对定义域内任意实数都有f(x) ≠0,且f(x+y)=f(x)f(y)成立,求证:对定义域内任意x,都有f(x) >0.证明 假设在定义域内存在x 0,使f(x 0)≤ 0,∵∴ f(x0) >0,这与假设的f(x)≤ 0矛盾,所以假设不成立,故对定义域内任意x,都有f(x) >0.以上我们利用抽象函数的特殊模型、函数性质、特殊方法等途径举例说明了求解抽象函数问题的一些策略.事实上处理这类问题时,常将几种解题策略综合使用,“多管齐下”方能游刃有余.。
抽象函数问题的解题策略
一、利用特殊模型
有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,
但解答题的解答书写过程一般不能用此法.
例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y),
f(-2)=f(1)≠0,则g(1)+g(-1)= .
解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型,
又f(-2)=f(1)≠0,
则可取x x f 3
2sin )(π=
于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y),
f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型,
又 f(-3)=8, 32sin )1()1()32sin()34sin(πππ---=-⇒g g
.1)1()1()1(23)1(2323-=-+⇒---=⇒g g g g 2561
1
则可取
∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)2
1(,
∴ 2x-2 >8, 解不等式,得 x>5,
∴ 不等式的解集为 {x|x>5}.
二、利用函数性质
函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易.
1. 利用单调性
例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2.
解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1,
∴ 2=1+1=f(3)+f(3)=f(9),
由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9),
∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 2561
x>0, x-8>0, x(x-8)≤9, ⇒ 8<x ≤9,
∴ 不等式解集为 {x|8<x ≤9}.
2. 利用奇偶性
例4 已知函数f(x)=ax 5+bsinx+3,且f(-3)=7,求f(3)的值.
分析 f(x)的解析式含有两个参数a 、b,却只有一个条件f(-3)=7,无法确定a 、b 的值,因此f(x)仍是抽象函数,但我们注意到g(x)=ax 5
+bsinx 是奇函数,有g(-3)=-g(3).
解 设g(x)=ax 5+bsinx,显然g(x)是奇函数,
∵ f(-3)=7, ∴ f(-3)=g(-3)+3=-g(3)+3=7 g(3)=-4,
∴ f(3)=g(3)+3=-4+3=-1.
3. 利用周期性
例5 设函数f(x)在R 上是奇函数,f(x+2)=-f(x) ,当0<x ≤1时,f(x)=x,则f(7.5)= .
解 由f(x+2)=-f(x) ,得 f(x+4)=-f(x+2)=f(x),
则f(x)是以4为周期的周期函数,且是奇函数,
于是 f(7.5)=f(2×4-0.5)=f(-0.5)=-f(0.5)=-0.5.
例6 已知函数f(x)满足f(1)=2,f(x+1)=
)
(1)(1x f x f -+,则 f(2007)= . )(11x f ++⇒
解 ∵
∴ f(x)是以4为周期的周期函数,
4. 利用对称性 例7 已知f(x)是奇函数,定义域为{x|x ∈R,x ≠0},又f(x)在区间
(0,+∞)上是增函数,且f(-1)=0,则满足f(x)>0的x 的取值区间
是 .
解 依已知条件作出f(x)的大致图象,如图1所示,从图象中可看出,当f(x)>0时,x 的取值区间是(-1,0)∪(1,+∞).
例8 定义在(-
在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-1),f(4),f(6)的大小关系为 . 解 设F(x)=f(x+2),
∵ F(x)为偶函数, ),()2(1)4(x f x f x f =+-=+从而
图1
.21)1(1)3()2007(-=-==∴f f f
∴ F(-x)=F(x), 即f(2+x)=f(2-x),
∴ 函数f(x)的图象关于直线x=2对称,
∴ f(-1)=f(5),
∵ f(x)在(-∞,2)上是增函数,
∴ f(x)在(2,+∞)上是减函数,
∴ f(6)<f(5)<f(4), 即f(6)<f(-1)<f(4).
三、利用特殊方法
有些抽象函数问题,用常规方法来解决往往难于奏效,但用一些非常规方法来求解,常收到意想不到的效果.
1. 利用赋值法
例9 函数f(x)的定义域为R,对任意x 、y ∈R,都有f(x+y)+f(x-y)= 2f(x)f(y),且f(0)≠0.
(1)求证:f(0)=1;
(2)求证:f(x)是偶函数;
(3) ① 求证:对任意x ∈R,有f(x+c)=
-f(x)成 立;② 求证:f(x)是周期函数.
解 (1)令x=y=0,则有2f(0)=2f 2(0),
∵ f(0)≠0,
.0)2()0(=≠c f ,c c 使若存在常数
∴ f(0)=1.
(2)令x=0,则有f(y)+f(-y)= 2f(0)f(y),
∵ f(0)=1,
∴ f(-y)=f(y),
∴ f(x)是偶函数. (3)① 分别用22c 、c x + (c ≠0)替换x 、y, 有f(x+c)+f(x)=2f(2c x +)f(2
c ). ∵ f(2
c )=0, ∴ f(x+c)= -f(x) .
② 由①知 f(x+c)=-f(x),
用x+c 替换x,有f(x+2c)=-f(x+c)=f(x),
∴ f(x)是以2c 为周期的周期函数.
2. 利用递推法
例10 设函数f(x)的定义域为R,且对任意实数x,都有
f(x)=f(x+1)-f(x+2),求证:f(x)是周期函数.
解 ∵ f(x)=f(x+1)-f(x+2),
∴ f(x+1)=f(x+2)-f(x+3),
将以上两式相加,得 f(x+3)=-f(x),
∴ f(x+6)=-f(x +3)=f(x),
∴ f(x)是周期函数,6是它的一个周期.
例11 f(x)是定义在正整数集的函数,且满足f(x+y)=f(x)+f(y)+xy (x,y ∈N +),f(1)=1,求函数f(x)的解析式.
解 令y=1,
∵ f(1)=1,
∴ f(x+1)=f(x)+f(1)+x, 即f(x+1)-f(x)=x+1,
则 f (2)-f(1)=2,
f (3)-f(2)=3,
……
f(x)-f(x-1)=x.
将以上各式相加,得 f(x)-f(1)=2+3+4+ (x)
∴ f(x)=1+2+3+4+ (x)
21x(x+1) (x ∈N +). 3. 利用反证法
例12 已知函数f(x)在区间(-∞,+∞)上是增函数,a,b ∈R,若f(a)+f(b)≥f(-a)+f(-b).求证:a+b ≥0.
证明 假设a+b<0,则a<-b,b<-a,
∵ 函数f(x)在区间(-∞,+∞)上是增函数,
∴ f(a) <f(-b),f(b) <f(-a),
∴ f(a)+f(b)<f(-a)+f(-b),这与已知矛盾,
∴ a+b<0不成立,即a+b ≥0.
例13 设函数f(x)对定义域内任意实数都有f(x) ≠0,且f(x+y)=f(x)f(y)成立,求证:对定义域内任意x,都有f(x) >0.
证明 假设在定义域内存在x 0,使f(x 0)≤ 0, ∵
∴ f(x 0) >0,这与假设的f(x 0)≤ 0矛盾,
所以假设不成立,故对定义域内任意x,都有f(x) >0.
以上我们利用抽象函数的特殊模型、函数性质、特殊方法等途径举例说明了求解抽象函数问题的一些策略.事实上处理这类问题时,常将几种解题策略综合使用,“多管齐下”方能游刃有余.
,0)2(),2()2()2()22()(00200000≠==+=x f x f x f x f x x f x f。