第六章 信道编码1
- 格式:ppt
- 大小:1.09 MB
- 文档页数:161
第6章信道编码教学内容:信道编码的概念、信道编码定理、线性分组码、循环码6.1信道编码的概念教学内容:1、信道编码的意义2、信道编码的分类3、信道编码的基本原理4、检错和纠错能力1、信道编码的意义由于实际信道存在噪声和干扰,使发送的码字与信道传输后所接收的码字之间存在差异,称这种差异为差错。
信道编码的目的是为了改善通信系统的传输质量。
基本思路是根据一定的规律在待发送的信息码中加入一些多余的码元,以保证传输过程的可靠性。
信道编码的任务就是构造出以最小冗余度代价换取最大抗干扰性能的“好码”。
2、信道编码的分类纠错编码的目的是引入冗余度,即在传输的信息码元后增加一些多余的码元(称为校验元,也叫监督元),以使受损或出错的信息仍能在接收端恢复。
一般来说,针对随机错误的编码方法与设备比较简单,成本较低,而效果较显著;而纠正突发错误的编码方法和设备较复杂,成本较高,效果不如前者显著。
因此,要根据错误的性质设计编码方案和选择差错控制的方式。
3、信道编码的基本原理可见,用纠(检)错控制差错的方法来提高通信系统的可靠性是以牺牲有效性的代价来换取的。
在通信系统中,差错控制方式一般可以分为检错重发、前向纠错、混合纠错检错和信息反馈等四种类型。
香农理论为通信差错控制奠定了理论基础。
香农的信道编码定理指出:对于一个给定的有干扰信道,如信道容量为C,只要发送端以低于C的速率R发送信息(R为编码器输入的二元码元速率),则一定存在一种编码方法,使编码错误概率p随着码长n的增加,按指数下降到任意小的值。
这就是说,可以通过编码使通信过程实际上不发生错误,或者使错误控制在允许的数值之下。
4、检错和纠错能力举例:A、B两个消息a、没有检错和纠错能力:0、1b、检出一位错码的能力:00、11c、判决传输有错:000、111(大数法则)一般来说,引入监督码元越多,码的检错、纠错能力越强,但信道的传输效率下降也越多。
人们研究的目标是寻找一种编码方法使所加的监督码元最少,而检错、纠错能力又高且又便于实现。
第六章:信道编码(本章复习大纲我重新修改了一下,尤其要关注红色内容)1、基本概念:差错符号、差错比特;差错图样:随机差错、突发差错;纠错码分类:检错和纠错码、分组码和卷积码、线性码与非线性码、纠随机差错码和纠突发差错码;矢量空间、码空间及其对偶空间; 有扰离散信道的编码定理:-()NE R e P e (掌握信道编码定理的内容及减小差错概率的方法);线形分组码的扩展与缩短(掌握奇偶校验码及缩短码的校验矩阵、生成矩阵与原线形分组码的关系)。
2、线性分组码(封闭性):生成矩阵及校验矩阵、系统形式的G 和H 、伴随式与标准阵列译码表、码距与纠错能力、完备码(汉明码)、循环码的生成多项式及校验多项式、系统形式的循环码。
作业:6-1、6-3、6-4、6-5和6-6选一、6-7 6-8和6-9选一 6-1 二元域上4维4重失量空间的元素个数总共有24=16个,它们分别是(0,0,0,0),(0,0,0,1)…(1,1,1,1),它的一个自然基底是(0,0,0,1),(0,0,1,0),(0,1,0,0)和(1,0,0,0);其中一个二维子空间含有的元素个数为22个,选取其中一个自然基底为(0,0,0,1)和(0,0,1,0),则其二维子空间中所包含的全部矢量为(0,0,0,0,),(0,0,0,1),(0,0,1,0)和(0,0,1,1)(注选择不唯一);上述子空间对应的对偶子空间可以有三种不同的选择:(0,0,0,0) ,(0,1,0,0),(1,0,0,0),(1,1,0,0)或(0,0,0,0) ,(0,1,0,0)或(0,0,0,0) (1,0,0,0)。
(注意本题中所包含的关于矢量空间的一些基本概念)6-3 由题设可以写出该系统(8,4)码的线形方程组如下:736251403320231012100321v u v u v u v u v u u u v u u u v u u u v u u u=⎧⎪=⎪⎪=⎪=⎪⎨=++⎪⎪=++⎪=++⎪⎪=++⎩(注:系统码高四位与信息位保持一致,u i 为信息位) 把上述方程组写成矩阵形式,可以表示为 V =U G ,其中V 为码字构成的矢量,即V =(v 7,v 6,v 5,v 4,v 3,v 2,v 1,v 0),U 为信息位构成的矢量,即U =( u 3,u 2,u 1,u 0),观察方程组可得系统生成矩阵为:[]44*41000110101001011G I |P 0010011100011110⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由系统生成矩阵和校验矩阵的关系可得:4*441101100010110100H P |I 0111001011100001T ⎡⎤⎢⎥⎢⎥⎡⎤==⎣⎦⎢⎥⎢⎥⎣⎦由校验矩阵可以看出,矩阵H 的任意三列都是线性无关的(任意三列之和不为0),但存在四列线性相关的情况(如第1、5、6、8列,这四列之和为0),即校验矩阵H 中最小的线性相关的列数为4,从而得该线性分组码的最小码距为4。