高中数学平面向量习题和答案解析
- 格式:doc
- 大小:825.50 KB
- 文档页数:9
高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。
高三数学平面向量的几何应用试题答案及解析1.已知向量a=(2,1),b=(0,-1).若(a+λb)⊥a,则实数λ=.【答案】5【解析】因为(a+λb)⊥a,所以【考点】向量数量积2.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2,则的最大值是.【答案】8【解析】设AB中点为M,则.因为圆C:,AB=2,所以,因此的最大值是8.【考点】直线与圆位置关系3.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】∵,∴P为AC的中点,∴.【考点】向量的运算.4.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.5.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.6.已知直角△ABC中,AB=2,AC=1,D为斜边BC的中点,则向量在上的投影为。
【答案】【解析】在上的投影为.【考点】向量的射影问题.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.10.已知点,点,向量,若,则实数的值为()A.5B.6C.7D.8【答案】C【解析】由已知得,又,所以存在实数,使,即,解得,所以正确答案为C.【考点】平行向量11.已知向量a,若向量与垂直,则的值为()A.B.7C.D.【答案】A【解析】由已知得,,又这两个向量垂直,所以,解得,所以正确答案为A.【考点】向量的运算与垂直关系12.直线与抛物线:交于两点,点是抛物线准线上的一点,记,其中为抛物线的顶点.(1)当与平行时,________;(2)给出下列命题:①,不是等边三角形;②且,使得与垂直;③无论点在准线上如何运动,总成立.其中,所有正确命题的序号是___.【答案】;①②③【解析】由抛物线方程知,焦点,准线为。
平面向量练习题一.填空题。
1.AC DB CD BA 等于________.2.若向量a=( 3,2), b=(0,-1),则向量2b-a的坐标是________.3.平面上有三个点A( 1,3),B( 2,2),C( 7,x),若∠ ABC =90°,则 x 的值为 ________.4.向量 a、b 知足 |a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________.5.已知向量 a=( 1, 2), b=( 3, 1),那么向量 2a-1b 的坐标是 _________.26.已知 A(- 1, 2),B( 2, 4), C(4,- 3), D ( x,1),若AB与CD共线,则 | BD |的值等于 ________.7.将点 A( 2, 4)按向量 a=(- 5,- 2)平移后,所获得的对应点A′的坐标是 ______.8.已知 a=(1, -2), b =(1,x), 若 a⊥b,则 x 等于 ______9.已知向量 a, b 的夹角为120,且 |a|=2,| b |=5,则( 2a- b)· a=______10.设 a=(2, - 3), b =(x,2x), 且 3a· b =4, 则 x 等于 _____11.已知 AB( 6,1), BC ( x, y), CD ( 2, 3), 且 BC ∥DA,则x+2y的值为_ ____12.已知向量a+3 b, a-4 b 分别与 7a-5 b,7a-2 b 垂直,且 |a|≠ 0,| b |≠ 0,则 a 与 b 的夹角为 ____uuur uuur uuur13.在△ ABC中, O 为中线 AM 上的一个动点,若AM=2 ,则OA OB OC 的最小值是.14.将圆x2y 2 2 按向量v=(2,1)平移后,与直线 x y0 相切,则λ的值为.二.解答题。
15.设平面三点A( 1, 0), B( 0,1), C( 2, 5).(1)试求向量 2 AB+AC的模;(2)试求向量AB 与 AC 的夹角;(3)试求与BC垂直的单位向量的坐标.16.已知向量a=( sin,cos)(R ),b=(3,3 )(1)当为什么值时,向量a、b 不可以作为平面向量的一组基底1(2)求 |a -b|的取值范围17.已知向量 a 、 b 是两个非零向量,当 a+tb(t ∈R)的模取最小值时,(1)求 t 的值(2)已知 a 、 b 共线同向时,求证b 与 a+tb 垂直18. 设向量 OA (3,1), OB ( 1,2) ,向量 OC 垂直于向量 OB ,向量 BC 平行于 OA ,试求 OD OA OC 时,OD 的坐标 .19.将函数 y= - x 2 进行平移, 使获得的图形与函数 y=x 2- x - 2 的图象的两个交点对于原点 对称 .(如图 )求平移向量 a 及平移后的函数分析式 .20.已知平面向量 a( 3, 1), b (1, 3).若存在不一样时为零的实数k 和 t,使2 2x a (t 23)b, y ka t b, 且 x y.( 1)试求函数关系式 k=f ( t )( 2)求使 f ( t )>0 的 t 的取值范围 .21 11. 02.(- 3,- 4)3.74.90°5.( 2 , 3 2 ).6.73 . 7.(- 3, 2).8.- 29.12110. 311.012. 90 ° 13.214.1或 515. ( 1)∵AB =( 0- 1, 1-0)=(- 1, 1), AC =( 2- 1, 5- 0)=( 1,5).∴ 2 AB + AC = 2(- 1, 1)+( 1, 5)=(- 1, 7).∴ |2AB + AC |= ( 1)2 72 = 50.(2)∵ | AB |=( 1)212= 2 .|AC |= 12 52 = 26 ,AB ·AC =(- 1)× 1+ 1×5= 4.AB AC4 2 13∴ cos = | AB | | AC | = 226= 13 .(3)设所求向量为m =( x , y ),则 x 2+ y 2= 1. ①又 BC =( 2- 0, 5- 1)=( 2,4),由 BC ⊥ m ,得 2 x + 4 y = 0.②x 2 5x -2555y5 . y5 .2 55 2 555 55)或(- 55)即由①、②,得 5 或 ∴ ( ,-,为所求.16.【解】(1)要使向量 a 、 b 不可以作为平面向量的一组基底,则向量 a 、 b 共线3sin3 cos30 tan∴3k(k Z ) k(kZ ) 故6,即当6基底时,向量 a 、b 不可以作为平面向量的一组(2) | a b | (sin 3) 2 (cos 3)2 13 2( 3 sin3cos )而 2 33 sin3cos2 3∴ 2 3 1 | a b | 2 3 1317.【解】(1)由 ( a tb) 2| b |2 t 22a bt| a |2t2a b| a |cos(是a与b的夹角)当2 | b |2| b |时 a+tb(t ∈ R)的模取最小值| a |t(2)当 a、 b共线同向时,则0,此时| b |∴ b (a tb) b a tb2b a | a ||b | | b || a | | a || b | 0∴b⊥ (a+tb)18.解:设OC(x, y),OC OB OCOB 0 2 y x0①又BC // OA,BC(x1, y2)3( y 2)( x 1) 0即:3y x7②x14,联立①、②得y710分OC(14,7),于是 OD OC OA(11,6) .19.解法一:设平移公式为x x hy y k 代入 y x2,获得y k( x h) 2 .即 y x22hx h 2k ,把它与 y x 2x2联立,y x 22hx h 2k得yx 2x 2设图形的交点为(x1, y1),( x2, y2),由已知它们对于原点对称,x1x2即有:y1y2 由方程组消去y得:2x2(12h) x 2 h 2k 0.4x 1 x 21 2h且x 1x 20得h1 . 由22又将(x 1, y1 ),( x 2, y 2 )分别代入①②两式并相加,得: y 1 y 2x 12 x 22 2hx 1 x 2 h 2 k 2.0 (x 2x 1 )( x 2x 1 ) (x 1x 2 ) 1 k 2k9.a ( 1 , 9)4. 解得42 4 .xx12y y9x2得: yx 2平移公式为:4 代入 yx2 .解法二:由题意和平移后的图形与y x 2x2交点对于原点对称,可知该图形上全部点都能够找到对于原点的对称点在另一图形上,所以只需找到特点点即可.y x2x2的极点为(1, 9)1 , 924 ,它对于原点的对称点为 ( 2 4 ),即是新图形的极点 .因为新图形由 yx 2h1 0 1, k 99平移获得, 所以平移向量为22 44 以下同解法一 .20.解:( 1)xy, x y 0.即[( at 2 3)b]( k a tb)0.a b0, a 221,4k t(t23) 0,即k1t(t 23).4,b1t (t 24( 2)由 f(t)>0, 得3) 0,即t (t3)(t3)0,则3t 0或t3.45。
高中平面向量经典练习题【编著】黄勇权一、填空题1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。
2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。
3、已知点A(1,2),B(2,1),若→AP=(3,4),则→BP= 。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。
5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。
6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。
7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。
8、在△ABC中,D为AB边上一点,→AD =12→DB,→CD =23→CA + m→CB,则m= 。
9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且→AP= 2→PD,则点C的坐标是()。
二、选择题1、设向量→OA=(6,2),→OB=(-2,4),向量→OC垂直于向量→OB,向量→BC平行于→OA,若→OD +→OA=→OC,则→OD坐标=()。
A、(11,6)B、(22,12)C、(28,14)D、(14,7)2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标()A、(4 , 2)B、(3,1)C、(2,1)D、(1,0)3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。
A、90°B、60°C、30°D、0°4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()A、 15B、 14C、 13D、 115、在菱形ABCD中,∠DAB=60°,|2·→0C +→CD|=4,则,|→BC+→CD|=______.A、12B、8C、4D、26题、7题、8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为________.A、2B、4C、8D、169题、10、已知正方形ABCD的边长为2,E为CD的中点,则→AE·→BD=.A、-1B、1C、-2D、2三、解答题1、在△ABC中,M是BC的中点,AM=3,BC=10,求→AB·→AC的值。
高一数学平面向量试题答案及解析1.正六边形中,()A.B.C.D.【答案】D【解析】故选D2.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略3.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.4.(本小题满分10分)已知向量,,且,(1)求a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-,求λ的值.【答案】(1),;(2)【解析】(1)首先根据向量积的坐标表示,然后再根据两角和的余弦公式进行化简,求向量的模,根据公式,展开公式,然后按照向量数量积的坐标表示和二倍角公式进行化简;(2),第一步先按二倍角公式展开,转化为关于的二次函数求最值,第二步,进行换元,配方,所以讨论,,三种情况,得到最小值,确定参数的取值.试题解析:(1),(2分)|,因为所以.(2)令因为,.∴原函数可化为①当,,即(不合题意,舍去).②当时,,即或(不合题意,舍去).③当时,矛盾.综上所述.【考点】1.向量数量积的坐标表示;2.三角函数的化简;3.二次函数求最值.5.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.6.已知屏幕上三点满足,则的形状是()A.等腰三角形B.对边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】设的中点为,则,为等腰三角形.故选A.【考点】(1)三角形的形状判断;(2)平面向量数量积的运算.7.在中,设,若点满足,则A.B.C.D.【答案】A【解析】由得,,答案选A.【考点】向量的线性运算8.已知,,若与垂直,则等于()A.1B.C.2D.4【答案】C【解析】,因为与垂直,则,【考点】(1)平面向量的数量积(2)向量的模9.如图,已知点,是单位圆上一动点,且点是线段的中点.(1)若点在轴的正半轴上,求;(2)若,求点到直线的距离.【答案】(1);(2);【解析】(1)根据中点坐标公式求出B点坐标,再利用向量数量积坐标式表示出即可;(2)结合已知图形,求出B点坐标,再求出C点坐标,然后写出OC所在直线方程,最后根据点到直线距离公式即可求出点A到OC的距离.试题解析:(1)点在轴正半轴上,,又点是线段的中点,,,;(2),,由点是线段的中点,,直线的方程为,即,点到直线的距离.【考点】1.中点坐标公式;2.向量数量积的坐标式;3.点到直线距离;10.(本小题10分)已知向量.(Ⅰ)若向量与平行,求的值;(Ⅱ)若向量与的夹角为锐角,求的取值范围【答案】(1)(2)且【解析】(1)本题考察的是两向量的平行,可以先根据条件写出两个向量与的坐标,利用平行向量的条件,即可求出的值.(2)因为向量与的夹角为锐角,则向量的数量积大于0且不共线,根据条件代入公式即可求出的取值范围.试题解析:(Ⅰ)依题意得-------2分∵向量与平行∴,解得(Ⅱ)由(2)得∵向量与的夹角为锐角∴,且∴且【考点】平面向量的综合题11.若,则向量的夹角为()A.B.C.D.【答案】C【解析】因为,设与的夹角为,,则,故选C.【考点】数量积表示两个向量的夹角12.已知向量,,若,则代数式的值是()A.B.C.D.【答案】C【解析】因为向量,,,所以,解得,而=,故选择C【考点】1.共线向量的坐标表示;2.同角函数基本关系式13.如图,在正方形中,,点为的中点,点在边上.若,则.【答案】【解析】以A为坐标原点,AB为x轴,AD为y轴建立直角坐标系,则,可得,即,所以【考点】向量坐线性运算14.已知向量,,若⊥,则实数的值为()A.B.C.-D.2【答案】A【解析】两向量垂直,所以数量积为0,代入公式,解得,故选A.【考点】向量数量积的坐标表示15.(本小题满分12分)设向量a=(4cosα,sinα),b=(sinβ,4cosβ),c=(cosβ,-4sinβ),(1)若a与b-2c垂直,求tan(α+β)的值;(2)求|b+c|的最大值.【答案】(1)2 (2)【解析】(1)由两向量垂直得到数量积为零,代入向量的坐标可得到关于的关系式,将其整理可得到的值;(2)将转化为用角的三角函数表示,求向量的模的最大值转化为求函数最大值问题,求解时要注意正余弦值的范围试题解析:(1)b-2c=(sinβ-2cosβ,4cosβ+8sinβ),又a与b-2c垂直,∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0,即4cosαsinβ-8cosαcosβ+4sinαcosβ+8sinαsinβ=0,∴4sin(α+β)-8cos(α+β)=0,得tan(α+β)=2.(2)由b+c=(sinβ+cosβ,4cosβ-4sinβ),∴|b+c|=当sin2β=-1时,|b+c|==4.max【考点】1.向量的坐标运算;2.向量的模;3.三角函数化简16.设为所在平面内一点,,则()A.B.C.D.【答案】A【解析】,.故A正确.【考点】平面向量的加减法.17.已知向量,且∥,则的最小值等于A.B.C.D.【答案】B【解析】由知,即,则.【考点】平面向量的坐标运算及用基本不等式求最值.18.已知的夹角为,则【答案】【解析】.【考点】1.向量的模;2.向量的内积.19.平面向量与的夹角为60°,=(2,0),=1,则|+2|等于()A.B.C.4D.12【答案】B【解析】【考点】向量的模与向量运算20.(本小题满分12分)已知平面向量,.(1)若,求的值;(2)若,求|-|.【答案】(1)(2)【解析】(1)由得到坐标关系式,代入相应坐标即可得到的值;(2)由直线平行得到坐标满足的的关系式,求得x值后,将向量用坐标表示,利用坐标求向量的模试题解析:(1)即(2)即当时,当时,【考点】1.向量平行垂直的判定;2.向量的模21.(本题满分15分)已知,,是同一平面上不共线的三点,且.(1)求证:;(2)若,求,两点之间的距离.【答案】(1)详见解析;(2).【解析】(1)将条件当中的式子变形,利用向量数量积的定义证明是等腰三角形即可;(2)根据(1)中所证再结合等腰三角形的性质,可将转化为与有关的方程,从而求解.试题解析:(1)由得,设为的中点,则,从而有,即,由于为的中点,且,因此由“三线合一”性质可知;(2)由(1)可知,,故,即,两点之间的距离为.【考点】1.等腰三角形的性质;2.平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.22.已知为非零向量,且,,则下列说法正确的个数为()(1)若,则;(2)若,则;(3)若,则;(4)若,则.A.1B.2C.3D.4【答案】D【解析】(1)因为,,,均为非零向量,且,所以,必不共线,则,表示以是,为邻边的平行四边形的两条对角线,且该平行四边形为菱形,所以,,故(1)正确;(2),所以,故(2)正确;(3)若,则必不共线,所以以为邻边的平行四边形是矩形,所以,故(3)正确;(4)若非零向量满足,即,则以为邻边的平行四边形是矩形,所以,故(4)正确.【考点】向量加法、减法的几何意义,数量积的运算性质和向量垂直的条件.23.(2015秋•大兴安岭校级期末)已知向量=(1,2),=(2,2).(1)求(2﹣)•(2+);(2)设=(﹣3,λ),若与夹角为钝角,求λ的值.【答案】(1)12;(2)λ>﹣,且λ≠6.【解析】(1)向量的坐标运算和向量的数量积的坐标运算计算即可,(2)若与夹角为钝角,则则•<0,问题得以解决.解:(1)∵=(1,2),=(2,2),∴2﹣=(2﹣2,4﹣2)=(0,2),2+=(2+2,4+2)=(4,6),∴(2﹣)•(2+)=0×4+2×6=12;(2)若与夹角为钝角,则•<0,•=(﹣3,λ)•(1,﹣2)=﹣3﹣2λ<0,即λ>﹣,且与不能方向,即﹣3×(﹣2)﹣λ≠0,解得λ≠6,故λ的范围为λ>﹣,且λ≠6.【考点】平面向量数量积的运算;平面向量的坐标运算.24.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.25.若向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于()A.-B.C.D.【答案】C【解析】,所以设与的夹角为.,,.故C正确.【考点】1向量的数量积;2向量的模长.【易错点睛】本题主要考查向量的数量积和模长问题,难度一般.先由向量的数量积公式求得夹角的余弦值,由余弦值可求得角的大小.但应注意两向量的夹角范围为,若忽略角的范围容易出错.26. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.27.已知,,,且与垂直,则实数λ的值为()A.B.C.D.1【答案】C【解析】由,所以,然后根据与垂直,展开后由其数量积等于0可求解λ的值.解:因为,所以,又,,且与垂直,所以==12λ﹣18=0,所以.故选C.【考点】数量积判断两个平面向量的垂直关系.28.(2015秋•嘉兴期末)已知向量是同一平面内的三个向量,其中.(1)若,且向量与向量反向,求的坐标;(2)若,且,求与的夹角θ.【答案】(1).(2).【解析】(1)令,根据模长关系列方程解出λ;(2)将展开求出,代入夹角公式计算.解:(1)设∵∴,∴.(2)∵||=,,∴2=5,2=.∵,∴22+3﹣22=+3=,∴.∴,∴.【考点】平面向量数量积的运算;平面向量的坐标运算.29.已知向量.(1)若点A,B,C能构成三角形,求x,y应满足的条件;(2)若△ABC为等腰直角三角形,且∠B为直角,求x,y的值.【答案】(1)3y﹣x≠1(2)或【解析】(1)点A,B,C能构成三角形,即三点不共线,再由向量不共线的条件得到关于x,y的不等式,即所求的x,y应满足的条件;(2)△ABC为等腰直角三角形,且∠B为直角,可得AB⊥BC且,|AB|=|BC|,转化为坐标表示,得到方程求出x,y的值解:(1)若点A,B,C能构成三角形,则这三点不共线,∵∴=(3,1),=(2﹣x,1﹣y),又与不共线∴3(1﹣y)≠2﹣x,∴x,y满足的条件为3y﹣x≠1(2)∵=(3,1),=(﹣x﹣1,﹣y),若∠B为直角,则AB⊥BC,∴3(﹣x﹣1)﹣y=0,又|AB|=|BC|,∴(x+1)2+y2=10,再由3(﹣x﹣1)﹣y=0,解得或.【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示.30.已知||=||=1,与夹角是90°,=2+3,=k﹣4,与垂直,k的值为()A.﹣6B.6C.3D.﹣3【答案】B【解析】根据与垂直的条件,得到数量积等于0,求变量K的值,展开运算时,用到|a|=|b|=1,a与b夹角是90°代入求解.解:∵×=(2+3)×(k﹣4)=2k+(3k﹣8)×﹣12=0,又∵×=0.∴2k﹣12=0,k=6.故选B【考点】平面向量数量积的运算;数量积判断两个平面向量的垂直关系.31.已知.(1)若,求的坐标;(2)设,若,求点的坐标.【答案】(1);(2).【解析】(1)由可求得的坐标,再利用向量的运算用表示出,从而求得的坐标;(2)可假设,能求的的坐标,由可得关系式,,将此关系式转化成关于的方程,求出,从而得到点的坐标.试题解析:(1)(2)设则,,解得因此,点的坐标为【考点】向量的运算.32.在中,,,,下列推导不正确的是()A.若,则为钝角三角形B.,则ΔABC为直角三角形C.,则为等腰三角形D.,则为正三角形【答案】D【解析】A中,由可知,,得为钝角三角形;B中,由可知,,得为直角三角形;C中,由知得,,,,则为等腰三角形;D中,,总是成立,不能得到为正三角形.故选D.【考点】平面向量的数量积.33.已知点P在正△ABC所确定的平面上,且满足,则△ABP的面积与△BCP的面积之比为()A.1:1B.1:2C.1:3D.1:4【答案】B【解析】由,可得=2,即点P为线段AC的靠近点A的三等分点,即可得出.解:∵,∴==,∴=2,即点P为线段AC的靠近点A的三等分点,∴△ABP的面积与△BCP的面积之比==,故选:B.【考点】向量的加法及其几何意义.34.如图,已知:,为的中点,为以为直径的圆上一动点,则的最大值是()A.B.C.D.【答案】A【解析】以直线为轴,圆心为坐标原点建立如图所示的直角坐标系,则,所以,,设,则,,其中(,),所以的最大值为.故选A.【考点】平面向量的线性运算,平面向量的数量积.【名师】本题考查平面向量的数量积,解题的关键是建立适当的直角坐标系,把向量用坐标表示出来.本题中建立如解析中所示的坐标系后,可以把表示出来了,引入圆的参数方程表示法,可以把向量用参数表示,这样就可两向量的数量积表示为的函数:,由三角函数的性质可求得最大值.35.在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于 ( ) A.B.C.-D.-【答案】A【解析】,而,代入原式得到,整理为,即为,所以,故选A.【考点】向量36.设是平行四边形的对角线的交点,为平面上任意一点,则= A.B.C.D.【答案】D【解析】由已知得,,,,,而,,所以.故选D.【考点】平面向量的加法;相反向量.37.已知的三个顶点及所在平面内一点,若,若实数满足,则()A.B.3C.-1D.2【答案】B【解析】根据向量减法的运算法则可得所以,又因为,所以,故选B.【考点】平面向量的线性运算.38.在四边形中,设且,,则四边形的形状是()A.梯形B.矩形C.菱形D.正方形【答案】B【解析】,,故四边形为平行四边形,又因为,,,故平行四边形为矩形.【考点】向量加法、减法的几何意义.39.已知向量,,,若∥,则= .【答案】 5;【解析】由题:,, ,∥,则:【考点】向量的坐标运算及平行的性质.40.已知非零向量、,且,,,则一定共线的三点是()A.、B.、C.、、D.、【答案】A【解析】根据三点共线的性质,、;、、皆不可能共线,只有、,、有可能共线,假设、共线,,令,可求得,、共线成立,假设、共线,,令,无解,假设不成立,故本题的正确选项为A.【考点】三点共线的证明.【方法点睛】证明三点共线的方法有多种,有向量法,因为共线的三点中任意连接两点所成向量必共线,而由共线向量的性质可知,当两向量共线时(两向量均不为零向量),其对应坐标成比例或者满足,以此来判断三点是否共线;也可建立坐标系,由其中两点确定一条直线,再将第三点代入直线方程,看其是否在直线上;三点钟任意连接两点,可形成三个向量,通过三个向量的模长的关系也可判断三点是否共线.41.已知,点是线段上的点,,则点的坐标为()A.B.C.D.【答案】D【解析】假设,则有,所以有,可求得,故本题的正确选项为D.【考点】三点共线的性质.42.设和是两个单位向量,夹角是,试求向量和的夹角.【答案】.【解析】本题考查的知识点是数量积表示两个向量的夹角,由和是两个单位向量,夹角是,我们易得,,进而我们可以求出,,,然后代入,即可求出答案.试题解析:,,,.,,故.【考点】数量积表示两向量的夹角.43.已知点,,,,则向量在方向上的投影为【答案】【解析】,,则向量在方向上的投影为.【考点】向量数量积的几何意义.44.下列四个式子中可以化简为的是()①②③④A.①④B.①②C.②③D.③④【答案】A【解析】由向量加法三角形法则可知①正确,由向量减法的三角形法则可知④正确,故选A.【考点】向量加法、减法的三角形法则.45.已知向量满足:(1)求向量与的夹角(2)求【答案】(1)(2)【解析】(1)设向量的夹角为θ,求出,展开,代入后求得θ值;(2)利用,展开后求得答案试题解析:(1)设向量与的夹角为,,,得,(2)【考点】平面向量数量积的运算46.在菱形中,若,则等于()A.2B.-2C.D.与菱形的边长有关【答案】B【解析】由题在菱形中,若,由,【考点】向量的运算及几何意义.47.已知是两个单位向量.(1)若,试求的值;(2)若的夹角为,试求向量与的夹角【答案】(1)(2)【解析】(1)由题为单位向量,且,可利用向量乘法运算的性质;,化为向量的乘法运算,求出,进而可求得(2)由的夹角为,可利用向量乘法的性质,分别先求出的值,再利用可得.试题解析:(1),是两个单位向量,,又,,即.(2),,,夹角 .【考点】向量的乘法运算及性质.48.设向量,若,则.【答案】【解析】由题//,可得:【考点】向量平行的性质.49.已知向量=(3,x),=(﹣2,2)(1)若向量⊥,求实数x的值;(2)若向量﹣与3+2共线,求实数x的值.【答案】(1)x=3(2)x=﹣3【解析】解:(1)∵⊥,∴•=﹣6+2x=0,解得x=3.(2)﹣=(﹣5,2﹣x),3+2=(7,3x+2).∵﹣与3+2共线,∴7(2﹣x)+5(3x+2)=0,解得x=﹣3.【点评】本题考查了向量坐标运算性质、向量共线定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.50.若,且,则向量与的夹角为A.30°B.60°C.120°D.150°【答案】C【解析】由,则;,得:与的夹角为120°。
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB =OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。
6.1 平面向量的概念(精练)【题组一向量与数量的区别】1.(2021·江苏·泰兴市第三高级中学高一月考)给出下列量:①角度;①温度;①海拔;①弹力;①风速;①加速度.其中是向量的有( )A.2个B.2个C.4个D.5个【答案】B【解析】根据题意,在①角度、①温度、①海拔、①弹力、①风速、①加速度中,是向量的有①弹力、①风速、①加速度,有3个,故选:B.2.(2021·浙江·高一课时练习)下列各量中是向量的是( )A.时间B.速度C.面积D.长度【答案】B【解析】既有大小,又有方向的量叫做向量;时间、面积、长度只有大小没有方向,因此不是向量.而速度既有大小,又有方向,因此速度是向量.故选:B.3.(2021·全国·高一课时练习)给出下列物理量:①密度;①路程;①速度;①质量;①功;①位移.下列说法正确的是A.①①①是数量,①①①是向量B.①①①是数量,①①①是向量C.①①是数量,①①①①是向量D.①①①①是数量,①①是向量【答案】D【解析】由物理知识可知,密度,路程,质量,功只有大小,没有方向,因此是数量而速度,位移既有大小又有方向,因此是向量.故选:D4.(2021·上海·高一课时练习)下列各量中,哪些是向量(即矢量),哪些是数量(即标量)?(1)密度(2)体积(3)电阻(4)推进力(5)长度(6)加速度向量:__________;数量:____________.(填写相应编号).【答案】(4)(6) (1)(2)(3)(5)【解析】密度、体积、电阻、长度都是只有大小没有方向的量,是数量;推进力、加速度是既有大小又有方向的量,是向量.故答案为:(4)(6);(1)(2)(3)(5).【题组二 向量的几何表示】1.(2021·全国·高一课时练习)一位模型赛车手遥控一辆赛车沿正东方向行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(1)按1①100比例作图说明当α=45°时,操作几次时赛车的位移为零;(2)按此法操作使赛车能回到出发点,α应满足什么条件?【答案】见解析.【解析】(1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零.按(1)的方式作图,则所作图形是内角为180α︒-的正多边形,由多边形的内角和定理可得(180)(2)180n n α︒-=-⋅︒, 解得360nα︒=,且3,*n n N ≥∈.故α应满足的条件为360nα︒=,且3,*n n N≥∈.2.(2021·全国·高一课时练习)如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且5AC=.(1)画出所有的向量AC;(2)求BC的最大值与最小值.【答案】(1)见解析;(2)【解析】(1)画出所有的向量AC,如图所示:(2)由(1)所画的图知,①当点C位于点C1或C2时,|BC|①当点C位于点C5或C6时,|BC|所以|BC|3(2021·全国·高一课时练习)在如图的方格纸(每个小方格的边长为1)上,已知向量a.(1)试以B为起点画一个向量b,使=b a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)根据相等向量的定义,所作向量b应与a同向,且长度相等,如下图所示.(2)由平面几何知识可作满足条件的向量c,所有这样的向量c的终点的轨迹是以点C为圆心,2为半径的圆,如下图所示.4.(2021·江苏·高一课时练习)在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为起点画一个向量b,使b a=;c=,并说出向量c的终点的轨迹是什么?(2)在图中画一个以A为起点的向量c,使5【答案】(1)作图见解析;(2)向量c的终点的轨迹是以A.【解析】(1)由题意,B为起点画一个向量b,使b a=,如图所示.c=,则向量c的终点表示以A(2)因为5【题组三向量相关概念的辨析】1.(2021·湖南·武广实验高级中学高一期末)下列四个命题正确的是( )A.两个单位向量一定相等B.若a与b不共线,则a与b都是非零向量C.共线的单位向量必相等D.两个相等的向量起点、方向、长度必须都相同【答案】B【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选:B.2.(2021·全国·高一课时练习)下列关于向量的描述正确的是A .若向量a ,b 都是单位向量,则a b =B .若向量a ,b 都是单位向量,则1a b ⋅=C .任何非零向量都有唯一的与之共线的单位向量D .平面内起点相同的所有单位向量的终点共圆【答案】D【解析】对于选项A :向量包括长度和方向,单位向量的长度相同均为1,方向不定,故向量a 和b 不一定相同,故选项A 错误;对于选项B :因为cos cos a b a b θθ⋅=⋅⋅=,由[]cos 1,1θ∈-知,1a b ⋅=不一定成立,故选项B 错误; 对于选项C :任意一个非零向量有两个与之共线的单位向量,故选项C 错误;对于选项D :因为所有单位向量的模为1,且共起点,所以所有单位向量的终点在半径为1的圆周上,故选项D 正确;故选:D.3.(2021·广西·田东中学)下列命题中,正确的个数是( ) ①单位向量都相等;①模相等的两个平行向量是相等向量;①若a →,b →满足a b →→>且a →与b →同向,则a b →→>; ①若两个向量相等,则它们的起点和终点分别重合;①若a →①,b b →→①c →,则b →①c →.A .0个B .1个C .2个D .3个 【答案】A【解析】对于①,单位向量的模长相等,但方向不一定相同,故①错误;对于①,模相等的两个平行向量是相等向量或相反向量,故①错误;对于①,向量是有方向的量,不能比较大小,故①错误;对于①,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故①错误;对于①,0b →→=时,若a b b c →→→→∥,∥,则a →与c →不一定平行.综上,以上正确的命题个数是0.故选:A.4.(2021·全国·高一课时练习)下列说法中,正确的个数是( )①时间、摩擦力、重力都是向量;①向量的模是一个正实数;①相等向量一定是平行向量;①向量a→与b→不共线,则a→与b→都是非零向量( )A.1B.2C.3D.4【答案】B【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;①零向量的模为零,故①错;①相等向量的方向相同,模相等,所以一定是平行向量,故①正确;①零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即①正确.故选:B.5.(2021·全国·高一课时练习)下列命题中正确的个数是①向量就是有向线段①零向量是没有方向的向量①零向量的方向是任意的①任何向量的模都是正实数A.0B.1C.2D.3【答案】B【解析】有向线段只是向量的一种表示形式,但不能把两者等同起来,故①错;零向量有方向,其方向是任意的,故①错,①正确;零向量的模等于0,故①错.故选:B.6.(2021·江苏·高一)下列各说法:①有向线段就是向量,向量就是有向线段;①向量的大小与方向有关;①任意两个零向量方向相同;①模相等的两个平行向量是相等向量.其中正确的有A.0个B.1个C.2个D.3个【答案】A【解析】有向线段是向量的几何表示,二者并不相同,故①错误;①向量不能比较大小,故①错误;①由零向量方向的任意性知①错误;①向量相等是向量模相等,且方向相同,故①错误.故选:A.7.(2021·全国·高一课时练习)下列说法中,正确的是( )①长度为0的向量都是零向量;①零向量的方向都是相同的;①单位向量都是同方向;①任意向量与零向量都共线.A.①①B.①①C.①①D.①①【答案】D【解析】①长度为0的向量都是零向量,正确;①零向量的方向任意,故错误;①单位向量只是模长都为1的向量,方向不一定相同,故错误;①任意向量与零向量都共线,正确;故选:D8.(2021·全国·高一课时练习)下列命题中正确的个数有( )①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;①单位向量都相等;①任一向量与它的相反向量不相等;①共线的向量,若起点不同,则终点一定不同.A.0B.1C.2D.3【答案】AAB CD,或A,B,C,D在同条直线上,故①错误;【解析】对于①,若向向量AB与CD是共线向量,则//对于①,因为单位向量的模相等,但是它们的方向不一定相同,所以单位向量不一定相等,故①错误;对于①,相等向量的定义是方向相同模相等的向量为相等向量,而零向量的相反向量是零向量,因为零向量的方向是不确定的,可以是任意方向,所以相等,故①错误;对于①,比如共线的向量AC与BC(A,B,C在一条直线上)起点不同,则终点相同,故①错误.故选:A.【题组四相等向量与平行向量】1.(2021·全国·高一课时练习)下图中与向量a相等的向量是( )A.b,c,e,f B.c,f C.f D.c【答案】D【解析】由相等向量的定义可知:两个向量的长度要相等,方向要相同,结合图形可知c满足条件,故选:D2.(2021·全国·高一课时练习)如图,点O是正六边形ABCDEF的中心,图中与CA共线的向量有( )A.1个B.2个C.3个D.4个【答案】C【解析】由图可知,根据正六边形的性质,与CA共线的有AC,DF,FD,共3个,故选:C.3.(2021·全国·高一课时练习)如图,四边形ABCD和ABDE都是边长为1的菱形,已知下列说法:①AE AB AD CD CB DE,,,,,都是单位向量;①AB①DE DE,①DC①与AB相等的向量有3个;①与AE共线的向量有3个;①与向量DC大小相等、方向相反的向量为DE CD BA,,.其中正确的是____.(填序号)【答案】①①①①【解析】①由两菱形的边长都为1,故①正确;①正确;①与AB 相等的向量是ED DC ,,故①错误;①与AE 共线的向量是EA BD DB ,,,故①正确;①正确.故答案为:①①①①4.(2021·上海·高一课时练习)如图,在长方体1111ABCD A B C D -中,3AB =,2AD =,11AA =,以长方体的八个顶点中两点为起点和终点的向量中.(1)单位向量共有______个;(2)______;(3)与AB 相等的向量有______;(4)1AA 的相反向量有______.【答案】8 1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB 11A B 、DC 、11DC 1A A 、1B B 、1C C 、1D D【解析】(1)由图可知,11111AA BB CC DD ====,所以单位向量有428⨯=个;(2)由图可知,1111A D AD BC BC ====1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;(3)由图可知,1111AB DC A B D C ===,所以与AB 相等的向量有:11A B 、DC 、11DC ;(4)由图可知,11111AA BB CC DD ====,所以1AA 的相反向量有:1A A 、1B B 、1C C 、1D D ; 故答案为:8;1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;11A B 、DC 、11DC ;1A A 、1B B 、1C C 、1D D .5.(2021·全国·高一课时练习)O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图所示的向量中:(1)分别找出与AO ,BO 相等的向量;(2)找出与AO 共线的向量;(3)找出与AO 模相等的向量;(4)向量AO 与CO 是否相等?【答案】(1)AO BF =,BO AE =;(2)BF ,CO ,DE ;(3)CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)不相等.【解析】因为O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形, 所以OA AE OD DE OC CF BF BO =======,AB CD BC AD ===;(1)由题中图形可得:AO BF =,BO AE =;(2)由图形可得,与AO 共线的向量有:BF ,CO ,DE ;(3)与AO 模相等的向量有:CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)向量AO 与CO 不相等,因为它们的方向不相同.6.(2021·全国·高一课时练习)如图所示,O 是正六边形ABCDEF 的中心,且OA =a ,OB =b ,OC =c .(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c .相等的向量.【答案】(1)OD ,BC ,AO ,FE .(2)EF ,BC ,OD ,FE ,CB ,DO ,AO ,DA ,AD .(3)与a 相等的向量有EF ,DO ,CB ;与b 相等的向量有DC ,EO ,FA ;与c 相等的向量有FO ,ED ,AB .【解析】(1)因为正六边形中各线段长度都相等,且方向相反的有:OD,BC,AO,FE.(2)由共线向量定理得:EF,BC,OD,FE,CB,DO,AO,DA,AD.与a共线.(3)由相等向量的定义得:与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.。
高一数学平面向量试题答案及解析1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是;【答案】【解析】略2.已知平面向量,且∥,则()A.-3B.-9C.9D.1【答案】B【解析】由两向量平行坐标间的关系可知【考点】向量平行的性质3.(12分)已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.【答案】(1)(2).【解析】(1)本题考察的是求函数解析式,本题中根据平面向量的数量积,再结合辅助角公式进行化简,又的周期为,可以求出从而求出的解析式.(2)本题考察的是求参数的取值范围问题,本题中根据所给的定义域求出的值域,再根据不等式恒成立问题即可求出参数的取值范围.试题解析:(1)∵的周期为∴(2),则【考点】(1)辅助角公式(2)三角函数的值域4.在边长为的正三角形中,设,,若,则的值为A.B.C.D.【答案】D【解析】由已知可得:D为BC中点,,又因为在边长为的正三角形中,所以,故解得,故选择D【考点】平面向量的线性运算5.若向量满足:,,,则 .【答案】【解析】【考点】向量垂直与向量的坐标运算6.设,向量,,且,∥,则______________.【答案】【解析】因为,∥,所以有即,,所以【考点】向量坐标运算7.向量a=,b=,则A.a∥bB.C.a与b的夹角为60°D.a与b的夹角为30°【答案】B【解析】根据两向量平行坐标表示公式“”可得A错误;根据两向量垂直的坐标表示公式“”可得B正确;根据B可知两向量夹角为,所以C,D错误,故选择B【考点】向量线性关系8.如图所示,D是△ABC的边AB上的中点,则向量A.B.C.D.【答案】A【解析】因为,故选择A【考点】向量的加减法运算9.设是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【解析】,,,,则动点的轨迹一定通过的垂心.故C正确.【考点】1向量的加减法;2数量积;3向量垂直.10.已知向量则x=【答案】6【解析】由题意可得,解得.【考点】向量共线.11.(2015秋•友谊县校级期末)已知△ABC和点M满足+=﹣,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】作出图象,由向量加法的平行四边形法则可知M是△ABC的重心,故,代入m+m=可解出m.解:以MB,MC为邻边作平行四边形MBEC,连结ME交BC于D,如图.则,∵+=﹣,∴M在线段AD上,且|MA|=2|MD|,∵D是BC中点,∴=2=3,∵m+m=,∴3m=,∴m=.故选C.【考点】平面向量的基本定理及其意义.12.已知点(1)求证:恒为锐角;(2)若四边形为菱形,求的值【答案】(1)证明见解析(2)2【解析】(1)只需证明且三点不在一条直线上即可;(2)利用菱形的定义可求得坐标,进而求出所求的值.试题解析:(1)∵点∴∴.若A,P,B三点在一条直线上,则,得到,此方程无解,∴∴∠APB恒为锐角.(2)∵四边形ABPQ为菱形,∴,即,化简得到解得设Q(a,b),∵,∴,∴【考点】平面向量数量积的运算13.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.14. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.15.已知,,,则=()A.﹣8B.﹣10C.10D.8【答案】B【解析】向量的数量积的运算和向量的模即可求出.解:,,,∴=+|+2=16+25+2=21,∴=﹣10,故选:B.【考点】平面向量数量积的运算.16.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A.B.2C.D.1【答案】B【解析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【考点】向量在几何中的应用.17.已知正方形的边长为2,点是边上的中点,则的值为()A.1B.2C.4D.6【答案】B【解析】以为原点,所在直线为轴建立直角坐标系,则,.【考点】向量数量积的坐标表示.18.=(2,3),=(﹣3,5),则在方向上的投影为.【答案】【解析】由已知向量的坐标求出与,代入投影公式得答案.解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.【考点】平面向量数量积的运算.19.已知向量,满足||=1,||=2,与的夹角为120°.(1) 求及+;(2)设向量+与-的夹角为θ,求cosθ的值.【答案】(1);;(2).【解析】(1)根据向量的数量积的运算公式;以及;(2)根据公式,根据数量积公式,再根据公式试题解析:解析:(1)=||||cos 120°θ=1×2×(-)=-1,所以|+|2=(+)2=2+2+2=12+22+2×(-1)=3.所以|+|=(2)同理可求得|-|=.因为(+)(-)=2-2=12-22=-3,所以cosθ===-.所以向量+与-的夹角的余弦值为-.【考点】向量数量积20.(1)在直角坐标系中,已知三点,当为何值时,向量与共线?(2)在直角坐标系中,已知为坐标原点,,,当为何值时,向量与垂直?【答案】(1);(2).【解析】首先根据向量减法的线性运算得到向量与的坐标,当与共线时坐标交叉积的差等于零,当与垂直是数量积等于零,从而列出的方程,即可求得满足条件的的值.试题解析:(1)∵,又向量与共线,∴,解得(2),当向量与垂直时,,即,解得【考点】向量的线性运算及平行与垂直的坐标表示.21.已知a,b为非零向量,且|a+b|=|a|+|b|,则一定有()A.a=b B.a∥b,且a,b方向相同C.a=-b D.a∥b,且a,b方向相反【答案】B【解析】根据向量加法的几何意义, a,b方向相同,方向相同即是共线向量.【考点】向量加法的几何意义.22.已知向量.(1)若点三点共线,求的值;(2)若为直角三角形,且为直角,求的值.【答案】(Ⅰ)-19;(Ⅱ)1.【解析】(Ⅰ)根据向量的减法运算和向量平行的充要条件即可解得;(Ⅱ)根据向量的减法运算和向量垂直的充要条件即可解得.试题解析:解:(Ⅰ)∴,.(Ⅱ),则,∴,【考点】向量的减法运算;向量平行和垂直的充要条件.23.平面内有一个和一点,线段的中点分别为的中点分别为,设.(1)试用表示向量;(2)证明线段交于一点且互相平分.【答案】(1),,;(2)证明见解析.【解析】(1)根据向量的加法、数乘的几何意义,以及向量加法的平行四边形法则,并进行向量的数乘运算便可得到,从而同理可以用分别表示出;(2)设线段、的中点分别为,用分别表示出,从而可得,即证得线段交于一点且互相平分.试题解析:(1),.(2)证明:设线段的中点为,则,设中点分别为,同理:,,∴,即其交于一点且互相平分.【考点】1、向量的三角形法则;2、向量的线性运算.【方法点睛】本题考查向量加法、数乘的几何意义,向量加法的平行四边形法则,以及向量的数乘运算,三角形中位线的性质,平行四边形的判定,平行四边形的对角线相交于一点且互相平分,考查学生逻辑推理能力,属于中档题.另一种解法:(1);同理,;(2)证明:如图,连接,则,且,,且,∴,且,∴四边形为平行四边形,∴线段交于一点且互相平分,同理,线段交于一点且互相平分,∴线段交于一点且互相平分.24.已知是两个非零向量,当的模取最小值时.①求的值;②已知与共线且同向,求证:与垂直.【答案】①;②证明见解析.【解析】(1)设出两个向量的夹角,表示出两个向量的模长,对于模长形式,通常两边平方,得到与已知条件有关的运算,整理成平方形式,当底数为零时,结果最小;(2)本题要证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,求两个向量数量积,根据上一问做出的结果,代入数量积的式子,合并同类项,得到数量积为零.得到垂直.试题解析:①令,则.当时,.②证明:与共线且同向,,,,.【考点】(1)向量的模;(2)数量积判断两个向量的垂直关系.【方法点晴】本题主要考查模长形式,通常两边平方以及证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,因为在本题中主要是数学符号的运算,所以对学生的运算能力要求较高,属于难题.启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.25.已知,在方向上的投影为,则()A.3B.C.2D.【答案】B【解析】由在方向上的投影为,则,所以,故选B.【考点】向量的数量积及向量的投影的应用.26.给出下列命题:(1)若,则;(2)向量不可以比较大小;(3)若则;(4).其中真命题的个数为()A.1B.2C.3D.4【答案】B【解析】由题意得,(1)中,例如,此时,但,所以不正确;(2)中,向量是既有大小又有方向的量,所示向量不能比较大小,所以(2)是正确的;(3)中,根据相等向量的概念,可得“若则”是正确的;(4)中,由,则是成立的,但由,则与是相等向量或相反向量,所以不正确,综上所述,正确命题的个数为个,故选B.【考点】向量的基本概念.【方法点晴】本题主要考查了平面向量的基本的概念——向量的模、相等向量、向量的概念、共线向量及相反向量的概念,其中牢记平面向量的基本概念是判断此类问题的关键,试题很容易出错,属于易错题,本题的解答中,(4)中,,容易忽视相反向量的概念,造成错解,应牢记向量是既有大小又有方向的量这一基本概念,防止出错.27.已知向量,若,则=()A.B.C.D.【答案】A【解析】,.故选A.【考点】数量积的坐标运算.28.已知向量,.(1)若四边形ABCD是平行四边形,求的值;(2)若为等腰直角三角形,且为直角,求的值.【答案】(1);(2)或.【解析】(1)根据四边形为平行四边形,利用,即可求解的值;(2)利用为等腰直角三角形,且为直角,则且,列出方程,即可求解的值.试题解析:(1),,由得x=-2,y=-5.(2),若为直角,则,∴,又,∴,再由,解得或.【考点】向量的运算及向量的垂直关系的应用.29.(1)已知,,且与的夹角为60°,求的值;(2)在矩形中,,点为的中点,点在边上,若,求的值.【答案】(1);(2).【解析】(1)利用向量模的平方等于向量的平方,即可化简,即可求解的值;(2)设,利用,求得的值,又由,,即可运算的值.试题解析:(1) =169,得;(2)矩形ABCD中,∵点F在边CD上,∴设,,本小题也可建坐标系,用平面向量坐标运算解决.【考点】向量的模的计算及向量数量积的运算.30.已知三角形△ABC中,角A,B,C的对边分别为,若,则 =()A.B.C.D.【答案】C【解析】【考点】向量的坐标运算31.已知向量与的夹角为,||=2,||=3,记,(1)若,求实数k的值。
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。