高中数学第一章三角函数1-精品-精品-精品
- 格式:docx
- 大小:64.14 KB
- 文档页数:4
(2) /(航+如型三角函数的奇偶性(i ) g (x ) = /沏(颜+如(x€ R)(x)为偶函数匕鼠U 力(而+ 出=j4sin (-<at + 炉)(x W 氏)0 sin 曲匚*0=。
(工 W R )7Tcos 卯=。
=上7T+一1左 e Z )由此得 2 ,同理,式夫4皿皈+双相的 为奇函数 =顺@=0/3=上网海2)(ii )飙# =+劭SwR]妖N = .Aa 式题+钠为偶函数见双t");就= 式以+如为奇函数7T=中=无产+ — (k e Z)3、周期性(1)基本公式(ii) 〃皈+⑺+氏型三角函数的周期竺y =+ G + 5 =加+中出 的周期为何;(一)三角函数的性质1、定义域与值域2、奇偶性(1)基本函数的奇偶性奇函数:y = sinx y= tanx ; 偶函数:y=cosx.(i )基本三角函数的周期的周期为;丁.y=sinx , y=cosx 的周期为 之并 ;y = tanx , y = cotx4-212yy=cotxy=tanx 3-32X 03 27 3,y=cosx-5-4 .7223 2322 5 2“如血的+朗+9=心服如+沟+用的周期为何.(2)认知⑴A =1/W +创型函数的周期y = |月劭(枷+或)| j = A 匚。
5(西+励|(ii )若函数为,(收斗劭 型两位函数之和,则探求周期适于“最小公倍数法”. (iii )探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明.(3)特殊情形研究JT(i ) y = tanx — cotx 的最小正周期为27T(ii ) y=卜由H+|M 幻的最小正周期为,;7T(iii ) y = sin 4x + cos 4x 的最小正周期为,. _由此领悟“最小公倍数法”的适用类型,以防施错对象 .4、单调性(1)基本三角函数的单调区间(族)依从三角函数图象识证“三部曲”:①选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期;②写特解:在所选周期内写出函数的增区问(或减区问);③获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族)循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 .揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域(2) y=/(而+初 型三角函数的单调区问的周期为y = (助+切1_r= |达匚祖(姗+阖| 的周期为 7T(ii) > = 1/(耽+如+同3=0)的周期1y 二|金£血(为工卜8]妣+3)+甘¥ = |例如(而+5+上] J = |总二加侬大+的+. 的周期为祠;,7T的周期为:. 均同它们不加绝对值时的周期相同,即对 数的周期不变.注意这一点与(i )的区别.y=八加+◎+上的解析式施加绝对值后,该函此类三角函数单调区间的寻求“三部曲”为 ①换元、分解:令u =z 中,将所给函数分解为内、外两层:y = f (u) , u =®x+卯;②套用公式:根据对复合函数单调性的认知,确定出 f (u)的单调性,而后利用(1)中公 式写出关于u 的不等式;③还原、结论:将u =^+W 代入②中u 的不等式,解出x 的取值范围,并用集合或区间 形成结论.正弦、余弦、正切、余切函数的图象的性质:/y sinx y cosxy tanxy cotxy Asin x(A 、 >0)定义域 R R x | x R 且 x k 1 ,k Zx| x R 且x k ,k ZR值域 [1, 1][1, 1]R RA, A周期性 2 22奇偶性奇函数 偶函数奇函数 奇函数当 0,非奇非偶 当0,奇函数单调性[2 2k , —2k ] 2上为增函 数; [2 2k ,3——2k ] 2上为减函 数(k Z )[2k 1 , 2k ]上为增函 数[2k , 2k 1 ]上为减函数(k Z )一k ,一 k 2 2 上为增函数(k Z )k , k 1上为减函数(k Z )2k2(A),2k -2( A)上为增函数;2k 一------ 2— (A), 2k------ 2——(A)上为减函数(k Z )注意:①y sinx 与y sinx 的单调性正好相反;y cosx 与y cosx 的单调性也同样相反.一般 地,若y f(x)在[a,b ]上递增(减),则y f (x)在[a,b ]上递减(增)y忖n x 与y cosx 的周期是.-(k Z),对称中心(k ,0); y cos( x )的对称轴方); y tan( x )的对称中心(工,0).,02③ y sin( x )或 y cos( x )0)的周期T 2y tan x 的周期为2 2 (T _ T 2,如图,翻折无效)④y sin( x )的对称轴方程是x k 程是x k (k Z ),对称中心(ky cos2x 原点对称 y cos( 2x) cos2x⑤ 当 tan tan 1, k ,(k Z) ; tan tan 1, k ,(k Z).⑥y cosx 与y s in x _ 2k是同一函数,而y ( x )是偶函数,则2 1 、,、y ( x ) sin( x k ) cos( x).2⑦函数y tanx 在R 上为增函数.(耳[只能在某个单调区间单调递增 .若在整个定义域,y tanx 为增函数,同样也是错误的].⑧定义域关于原点对称是f (x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域 关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f( x) f(x),奇函数:f( x) f(x)) 奇偶性的单调性:奇同偶反.例如:y tanx 是奇函数,y tan(x 1)是非奇非偶.(定义域不 3 关于原点对称)奇函数特有性质:若0 x 的定义域,则f(x)一定有f(0) 0. (0 x 的定义域,则无此性质)⑨y sinx 不是周期函数;y sinx 为周期函数(T ); y cosx 是周期函数(如图);y cosx 为周期函数(T );y cos2x1的周期为(如图),并非所有周期函数都有最小正周期,2y f (x) 5 f (x k),k R . ⑩ y a cos bsinVa 2 b 2sin( ) cos b 有 Va 2 b 2 y .、形如y Asin( x )的函数:11、几个物理量:A 一振幅;f 1—频率(周期的倒数);x 一相包; 一初相;2、函数y Asin( x )表达式的确定:A 由最值确定; 由周期确定; 由图象上的特殊点确定,如 f(x) Asin( x )(A 0,0, | 3.函数 y Asin( x ) B (其中 A 0,0)最大值是A B,最小值是B A,周期是T —,最小正周期T 六频率是f「相位是x,初相是;其图象的对称轴是直线x k 7k Z),凡| "^0的图象如图所小,则f (x)(答:f(x)152sin(-2x -));y=| cos2x+1/2|图象是该图象与直线y B 的交点都是该图象的对称中心4、研究函数y Asin( x )性质的方法:类比于研究y sin x 的性质,只需将y Asin( x ) 中的x 看成y sinx 中的x,但在求y Asin( x )的单调区间时,要特别注意 A 和 的 符号,通过诱导公式先将 化正。
高中数学第一章三角函数1-精品-精品-精品
2020-12-12
【关键字】条件、问题、提升、基础、能力、关系、满足、方向、巩固
A级基础巩固
一、选择题
1.已知A={第二象限角},B={钝角},C={大于90°的角},那么A、B、C关系是( ) A.B=A∩C B.B∪C=C
C.A C D.A=B=C
解析:钝角大于90°,小于180°,故B C,选项B正确.
答案:B
2.若角α的终边经过点M(0,-3),则角α( )
A.是第三象限角
B.是第四象限角
C.既是第三象限角,又是第四象限角
D.不是任何象限的角
解析:因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限.
答案:D
3.已知α是第三象限角,则-α是第________象限角.( )
A.四B.三C.二D.一
解析:因为α是第三象限角,
所以k·360°+180°<a<k·360°+270°,k∈Z.
则-k·360°-270°<-α<-k·360°-180°,k∈Z.
所以-α是第二象限角.
答案:C
4.终边与坐标轴重合的角α的集合是( )
A.{α|α=k·360°,k∈Z}
B.{α|α=k·180°+90°,k∈Z}
C.{α|α=k·180°,k∈Z}
D.{α|α=k·90°,k∈Z}
解析:终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z}.
答案:D
5.下面说法正确的个数为( )
(1)第二象限角大于第一象限角;
(2)三角形的内角是第一象限角或第二象限角;
(3)钝角是第二象限角.
A.0 B.1 C.2 D.3
解析:第二象限角如120°比第一象限角390°要小,故(1)错;三角形的内角可能为直角,直角既不是第一象限角,也不是第二象限角,故(2)错;(3)中钝角是第二象限角是对的.所以正确的只有1个.
答案:B
二、填空题
6.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.
解析:顺时针方向旋转3周转了-(3×360°)=-1 080°.又50°+(-1 080°)=-1 030°,故所得的角为-1 030°.
答案:-1 030°
7.若α为锐角,则角-α+k·360°(k∈Z)是第________象限角.
解析:α为锐角,则角α是第一象限角,
所以角-α是第四象限角,
又因为角-α+k·360°(k∈Z)与-α的终边相同,
所以角-α+k·360°(k∈Z)是第四象限角.
答案:四
8.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.
解析:根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k·360°(k∈Z),当k=1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°.
答案:120°,300°
三、解答题
9.在与530°终边相同的角中,求满足下列条件的角:
(1)最大的负角;
(2)最小的正角;
(3)-720°到-360°的角.
解:与530°终边相同的角为k·360°+530°,k∈Z.
(1)由-360°<k·360°+530°<0,且k∈Z可得k=-2,故所求的最大负角为-190°.
(2)由0°<k·360°+530°<360°且k∈Z可得k=-1.
故所求的最小正角为170°.
(3)由-720°≤k·360°+530°≤-360°且k∈Z得k=-3,故所求的角为-550°.
10.如图所示,写出阴影部分(包括边界)的角的集合,并指出
-950°12′是否是该集合中的角.
解:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},
因为-950°12′=-3×360°+129°48′,
所以-950°12′不是该集合中的角.
B级能力提升
1.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于( )
A.{-36°,54°} B.{-126°,144°}
C.{-126°,-36°,54°,144°} D.{-126°,54°}
解析:令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.
答案:C
2.如图所示,终边落在直线y=3x上的角的集合为_________.
解析:终边落在射线y=3x(x≥0)上的角的集合是S1={α|α=60°+k·360°,k ∈Z},终边落在射线y=3x(x≤0)上的角的集合是S2={α|α=240°+k·360°,k∈Z}.于是终边落在直线y=3x上的角的集合是S={α|α=60°+k·360°,k∈Z}∪{α|α=240°+k·360°,k∈Z}={α|α=60°+2k·180°,k∈Z}∪{α|α=60°+(2k+1)·180°,k∈Z}={α|α=60°+n·180°,n∈Z}.
答案:{α|α=60°+n·180°,n∈Z}
3.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:
(1)集合M有几类终边不相同的角?
(2)集合M中大于-360°且小于360°的角是哪几个?
(3)写出集合M 中的第二象限角β的一般表达式.
解:(1)集合M 的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角.
(2)令-360°<30°+k ·90°<360°,则-133<k <113
, 又因为k ∈Z,
所以k =-4,-3,-2,-1,0,1,2,3,
所以集合M 中大于-360°且小于360°的角共有8个,分别是-330,-240°,-150,-60°,30°,120°,210°,300.
(3)集合M 中的第二象限角与120°角的终边相同,
所以β=120°+k ·360°,k ∈Z.。