典型的超宽带技术的应用研究
- 格式:pdf
- 大小:102.24 KB
- 文档页数:1
2020年第08期86UWB 超宽带无线定位系统研究与设计陶 凯华北电力大学,北京 102206摘要:文章以高精度定位需求为出发点,结合泛在电力物联网建设思想,采用 DecaWave 公司的 DW1000作为UWB( Ultra -Wide Band,超宽带) 无线收发器,ST 公司的 STM32单片机作为定位系统的核心控制器,设计了UWB 定位系统基站标签一体化的硬件平台。
该平台可应用于电厂连续堆取料的斗轮机等高效装卸机械作业中,实现电厂堆取料作业的自动化。
在软件算法实现上,采用双向测距的机制准确估计基站(anchor)与标签(tag)之间的距离,通过下位机的硬件模块将测距信息发送给上位机进行处理。
上位机软件根据飞行时间(TOA -Time of Flight)定位算法计算标签与基站的距离,利用多个距离数据可计算出目标标签在三维空间中的坐标值。
此外,在坐标运算过程中采用改进的泰勒算法进行误差消除,从而完成高精度室内定位系统的设计与实现。
关键词:无线定位;UWB;飞行时间;定位系统;双向测距中图分类号:TN925.930 引言在巨大的市场需求的驱动作用下,建立室内实时定位系统(Real Time Location Systems,RTLS)[1]成为目前研究的焦点。
在定位系统的研究与设计中,UWB(Ultra -wideband,超宽带)技术已经在无线通信领域应用得极为广泛[2]。
相比于其他的传统无线信号,超宽带技术信号拥有更大的带宽,其频率范围在3.1 GHz~10.6 GHz [3]。
同时,超宽带技术信号具有非常低的功率谱密度、高的时间分辨率[4]和良好的抗多径能力[5]。
因此,采用 UWB 技术的室内定位系统具有很高的实用价值。
在UWB 定位系统中,无线收发数据的芯片主要使用的是来自著名公司DecaWave 的产品——DW1000(超宽带无线收发芯片),该芯片根据基站与标签之间无线信号在空气中传播的时间(即飞行时间)来计算出该组物体之间的间隔距离,使用的测距算法为双边双向测距算法(dual -Sided Two -wayrange,DS -TWR)。
关于超宽带(UWB)无线通信技术的分析研究
随着科技的不断发展,无线通信技术也在逐步提升。
超宽带(UWB)无线通信技术作为一种新兴的无线通信技术,已逐
渐被工业界和学术界广泛认可。
本文将对超宽带无线通信技术进行分析研究。
首先,超宽带技术是指利用极短的脉冲信号进行通信的一种无线通信技术。
它具备宽带、低功耗、高速、高精度、低干扰等优点,可以在短距离范围内实现高速数据传输和定位服务。
与传统的无线通信技术相比,超宽带技术具有更高的频带利用率和系统容量,可以实现更安全和高效的通信服务。
其次,超宽带技术已经被广泛应用于各种领域。
在物联网领域,超宽带技术可以应用于智能家居、智能医疗、智能交通等多个领域,可以为人类生活带来更加便利和舒适的体验。
在电子商务领域,超宽带技术可以实现高速数据传输和快速支付,可以为现代商业带来极大的便利和效益。
此外,在智能制造、智慧城市等领域也可以应用超宽带技术。
再次,超宽带技术还存在一些挑战和问题。
例如,超宽带技术的系统复杂,需要高精度的硬件和软件支持。
此外,超宽带技术的应用范围和可靠性还需要进一步完善。
综上所述,超宽带无线通信技术已经成为当前无线通信领域的热门技术之一。
尽管它还存在一些挑战和问题,但它有着广阔的应用前景和市场前景。
随着科技的不断提升和完善,相信超宽带无线通信技术将在未来得到更广泛的应用和推广。
超宽带无线通信技术近来,人们可能会注意到,在通信领域出现了一个新的技术词汇——超宽带无线通信,实际上,超宽带无线电的历史渊源,可以追溯到一百年前波波夫、马可尼发明越洋无线电报的时代。
现代意义上的超宽带UWB(UltraWide Band)无线电,又称冲激无线电(Impulse Radio)技术,出现于1960年代,但其应用一直仅限于军事、灾害救援搜索雷达定位及测距等方面。
2002年2月14日,这项无线技术首次获得了美国联邦通信委员会(FCC)的批准用于民用通信,从而引起了世界各国的广泛关注,自1998年起,FCC对超宽带无线设备对原有窄带无线通信系统的干扰及其相互共容的问题开始广泛征求业界意见,在有美国军方和航空界等众多不同意见的情况下,FCC仍开放了UWB技术在短距离无线通信领域的应用许可,这充分说明此项技术所具有的广阔应用前景和巨大的市场诱惑力。
UWB是一种无载波通信技术,它不采用正弦载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。
一般认为-10dB相对带宽超过25%,或-10dB绝对带宽超过1.5GHz就称为超宽带,后来FCC又将此带宽值修改为500MHz。
由计算信道容量的Shannon公式可知,在信道容量一定的情况下,带宽与信噪比可以互补。
UWB的带宽非常宽,目前FCC开放的频段是3.1-10.6 GHz,故UWB系统发射的功率谱密度可以非常低,甚至低于FCC规定的电磁兼容背景噪声电平(-41.3dBm—FCC Part15),所以短距离UWB无线通信系统与其他窄带无线通信系统可以共存。
UWB的传输速率可达几十Mbps~几Gbps;其收发信机结构简单,成本低于全数字化;并且其固有的抗多径衰落功能很强。
UWB发射脉冲持续时间远小于脉冲重复周期,平均发射功率很低,使UWB 技术在实现超宽带信号时域波形高传输数据率的同时也有着低功耗的显著优点。
超宽带技术在实现同样传输速率时,功率消耗仅有传统技术的1/10-1/100。
超宽带无线通信技术的应用及发展远景剖析【纲要】文章概括了超宽带无线通信技术的观点及特色,并总结了超宽带无线通信的优势,在此基础上,针对超宽带无线通信技术的实质应用进行了深入地剖析,旨在为同行供给参照借鉴。
【重点字】超宽带无线通信电子通信优势应用跟着全世界各地通信网络的快速,超宽带无线通信技术作为新兴技术也获取了快速的发展,在这个技术领域里,超宽带技术拥有较大的发展远景,进而在我国各个领域获取了宽泛的应用。
当前,超宽带技术在应用中变得愈来愈成熟,相信在将来的信息网络中将会发挥的重要性的作用。
下边联合笔者的工作经验,商讨了超宽带无线通信技术的应用及发展远景。
一、超宽带无线通信技术概括超宽带无线通信技术是指能够在超宽带的带宽长进行信号的传输。
超宽带一词最先使用于美国的国防部,那时是为了利用超宽带技术来实现对某一频次范围内信号的定义。
与一般通信方式对比,超宽带技术采纳的是一种极短的脉冲信号,每个脉冲信号的连续时间往常只有几十皮秒到几纳秒,在最大数据的传输速率上能够实现每秒几百兆比特。
二、超宽带无线通信的优势2.1 使用的宽带大、传输速率高超宽带无线通信技术和其余无线系统对比,拥有制造成本低的优势,同时在生产制造过程中所用技术简单,发送功率要比现有的无线系统要低好多。
在无线通信系统发展中,其空间容量也更大。
在频域上,超宽带无线通信技术在超越上拥有很广的范围,能够保证在喧闹复杂的环境中不被检测到,拥有很强的安全性。
同时,无线通信技术拥有相当高的穿透力,宽泛的应用于检测、定位等领域。
超宽带无线通信技术所供给的高速率的无线通信数据传输速率能够同时知足很多大容量的多媒体流的传输。
2.2 拥有高强度的保密性超宽带无线通信技术采纳的信息接收系统是采纳的跳时扩频。
只有超宽带无线通信系统的接收机知道发送端的脉冲序列,才能在数据信号发射和接收的过程中保证高度的安全性。
同时超宽带无线通信技术拥有低功率的发射优势,在信息化和数字化发展的信息时代,很难在喧闹的环境中被检测到。
超宽带无线通信系统关键技术及应用摘要:超宽带技术是目前正被广泛研究的一种新兴无线通信技术。
本文重点介绍了超宽带无线通信系统中物理层及上层的关键技术,并详细描述了超宽带技术在军事应用、智能交通以及智能家居领域中的应用前景。
关键词:超宽带信道建模定时同步Rake接收信道估计1 引言近年来,超宽带(Ultra-wideband,UWB)技术开始用于民用高速、定位和近距离无线通信等领域,并取得了较快发展。
UWB技术具有许多优点:传输速率高、系统容量大、抗多径能力强、功耗低、成本低。
然而,UWB系统中许多基本问题尚未解决。
物理层关键技术的研究引起了国内外学者的极大兴趣。
UWB信道严重的频率选择性衰落特征和系统的低辐射功率限制对接收机设计提出严峻的挑战。
为优化接收机设计,必须对定时同步、信道估计、接收机结构等若干关键技术进行深入研究。
2 超宽带无线通信系统关键技术2.1 信道建模为进行正确的系统设计,理解并量化多径传播的影响,建立可靠的、可以捕捉到信道特性的模型是重要的,它是UWB通信系统设计和研究的基础。
IEEE工作组的目标就是选择正确的模型用于描述UWB 传播信道,以对传输方案性能进行评估。
其中,IEEE 802.15.3a工作组主要考虑短程高速无线个域网通信环境,而无线传感网低廉低功耗网络应用技术标准则由IEEE802.15.4a工作组负责。
与稳定可观测的有线信道不同,无线信道随机且不易分析,该模型的获取一直是无线系统设计中比较棘手的问题。
目前,关于UWB信道的测量方法已有很多[1]:直接UWB脉冲探测法;扫频测量法;射线跟踪法等。
2.2 定时同步定时同步是通信系统中至关重要的问题。
在UWB系统中,由于信号持续时间非常短,且信号功率很低,使同步捕获和跟踪变得相当困难。
UWB信道的密集多径特征进一步增加了定时同步的复杂性。
目前提出的UWB系统定时同步方法可以分为数据辅助定时同步和盲定时同步[2]。
2.3 Rake接收机克服多径影响的方法之一就是利用Rake接收机,也即匹配每一条路径进行时间分集,把输出的结果按某种准则合并,形成一个充分统计量进行判决,这样可以极大地减弱多径的影响。
超宽带通信技术在军用通信中的应用随着科技的不断发展,通信技术也在不断进步。
目前,超宽带通信技术已经成为最具潜力和前景的通信技术之一。
而在军事领域,超宽带通信技术的应用也日益广泛。
一、超宽带通信技术的基本概念超宽带通信技术是目前通信技术的一种新型技术。
所谓超宽带,指的是无需调制和调制解调过程,可以在一定带宽内,传输大量信息的通信技术。
超宽带通信技术的优点在于传输速度快、传输内容多、传输可靠性高等。
二、超宽带通信技术在军事通信中的优势1. 传输速度快:超宽带通信技术的传输速度非常快,可以达到几十甚至上百兆的传输速率,对于军事指挥、通信等应用领域非常优秀。
2. 传输内容多:超宽带通信技术的传输容量非常大,可以传输大量信息,对于军队指挥、情报收集、图像传输等场景非常有用。
3. 传输可靠性高:超宽带通信技术的传输可靠性非常高。
这是因为在传输过程中遇到干扰时,传输信号会被分离成多个不同的频段,被接收端重新组合,从而提高了数据传输的可靠性。
三、超宽带通信技术的应用场景1. 军队指挥通信场景:超宽带通信技术可以大大加快军队指挥的速度和效率,使得部队指挥更加快捷、准确和有效。
2. 情报收集场景:超宽带通信技术可以帮助军方更快地获得情报信息,提升军队对情报收集和分析的能力。
3. 图像传输场景:超宽带通信技术可以传输高清晰度、高质量的图像信息,对于战争前线的实时图像传输非常有用。
4. 军人训练场景:超宽带通信技术可以为军人训练提供高质量的音视频教学材料,使得军人快速掌握必要知识和技能。
四、超宽带通信技术的发展前景随着科技发展的不断深入,超宽带通信技术的发展前景非常广阔。
尤其在军事领域中,超宽带通信技术有着广泛的应用前景。
未来,超宽带通信技术将进一步完善和发展,为军事通信提供更加优秀的支持。
总之,超宽带通信技术是目前最具潜力和前景的通信技术之一,在军事通信中的应用也越来越广泛。
超宽带通信技术在军队指挥、情报收集、图像传输、军人训练等领域中发挥了很大的作用,未来也将会有广阔的发展前景。
超宽带通信系统的设计与实现技术研究与分析在当今信息高速发展的时代,通信技术的不断革新成为了推动社会进步的关键力量。
超宽带通信系统作为一种具有巨大潜力的通信技术,凭借其独特的性能优势,正逐渐在众多领域崭露头角。
超宽带通信系统的基本原理是通过发送极窄脉冲来传输信息,其带宽远远超过了传统的通信系统。
这种宽带特性使得超宽带通信系统能够在短距离内实现高速数据传输,同时具有低功耗、高精度定位等优点。
在超宽带通信系统的设计中,首先要考虑的是脉冲的产生。
为了获得高质量的超宽带脉冲,通常采用纳秒级甚至皮秒级的窄脉冲发生器。
这些脉冲发生器的设计需要综合考虑电路的稳定性、脉冲的宽度和幅度等因素。
天线的设计也是至关重要的一环。
由于超宽带信号的带宽极宽,对天线的带宽要求也相应很高。
常见的超宽带天线有平面单极子天线、缝隙天线等。
这些天线的设计需要在保证宽带性能的同时,尽可能减小尺寸,提高辐射效率。
此外,信号的调制和解调技术也是超宽带通信系统设计的关键。
直接序列扩频、脉冲位置调制等调制方式在超宽带通信中得到了广泛应用。
在解调过程中,需要精确的时间同步和信号检测算法,以确保数据的准确恢复。
在实现超宽带通信系统时,硬件平台的搭建是基础。
高性能的数字信号处理器、射频芯片等组件的选择和集成需要充分考虑系统的性能要求和成本因素。
同时,软件的开发也是不可或缺的一部分。
通信协议的编写、信号处理算法的实现都需要专业的软件工程师来完成。
为了提高超宽带通信系统的性能,多径衰落的抑制是一个重要的研究方向。
由于超宽带信号在传播过程中会经历多条路径,导致信号的衰落和失真。
通过采用分集接收、均衡技术等手段,可以有效地减轻多径衰落的影响,提高通信质量。
另外,超宽带通信系统与其他通信系统的兼容性也是需要解决的问题。
在实际应用中,超宽带通信系统往往需要与蓝牙、WiFi 等其他无线通信技术共存。
因此,如何避免相互干扰,实现和谐的频谱共享,是一个具有挑战性的课题。
超宽带技术的应用与发展一、前言跟着计算机通讯技术的不停发展,无线传输技术获取了宽泛的应用,而超带宽(UWB)技术作为一种新式短距离高速无线通讯技术正占有主导地位,超带宽技术又被称为脉冲无线发射技术,是指占用带宽大于中心频次的1/4或带宽大于的无线发射方案,超带宽技术在2002年从前主要应用于雷达和遥感等军事领域,UWB技术不需载波,能直接调制脉冲信号,产生带宽高达几兆赫兹的窄脉冲波形,其带宽远远大于目前任何商业无线通讯技术所占用的带宽,UWB信号的宽频带、低功率谱密度的特征,决定了UWB无线传输技术拥有以下优势:易于与现有的窄带系统(如全世界定位系统(GPS)、蜂窝通讯系统、地面电视等)公用频段,大大提升了频谱利用率。
易于实现多用户的短距离高速数据通讯;目前,UWB技术在商业多媒体设施、家庭和个人网络方面的应用正在不停发展。
二超宽带技术的特色应用1、超宽带技术解决了困扰无线技术多年的有关流传方面的问题,如发射信号功率谱密度低、低截获大问题,拥有对信道衰败不敏感的问题,又拥有能力、系统复杂程度低、能供给厘米级的定位精度等长处;它在无线局域网、城域网和个人局域网的应用中,可供给低功耗、超带宽及相对简捷的通讯技术,特别合用于室内等密集多径场所的高速无线接入,可实现PC与挪动设施、花费电子等信息终端的小范围智能化互联,进而组建个人化的办公或家用信息化网络。
超带宽(UWB)无线通讯技术以它高速率、高性能、低成本、低功耗等特色成为最拥有竞争力的WPAN实现技术,并已成功应用于多个方面。
2、超宽带技术特色(1)体积小、成本低、系统构造实现简单、UWB不使用载波,直接发射脉冲序列,不需要传统收发器所需要的上、下变频,进而不需要功用放大器与混频器,所以UWB设施集成更为简化。
脉冲发射机和接收机前端可集成在一个芯片上,再加上时间基和一个微控制器,便可构成一部超宽带通讯设施。
(2)传输速率高数字化、综合化、宽带化、智能化和个人化是通讯发展的主要趋向。
新型高速无线传输技术及应用摘要UWB技术是目前最理想的低功耗、高带宽的短距离无线传输技术。
UWB技术的相关研究以及应用也成了目前研究的热点话题。
介绍了UWB的基本技术及相关知识,包括其定义、技术实现、相关调制技术及优缺点。
并将UWB与其他几种技术做简单比较,突现了UWB在高速率传输、低功率发射、低功耗、大空间容量等多方面的优势。
最后,介绍了UWB在数字家庭及无绳USB方面的应用。
UWB(Ultra WideBand)是一种短距离的无线通信方式。
其传输距离通常在10m以内,使用1 GHz以上带宽,通信速度可以达到几百Mbit/s以上。
UWB不采用载波,而是利用纳秒至微微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线个人通信。
FCC规定,UWB的工作频段范围从3.1 GHz到10.6 GHz,最小工作频宽为500MHz。
超宽带传输技术和传统的窄带、宽带传输技术的区别主要有如下两方面。
一个是传输带宽,另一个是采用不采用载波方式。
从传输带宽看,按照美国联邦通信委员会FCC的定义:信号带宽大于1.5G或者信号带宽与中心频率之比大于25%的为超宽带。
超宽带传输技术直接使用基带传输。
其传输方式是直接发送脉冲无线电信号,每秒可以发送数10亿个脉冲。
然而,这些脉冲的频域非常宽,可覆盖数Hz~数GHz。
由于UWB发射的载波功率比较小,频率范围很广,所以,UWB相对于传统的无线电波而言,相当于噪声,对传统的无线电波影响相当小。
UWB的技术特点显示出其具有传统窄带和宽带技术不可比拟的优势。
一、UWB的实现UWB系统结构实现比较简单,UWB发射器直接用脉冲小型激励天线,允许采用非常低廉的宽带发射器。
在接收端,不需要中频处理。
高速数据传输时,民用商品中,一般要求UWB信号的传输范围为10 m以内,其传输速率可达到5 00 Mbit/s以上。
UWB系统使用间隙的脉冲来发送数据,有很低的占空因数,系统耗电可以做到很低。
超宽带通信技术的原理与应用随着社会的发展,人们对于通信技术的需求越来越高,而超宽带通信技术正是满足人们这种需求的重要手段之一。
本文将从技术原理、应用场景以及未来发展等方面,对超宽带通信技术进行分析和探讨。
一、技术原理
超宽带通信是指一种利用大带宽、短脉冲的无线传播技术。
其工作原理是将信息信号通过调制后转换成短时域脉冲信号,再使用非连续频率的电磁波进行传播,最后通过接收端对信号进行解调还原。
这种通信方式有很强的穿透力和传播能力,能够穿过建筑物和地球等障碍物,即使在恶劣环境下也具有优良的可靠性。
二、应用场景
超宽带通信技术广泛应用于医疗、安防、交通、电源、电信等行业。
其中,医疗领域是应用最为广泛的一个行业。
医疗设备传输的重要数据,如心电图、血氧等数据需要高速和安全的传输。
采用超宽带技术可跨越医院的多个房间,突破WiFi的距离限制和
干扰问题,保证数据实时稳定地传输。
此外,超宽带技术还广泛应用于车联网、无人机、智能家居、安防监控、智慧城市、电力监测等领域。
三、未来发展
随着移动互联网、云计算、大数据、人工智能等新一代信息技术的发展,超宽带通信技术的应用前景仍十分广阔。
未来,超宽带技术将进一步拓展应用场景,如智能交通、智慧农业、智能电网等。
同时,为了满足大带宽、长距离、大数据传输的需求,超宽带技术也将不断加强技术研究,实现高速稳定的数据传输。
总之,超宽带通信技术是一种重要的通信方式,其应用范围也正在不断扩大。
在新一代信息技术的推动下,我们有理由相信,它的未来发展将是光明的,为人类社会的发展和进步做出更加重要的贡献。
超宽带(UWB)技术及其军事应用摘要:文章简要介绍了超宽带技术的概念、原理和主要技术特点,对超宽带技术在军事上的应用进行了探讨和分析。
关键词:无线通信;超宽带(UWB)技术;军事应用伴随着无线通信技术的快速发展,不同种类的无线通信系统不断涌现,使得可使用的频谱资源日渐趋于饱和。
但是,无线通信系统的要求标准也在不断提高:更高的数据传输速率、成本更低以及功耗更小。
UWB技术独树一格,它将会为无线局域网LAN、个人域网PAN的接口卡和接入技术带来低功耗、高宽带并且相对简单的无线通信技术。
超宽带技术解决了困扰传统无线技术多年的有关传播方面的重大难题,它开发了一个具有对信道衰落不敏感;发射信号功率谱密度低,有截获能力,系统复杂度低,能提供数厘米的定位精度等特点。
适用军事通信应用中。
1短距离无线通信技术简介近年来,由于数据通信需求的推动,加上半导体、计算机等相关电子技术领域的快速发展,短距离无线通信技术与移动通信技术——蓝牙技术、射频识别技术、UWB技术等都取得了令人瞩目的成就。
短距离无线通信通常指的是100 m以内的通信,分为高速和低速两类。
高速短距离无线通信最高数据率>100 Mbit/s,通信距离<10 m,典型技术有高速UWB。
低速短距离无线通信的最低数据速率<1 Mbit/s,通信距离<100 m,典型技术有蓝牙、紫蜂和低速UWB。
2超宽带(UWB)技术了解超宽带技术,首先要明白什么是“超宽带”,2002年美国联邦通信委员会颁布的频谱规划得到人们的普遍认同。
它是指信号相对带宽(即信号带宽与中心频率之比)大于0.2或绝对带宽大于500 MHz的技术,在无需授权机制下允许的通信频谱范围为3.1~10.6 GHz,并在这一频率范围内,带宽为1 MHz的辐射体在三米距离处产生的场强不得超过500 V/m,相当于功率谱密度为75 nW/MHz,即41.3 dBm/MHz。
超宽带无线技术从信号形式来看,大体可分为两大类:一类是基带窄脉冲形式; 另一类是带通载波调制方式。
超宽带无线通信技术及应用毕业设计(论文)专业无线电技术班次 11613姓名曾麒麟指导老师杨新明成都工业学院二0一四年目录前言 0第1章绪论 (1)第2章 UWB技术简介 (3)2.1 超宽带无线技术的背景 (3)2.2 超宽带无线技术的概念 (4)2.3 超宽带无线技术的主要特点 (5)2.4 超宽带与其他近距离无线通信技术的比较 (6)2.5 超宽带系统对其它系统的干扰 (8)第3章超宽带技术的关键技术 (9)3.1 超快带系统的基本模型 (9)3.2 脉冲成形技术 (9)3.2.1 超宽带系统对脉冲波形的要求 (10)3.2.2 高斯脉冲的时域波形 (10)3.2.3 高斯脉冲的频谱特性 (12)3.2.4 形成因子 对高斯脉冲的影响 (14)3.3超宽带脉冲调制技术 (15)3.3.1 脉冲位置调制(PPM) (16)3.3.2 脉冲幅度调制(PAM) (16)3.3.3 多频带脉冲调制 (17)3.4超宽带系统多址技术 (17)3.4.1 TH-PPM多址方式 (18)3.4.2 DS-CDMA多址方式 (19)3.4.3 PCTH超宽带多址技术 (20)3.4.4 几种多址技术的比较 (20)第4章超宽带接收机关键技术 (22)4.1 RAKE接收机 (22)4.2 多径分集接收策略和多径合并策略 (23)4.2.1 多径分集接收策略 (23)4.2.2 多径合并策略 (24)4.3 定时同步技术 (24)4.4 信道估计技术 (25)第5章 UWB技术的标准化进程及其应用 (26)5.1 UWB信号的频谱管理 (26)5.1.1 规范UWB信号频谱的必要性 (26)5.1.2 FCC关于UWB信号频谱的规范 (26)5.2 超宽带技术的应用 (27)5.2.1 超宽带技术在高速无线网络中的应用 (28)5.2.2 超宽带技术在军事方面的应用 (29)5.3 超宽带技术的不足与改进 (29)6.1 超宽带天线的发展 (30)6.2 超宽带芯片设计 (30)6.3 超宽带商用产品的开发 (31)6.4 超宽带技术的发展与应用前景 (31)结语 (33)致谢 (34)参考文献 (35)前言超宽带无线通信技术(UWB)是一种无载波通信技术,UWB不使用载波,而是使用短的能量脉冲序列,并通过正交频分调制或直接排序将脉冲扩展到一个频率范围内。