归纳问题.ppt
- 格式:ppt
- 大小:1.39 MB
- 文档页数:49
数学归纳法完整版课件一、教学内容本节课将深入探讨数学归纳法,这是高中数学的一个重要部分。
教学内容基于教材第四章第四节“数学归纳法”,详细内容包括:1. 数学归纳法的定义与基本思想;2. 数学归纳法证明步骤;3. 数学归纳法在实际问题中的应用。
二、教学目标1. 理解数学归纳法的概念,掌握其基本步骤;2. 能够运用数学归纳法证明等式和不等式;3. 培养学生逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:数学归纳法的定义、证明步骤及在实际问题中的应用。
难点:如何引导学生从具体问题中发现规律,并运用数学归纳法进行证明。
四、教具与学具准备1. 教具:PPT课件、黑板、粉笔;2. 学具:练习本、笔。
五、教学过程1. 实践情景引入(5分钟)利用PPT展示一个与数学归纳法相关的生活实例,引发学生思考,激发学习兴趣。
例:有一堆砖,第1块砖摞1厘米,以后每增加1块砖,摞的高度增加2厘米。
求第n块砖摞的高度。
2. 知识讲解(10分钟)详细讲解数学归纳法的定义、证明步骤,通过例题解释如何运用数学归纳法。
例题:证明1+2+3++n = n(n+1)/2。
3. 随堂练习(10分钟)让学生独立完成练习题,巩固所学知识。
练习题:证明2+4+6++2n = n(n+1)。
4. 互动讨论(5分钟)邀请几名学生分享解题思路,共同讨论解决方法。
六、板书设计1. 板书左侧:数学归纳法的定义与证明步骤;2. 板书右侧:例题及解题过程。
七、作业设计1. 作业题目:证明1^3+2^3+3^3++n^3 = (1+2++n)^2。
答案:数学归纳法证明如下:(1)当n=1时,等式成立;(2)假设当n=k时,等式成立,即1^3+2^3++k^3 = (1+2++k)^2;(3)当n=k+1时,等式左侧为1^3+2^3++k^3+(k+1)^3,根据归纳假设,等于(1+2++k)^2+(k+1)^3;(4)将(1+2++k)^2+(k+1)^3展开,得到(1+2++k+k+1)^2,即(1+2++n)^2,等式成立。