完整版mems简介
- 格式:ppt
- 大小:6.17 MB
- 文档页数:70
第一章简介1.1 什么是MEMS技术?微机电系统(MEMS)是通过微加工技术将机械元件,传感器,执行器和电子元件集成在一个硅衬底上而形成的。
其中电子元件是由集成电路(IC)工艺序列加工而成(例如,CMOS,双极型晶体管,或者BICMOS),微机械部件是用可兼容的“微加工”技术加工而成的,通过这种技术可以选择性地刻蚀掉硅晶片的某些部分或者再添加新的结构层以制成机械和电机械器件。
MEMS技术通过将基于硅的微电子技术与微加工技术相结合起来,有望革新目前几乎每一种产品类型,实现完全的片上系统。
MEMS是一种使能技术,它可以促进智能产品的开发,提高微电子器件的计算能力和微传感器微执行器的感知和控制能力,扩大可能的设计和应用空间。
微电子集成电路可以看做是一个系统的“大脑“,而MEMS通过“眼睛”和“手臂”使得微系统感知和控制外部环境来增强这种决策能力。
传感器通过测量各种力学,热学,生物,化学,光学和磁现象从外界收集信息。
然后电子元件处理从传感器得到的信息并通过某些决策决定来引导执行器响应以实现诸如运动,定位,调节,抽吸和滤波等功能,从而通过控制环境得到想要的结果或目的。
因为MEMS器件是采用与集成电路相似的批加工技术制造,可以在一个小硅片上以相对低的成本在功能性,可靠性和复杂度方面达到以往不及的水平。
1.2 MEMS和纳米技术的应用目前MEMS和纳米技术有很多可能的应用。
作为一种突破技术,它使得在以前毫不相关的领域之际开展非平行的协作,比如生物学和微电子学。
许多新的MEMS和纳米技术的应用将会涌现,将我们目前已知的领域不断扩展。
下面给出的是一些当前热点应用:生物科技MEMS和纳米技术在科学和工程领域不断促成新的发现,譬如聚合酶链反应(PRC),用于DNA扩展和识别的微系统,微加工技术制造的扫描隧道显微镜(STMs),用于危险化学和生物试剂检测的生物芯片,以及高产量药品的筛选等。
通信高频电路性能将会随着射频MEMS技术的出现而得到显著提高。
1、微机械陀螺仪的工作原理MEMS陀螺仪利用科里奥利力(Coriolis force,又称为科氏力)现象。
科氏力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。
科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。
2、微机械陀螺仪的性能参数MEMS陀螺仪的重要参数包括:分辨率(Resolution)、零角速度输出(零位输出)、灵敏度(Sensitivity)和测量范围。
这些参数是评判MEMS陀螺仪性能好坏的重要标志,同时也决定陀螺仪的应用环境。
分辨率是指陀螺仪能检测的最小角速度,该参数与零角速度输出其实是由陀螺仪的白噪声决定。
这三个参数主要说明了该陀螺仪的内部性能和抗干扰能力。
对使用者而言,灵敏度更具有实际的选择意义。
测量范围是指陀螺仪能够测量的最大角速度。
不同的应用场合对陀螺仪的各种性能指标有不同的要求。
3、微机械陀螺仪的结构MEMS陀螺仪的设计和工作原理可能各种各样,但是主要都采用振动部件传感角速度的概念。
绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。
图3所示为振动陀螺的动力学系统的简单结构示意图。
该系统为2-D的振动系统,有两个正交的振动模态。
其中一个振动模态为质量块在x 方向振动,振动频率为。
另一个振动模态为质量块在y方向振动,振动频率为。
与的值比较接近。
工作时,驱动质量块使之在x轴上以接近于的频率(驱动频率)振动,如果振动系统以角速度绕Z轴转动,则会产生一个沿Y轴方向的科里奥利力,从而使得质量块在Y轴方向上产生频率为的振动响应,通过测试Y轴方向的运动就能完成角速度的检测。
一般的MEMS陀螺仪由梳齿结构的驱动部分(图4)和电容板形状的传感部分(图5)组成,基本结构如图6所示。
一文读懂MEMS传感器(必须收藏)导语:传感器发展到今天,小型化、智能化、集成化,已经是升级换代的必由之路。
今天,我们来为大家介绍一下传感器家族的mini型产品——MEMS传感器。
什么是MEMS传感器?MEMS的全称是微型电子机械系统(Micro-ElectroMechanical System),微机电系统是指可批量制作的,将微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等集成于一块或多块芯片上的微型器件或系统。
而MEMS传感器就是采用微电子和微机械加工技术制造出来的新型传感器。
MEMS是用传统的半导体工艺和材料,以半导体制造技术为基础发展起来的一种先进的制造技术,学科交叉现象极其明显,主要涉及微加工技术,机械学/固体声波理论,热流理论,电子学、材料、物理学、化学、生物学、医学等等。
经过四十多年的发展,已成为世界瞩目的重大科技领域之一。
加工工艺:MEMS技术基于已经相当成熟的微电子技术、集成电路技术及其加工工艺。
它与传统的IC工艺有许多相似之处,如光刻、薄膜沉积、掺杂、刻蚀、化学机械抛光工艺等,但是有些复杂的微结构难以用IC 工艺实现,必须采用微加工技术制造。
微加工技术包括硅的体微加工技术、表面微加工技术和特殊微加工技术。
体加工技术是指沿着硅衬底的厚度方向对硅衬底进行刻蚀的工艺,包括湿法刻蚀和干法刻蚀,是实现三维结构的重要方法。
表面微加工是采用薄膜沉积、光刻以及刻蚀工艺,通过在牺牲层薄膜上沉积结构层薄膜,然后去除牺牲层释放结构层实现可动结构。
除了上述两种微加工技术以外,MEMS制造还广泛地使用多种特殊加工方法,其中常见的方法包括键合、LIGA、电镀、软光刻、微模铸、微立体光刻与微电火花加工等。
应用材料:硅基材料:大部分集成电路和MEMS的原材料是硅(Si),这个神奇的VI族元素可以从二氧化硅中大量提取出来。
而二氧化硅是什么?说的通俗一点,就是沙子。
沙子君在经历了一系列复杂的加工过程之后,就变成了单晶硅,长这个样子:这个长长的大柱子,直径可以是 1 inch (2.5 cm) 到 12 inch (30 cm),被切成一层层500 微米厚的硅片(英文:wafer,和威化饼同词),长这个样子:采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。
干货:有关MEMS的最详细介绍虽然大部分人对于MEMS(Microelectromechanical systems,微机电系统/微机械/微系统)还是感到很陌生,但是其实MEMS在我们生产,甚至生活中早已无处不在了,智能手机,健身手环、打印机、汽车、无人机以及VR/AR头戴式设备,部分早期和几乎所有近期电子产品都应用了MEMS器件。
MEMS是一门综合学科,学科交叉现象及其明显,主要涉及微加工技术,机械学/固体声波理论,热流理论,电子学,生物学等等。
MEMS器件的特征长度从1毫米到1微米,相比之下头发的直径大约是50微米。
MEMS传感器主要优点是体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成等,是微型传感器的主力军,正在逐渐取代传统机械传感器,在各个领域几乎都有研究,不论是消费电子产品、汽车工业、甚至航空航天、机械、化工及医药等各领域。
常见产品有压力传感器,加速度计,陀螺,静电致动光投影显示器,DNA扩增微系统,催化传感器。
MEMS的快速发展是基于MEMS之前已经相当成熟的微电子技术、集成电路技术及其加工工艺。
MEMS往往会采用常见的机械零件和工具所对应微观模拟元件,例如它们可能包含通道、孔、悬臂、膜、腔以及其它结构。
然而,MEMS器件加工技术并非机械式。
相反,它们采用类似于集成电路批处理式的微制造技术。
批量制造能显著降低大规模生产的成本。
若单个MEMS传感器芯片面积为5 mm x 5 mm,则一个8英寸(直径20厘米)硅片(wafer)可切割出约1000个MEMS传感器芯片(图1),分摊到每个芯片的成本则可大幅度降低。
因此MEMS商业化的工程除了提高产品本身性能、可靠性外,还有很多工作集中于扩大加工硅片半径(切割出更多芯片),减少工艺步骤总数,以及尽可能地缩传感器大小。
图1. 8英寸硅片上的MEMS芯片(5mm X 5mm)示意图图2. 硅片,其上的重复单元可称为芯片(chip 或die)。
当今的微机电系统(Micro Electro Mechanical System,简称MEMS)产业重点不断从单个的微机电系统器件向微机电系统产品转移,而且其中的机械、热、电、静电及电磁间耦合作用与机理日趋复杂,一些传统的工程设计方法(如经验设计法等)无法满足微系统的设计要求。
对微机电系统产品开发而言,这种反复尝试的设计方法、长设计周期以及微系统原型机的高昂费用导致了一种效率极为低下的、不切实际的情况。
目前,针对微机电系统的现代设计理论与方法已日益受到微机电系统CAD厂商以及高等院校的相关研究机构的重视,但对微机电系统大规模生产阶段的自动装配系统的研究较少。
微装配作为MEMS产业化过程中的一项重要技术理应受到重视。
在研究的过程中,我们查阅了大量国内外各方面的资料,发现迄今为止还没有一本书来系统讲解微装配的过程,于是我们项目组萌生了编写一本介绍微装配的书籍,希望对MEMS感兴趣的人在获取这方面知识的时候能够比我们来的容易些。
在现代产品设计过程中,装配技术作为检验设计质量的一个重要环节显得越来越重要。
而这个过程通常是用各种CAD设计软件来实现的,于是又出现了仿真的问题。
具体到MEMS,微装配与仿真更是一个有机的整体。
在设计MEMS时,要检验MEMS的可装配性,于是就要把MEMS系统进行建模仿真。
因此,有必要将两者联合起来进行论述。
“国家大学生创新性实验计划”作为教育部、财政部高等学校本科教学质量与教学改革工程的重要组成部分,是培养高素质创新型人才的重要举措之一。
该计划的实施,旨在培养大学生从事科学研究和探索未知的兴趣,从而激发大学生的创新思维和创新意识,锻炼大学生思考问题、解决问题的能力,培养其从事科学研究和创造发明的素质。
2007年,教育部批准了首批60所高校实施该计划项目,西安电子科技大学作为实施该计划项目的高校之一,已经有40个项目被正式列入“国家大学生创新性实验计划”,“MEMS自动装配系统的虚拟化研究”项目有幸成为其中之一。
MEMS概述孙舒畅生物与农业工程学院45090120一,MEMS的含义MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。
微电子机械系统(MEMS)技术是建立在微米/纳米技术(micro/nanotechnology)基础上的21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。
它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。
这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。
它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器、驱动器和微系统。
二,MEMS的特点1)微型化:MEMS器件体积小、重量轻、耗能低、惯性小、谐振频率高、响应时间短。
2)以硅为主要材料,机械电器性能优良:硅的强度、硬度和杨氏模量与铁相当,密度类似铝,热传导率接近钼和钨。
3)批量生产:用硅微加工工艺在一片硅片上可同时制造成百上千个微型机电装置或完整的MEMS。
批量生产可大大降低生产成本。
4)集成化:可以把不同功能、不同敏感方向或致动方向的多个传感器或执行器集成于一体,或形成微传感器阵列、微执行器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系统。
微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。
5)多学科交叉:MEMS涉及电子、机械、材料、制造、信息与自动控制、物理、化学和生物等多种学科,并集约了当今科学技术发展的许多尖端成果。
MEMS发展的目标在于,通过微型化、集成化来探索新原理、新功能的元件和系统,开辟一个新技术领域和产业。
MEMS可以完成大尺寸机电系统所不能完成的任务,也可嵌入大尺寸系统中,把自动化、智能化和可靠性水平提高到一个新的水平。
一、MEMS基本常识1、MEMS的特征尺寸范围1um~1mm2、MEMS的本质特征——小型化、微电子集成、批量制造3、摩尔定律——集成电路芯片的集成度每三年提高4倍,而加工特征尺寸缩小根号2倍4、Accelerometer(加速度计);Near field microscopy(近场显微镜);Resonant sensor(谐振传感器)5、MEMS技术的构成:微制造、微器件和微系统6、半导体中两种自由载流子:电子和空穴7、单晶硅单位晶体中原子总数:188、单晶硅常用于MEMS衬底材料,其应用普遍性主要的原因是什么?它的力学性能稳定,并且可被集成到相同衬底的电子器件上。
硅几乎是理想的结构材料。
它的熔点为1400摄氏度。
它的热膨胀系数比钢小八倍。
最重要的是,硅在事实上没有迟滞,因此是理想的传感器和致动器的理想候选材料。
9、MEMS中的核心元件一般包括哪两个部分:传感器和信号传输单元10、就微系统而言,化学性能最稳定的材料是碳化硅;最便宜的热和电绝缘材料是二氧化硅11、哥氏效应、Sagnac效应:哥氏效应:质点作圆周运动的同时也作径向运动或圆周运动时,会产生一个分别垂直于这两轴方向的作用力,叫做哥氏力。
哥氏力的大小为F=2mwuSagnac效应:将同一光源发出的一束光分解为两束,让它们在同一个旋转环路内沿相反方向循环行一周后会合,产生相位差发生干涉。
二、微传感器与微执行器1、传感器的基本工作原理是:将一种能量信号转换为另一种能量信号;执行器的基本工作原理是:通过机电转换结构将电学控制信号转化为机械动作。
2、传感器中力-电转换机理通常有压阻式、电容式、谐振式、隧道式、压电式3、测量微压力传感器中薄膜的变形方法:电子方法4、微传感器按传感机理分:压阻、压电、隧道、电容、谐振、热对流;按物理参数分类:力(加速度/压力/声)、热(热电偶/热阻)、光(光电类)、电磁(磁强计)、化学和生物医学(血糖/电容化学/化学机械)5、利用半导体光电导效应可制成光敏电阻,其基本原理是:辐射时半导体材料中的电荷载流子(包括电子和空穴)的增殖使其电阻率发生变化6、隧道电流敏感原理:在距离十分接近的隧道探针与电极之间加一个偏置电压,当针尖和电极之间的距离接近纳米量级时,电子就会穿过两者之间的势垒,形成隧道电流。