两个定点的距离之和为定值却是一个熟悉的结论,即动点的轨迹是椭圆,而动点 P 是两条直线的交点,这又是一个熟悉的问题,因此,本题就转化为,两条直线交点 的轨迹是否为椭圆的问题.解题的方向明确了.求出直线方程,再求交点的轨迹,然 后判断这一轨迹是否为椭圆,其焦点是否为定点.
因为 c (0,a) , i (1,0) ,,所以 c i ,a , i 2c 1,2a.
4.化归与转化思想
化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问 题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思 想方法,化归与转化思想的核心是把生题转化为熟题。事实上,解题的过程就 是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是 未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化 归。例如,对于立体几何问题,通常要转化为平面几何问题,对于多元问题, 要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是 熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等 等.事实上,前面讲的函数和方程思想就是把表面不是函数的问题化归为函数问 题求解,分类与整合思想是把一个复杂的题目分解成若干个小题求解,而数形结 合思想则是把代数问题转化为图形求解,或者把几何问题转化为代数运算求解.
r2 a ex1
2
2 2 x1 ,
所以,
r1r2
2
1 2
x12
,
①
这里, r1 与 r2 的积用 x1 的代数式来表示.
直线方程为
y
y1
x1 2 y1
x
x1
,
即 x1x 2 y1 y 2 y12 x1 0 ,
②
因为
A x1,