欧拉方程离散
- 格式:doc
- 大小:18.71 KB
- 文档页数:1
eular方程欧拉方程是数学中的一种常见方程,也被称为常微分方程。
欧拉方程是一种特殊的二阶线性非齐次微分方程,它是由欧拉提出的,严格的说,这个方程叫做Cauchy-Euler方程。
欧拉方程是一个十分经典的方程,它用于描述物理学中很多自然现象。
如弹簧振动、电路分析、声学等等领域中的问题都可以归纳为欧拉方程的求解。
下面我们将根据欧拉方程的定义和求解方法,来一步步解析欧拉方程。
欧拉方程的标准格式为:$ax^2y''+bxy'+cy=f(x)$。
首先,我们需要知道的是欧拉方程中的各个参数含义是什么,分别是:$a,b,c$和$f(x)$。
其中,$a,b,c$都是常数,$f(x)$是欧拉方程的非齐次项。
接下来,我们来解释一下欧拉方程的求解方法。
Step 1:将欧拉方程的非齐次项$f(x)$化为初等函数。
这是欧拉方程求解的第一步。
由于欧拉方程中的非齐次项是一个函数,所以我们可以将它化为初等函数。
比较常见的情况有三类:常数项,正弦项和余弦项。
Step 2:求出欧拉方程的通解。
欧拉方程的通解有两个部分组成:一个是通解的齐次解,另一个是欧拉方程的非齐次解。
齐次解的求解过程比较简单,我们可以先假设欧拉方程的解是$y=x^r$,然后将这个解代入到欧拉方程中进行求解,得到的解为$r_1$和$r_2$。
我们可以对欧拉方程的非齐次解使用特殊方法,一般采用变易法。
变易法求解欧拉方程的非齐次解的具体步骤如下:Step 3:变易法求非齐次解的特解。
我们可以先设欧拉方程的非齐次解是一个特殊的函数,比如说$y_p=u(x)x^p$。
其中,$u(x)$是一个待求的函数。
Step 4:将$y_p=u(x)x^p$代入到欧拉方程中,求出$u(x)$和$p$的值。
Step 5:将欧拉方程的通解的齐次解和非齐次解合并,得到欧拉方程的最终解。
综上所述,欧拉方程是一种二阶线性非齐次微分方程,其标准格式为$ax^2y''+bxy'+cy=f(x)$。
欧拉方程的求解1.引言在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783).几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”欧拉还是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”.在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解.但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明.2.几类欧拉方程的求解定义1 形状为()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1)的方程称为欧拉方程. (其中1a ,2a ,,1n a -,n a 为常数)2.1二阶齐次欧拉方程的求解(求形如K y x =的解)二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数)我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ),且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得212()0K K K K K x a Kx a x -++=或212[(1)]0K K a K a x +-+=,消去K x ,有 212(1)0K a K a +-+=. (3)定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程.由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解.于是,对于方程(2)的通解,我们有如下结论:定理1 方程(2)的通解为(i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根)(其中1c 、2c 为任意常数)证明 (i )若特征方程(3)有两个相等的实根: 12K K =,则11K x y =是方程(2)的解, 且设2()u x y =,11()K y x u x =(()u x 为待定函数)也是方程(2)的解(由于21()y u x y =,即1y ,2y 线性无关),将其带入方程(2),得 11122111112[()2]()0K K K x K K u K xu x u a x K u xu a x u ''''-+++++=,约去1K x ,并以u ''、u '、u 为准合并同类项,得22111112(2)[(1)]0x u K a xu K a K a u '''++++-+=.由于1K 是特征方程(3)的二重根,因此21112(1)0K a K a +-+=或112(1)0K a +-=,于是,得20x u ux '''+=或0xu u '''+=,即 ()0xu ''=,故 12()ln u x c x c =+.不妨取()ln u x x =,可得方程(2)的另一个特解12ln K y x x =,所以,方程(2)的通解为1112ln K K y c x c x x =+.(其中1c ,2c 为任意常数)(ii )若特征方程(3)有两个不等的实根: 12K K ≠,则11K x y =,22K y x =是方程(2)的解. 又2211()21K K K K y x x y x-==不是常数,即1y ,2y 是线性无关的. 所以,方程(2)的通解为1212K K x c x y c +=. (其中1c ,2c 为任意常数)(iii )若特征方程(3)有一对共轭复根:1,2K i αβ=±(0β≠),则 ()1i x y αβ+=,()2i y x αβ-=是方程(2)的两个解,利用欧拉公式,有()ln 1(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ+===+,()ln 2(cos(ln )sin(ln ))i i x x x e x x i x y αβαβαββ--===-,显然,12cos(ln )2y y x x αβ+= 和12sin(ln )2y y x x iαβ-=是方程(2)的两个线性无关的实函数解. 所以,方程(2)的通解为12cos(ln )sin(ln )x x x x y c c ααββ=+.(其中1c ,2c 为任意常数)例1求方程20x y xy y '''-+=的通解.解 该欧拉方程的特征方程为(1)10K K K --+=,即 2(1)0K -=,其根为: 121K K ==,所以原方程的通解为12(ln )y c c x x =+.(其中1c ,2c 为任意常数)例2 求方程280x y xy y '''--=的通解.解 该欧拉方程的特征方程为2(11)80K K +---=,即 2280K K --=,其根为: 12K =-,24K =,所以原方程的通解为4122c y c x x=+. (其中1c ,2c 为任意常数)例3 求方程的通解2350x y xy y '''++=.解 该欧拉方程的特征方程为(1)350K K K -++=,即 2250K K ++=,其根为: 1,212K i =-±,所以原方程的通解为121[cos(2ln )sin(2ln )]y c x c x x=+. (其中1c ,2c 为任意常数)2.2二阶非齐次欧拉方程的求解(初等积分法)二阶非齐次欧拉方程:212()x y a xy a y f x ++='''. (4)(其中1a ,2a 为已知实常数,()f x 为已知实函数)为了使方程(4)降阶为一阶线性微分方程,不妨设1121a K K =--,212a K K =, (5)则方程(4)变为212122)(1()K a x y K K xy K y f x +--+=''',即212()()()x xy K y K xy K y f x ---=''', (6)根据韦达定理,由(5)式可知,1K ,2K 是一元二次代数方程 212(1)0K a K a +-+= (3) 的两个根.具体求解方法:定理2 若1K ,2K 为方程(2)的两个特征根,则方程(4)的通解为 212111[()]K K K K y x x x f x dx dx ----=⎰⎰. (7)证明 因为1K ,2K 为方程(2)的两个特征根,于是方程(4)等价于方程(6),令 2xy K y p '-=,代入方程(6)并整理,得1()K f x p x xp =-' 和 2K p y y x x '-=, 解之,得方程(4)的通解为212111[()]K K K K y x x x f x dx dx ----=⎰⎰.由定理2知,只需要通过两个不定积分(当(7)式中的积分可积时)即可求得方程(4)的通解.为了方便计算,给出如下更直接的结论.定理3 若1K ,2K 为方程(2)的两个特征根,则(i )当12K K =是方程(2)的相等的实特征根时,方程(4)的通解为 11111[ln ()ln ()]K K K x x f x dx x x f x dx y x -----⋅=⎰⎰, (ii )当12K K ≠是方程(2)的互不相等的实特征根时,方程(4)的通解为112211121[()()]K K K K x x f x dx x x f x dx K K y ------=⎰⎰, (iii )当1,2K i αβ=±是方程(2)的共轭复特征根时,方程(4)的通解为 111[sin(ln )cos(ln )()cos(ln )sin(ln )()]y x x x x f x dx x x x f x dx αααβββββ----=-⎰⎰ 证明 (ii )当12K K ≠是方程(2)的互不相等的的实特征根时, 将方程(1)的通解(7)进行分部积分,得21212112212121121111211212112111[()]1[()]1{[()]}1[]()()()K K K K K K K K K K K K K K K K K K K x x x f x dx dx x x f x dx dx K K x x x d x f x dx K K x x K K y x f x dx x f x dx x f x dx -------------------=-===--⎰⎰⎰⎰⎰⎰⎰⎰⎰(8) (iii )当1,2K i αβ=±是方程(2)的共轭复特征根时,122K K i β-=, 再由欧拉公式有1ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ+===+, 2ln [cos(ln )sin(ln )]K i i x x x e x x i x x αβαβαββ--===-, 将其代入(8)式,整理可得方程(4)的通解为111[sin(ln )cos(ln )()cos(ln )sin(ln )()]x x x x f x dx x x x f x dx y αααβββββ-----=⎰⎰(i )的证明和(ii )类似.例1求方程22234ln y xy y x x x x '''-+=+的通解.解 该欧拉方程所对应的齐次方程的特征方程为2440K K -+=, 特征根为 122K K ==,所以由定理3,原方程的通解为23223222232122223212[ln (ln )ln (ln )]111{ln [(ln )ln ][(ln )(ln )]}23211ln [(ln )(ln )]62x x x x x dx x x x x x dx x x x c x x c x x c x x x x y x x c --+-⋅+++-+-+++===⎰⎰ (其中1c ,2c 为任意常数)例2求方程2322x x y xy y x e -+='''的通解.解 该欧拉方程所对应的齐次方程的特征方程为2320K K -+=,特征根为 12K =,21K =,所以由定理3,原方程的通解为23323212212()()x x x x x xx x e dx x x x e dxx e c x xe e c c x c x xe y x ---=+---=++=⎰⎰(其中1c ,2c 为任意常数)例3求方程2cos(ln )2x x x y xy y -+='''的通解. 解 该欧拉方程所对应的齐次方程的特征方程为2220k k -+=,特征根为 1,21K i =±,所以由定理3,原方程的通解为212122cos(ln )]cos(ln )cos(ln )11sin(ln )cos(ln )cos(ln ))sin(ln )cos(ln )sin(ln )cos(ln )sin(ln )[sin(ln )]{sin(ln )(ln )cos(ln )[ln(cos(ln )]}[][sin(ln )ln x x x x dx dx x x x dx x dx x x x x c x y x x x x x x x x x x c x x c x c x x x ----+===+++=++⎰⎰⎰⎰cos(ln )ln(cos(ln ))]x x (其中1c ,2c 为任意常数)在定理3中,若令()0f x =,则得到二阶齐次欧拉方程(2)的通解.推论 方程(2)的通解为(i)1112ln K K x c x x y c +=, (12K K =是方程(2)的相等的实特征根) (ii)1212K K x c x y c +=, (12K K ≠是方程(2)的不等的实特征根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(2)的共轭复特征根)(其中1c ,2c 为任意常数)2.3三阶非齐次欧拉方程的求解(常数变易法)三阶非齐次欧拉方程:32123()x y a x y a xy a y f x +++=''''''.(9) (其中1a ,2a ,3a 为常数)(9)对应的齐次方程为321230x y a x y a xy a y +++=''''''. (10) 特征方程为321123(3)(2)0K a K a a K a +-+-++=.(11)定理4 设1K 是方程(11)的根,2K 是方程22122112(31)[3(1)2]0K K a K K K a K a ++-+-++=的根,则(9)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰ . (12) 证明 根据条件1K y cx =(c 为任意常数)是方程(10)的解. 设1()K y c x x =是方程(9)的解(其中()c x 是待定的未知数), 将其代入方程(9),整理得1121111112(3)3231111213()(3)()[3(1)2]()[(3)(2)]()()K c x K a x c x K K a K a x c x K a K a a K a x c x x f x ---+-''''''+++-++++-+-++= (13)因为1K 是(11)的根,则321111213(3)(2)0K a K a a K a +-+-++=,于是(13)式化为1(3)121111112()(3)()[3(1)2]()()K c x K a x c x K K a K a x c x x f x -+--''''''+++-++=(14)这是以()c x '为未知函数的二阶欧拉方程. 设2K 为(14)对应的齐次方程的特征方程21111112(31)[3(1)2]0K K a K K K a K a ++-+-++=, (15)的根,则221121(23)(2)()[()]K K K a K K c x x x x f x dx dx -+++-'=⎰⎰.从而2211211(23)(22){[()]}()K K K a K K a x x x f x dx dx dx c x -++++-=⎰⎰⎰. 故方程(1)的通解为12211211(231)(22){[()]}K K K K a K K a x x x f x dx dx dx y x -++-++-=⎰⎰⎰.定理5 设1K 是方程(11)的根,2K 是方程(15)的根,则(i )当1K 是方程(11)的单实根,2K 是方程(15)的单实根,则(9)的通解为1212121121(2)1(3)(2)121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++=-++-⎰⎰⎰(ii )当1K 是方程(11)的单实根,2K 是方程(15)的单虚根,则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,β=(iii )当1K 是方程(11)的单实根,2K 是方程(15)的重实根,则(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰,(iv )当1K 是方程(11)的三重实根,方程(15)变为2210K K ++=,有21K =-,则(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K y x x x x f x dx x x f x dx dx -+-+-=-⋅⎰⎰⎰. 证明 (i )因为2K 是方程(15)的单实根,得(14)的通解为212121121(2)1(3)(2)31211[()()](32)1()K K K K K a K K a x x f x dx x x f x dx K K a c x -++-++++--++-='⎰⎰则(9)的通解为1212121121(2)1(3)(2)3121[()()](32)1K K K K K K a K K a x y x x f x dx x x f x dx dx K K a -++-++++-=-++-⎰⎰⎰(ii )因为2K 是方程(14)的单虚根,此时方程(15)有一对共轭虚根1,22K =得(14)的通解为11(2)(2)[sin(ln )cos(ln )()cos(ln )sin(ln )()]()K K x x x x f x dx x x x f x dx c x αααβββββ-++-++-='⎰⎰则(9)的通解为111(2)(2){[sin(ln )cos(ln )()cos(ln )sin(ln )()]}K K K x x xx f x dx x x x f x dx dxy xαααβββββ-++-++-=⎰⎰⎰(其中11132K a α--=,β=(iii )因为2K 是方程(15)的重实根,得(9)的通解为121212(2)(2){[ln ()ln ()]}K K K K K K x x x f x dx x x f x dx dx y x -++-++-⋅=⎰⎰⎰.(iv )当1K 是方程(10)的三重实根(1133a K =-),方程(15)变为222210K K ++=,有21K =-,将1133a K =-,21K =-代入(12)式得11(1)11{[()]}K K y x x x x f x dx dx dx -+--=⎰⎰,对上式分部积分得(9)的通解为111(1)(1)1{[ln ()ln ()]}K K K x x x x f x dx x x f x dx dx y -+-+-⋅-⋅=⎰⎰⎰.例1 求三阶欧拉方程32366x y x y xy y x -+-=''''''的通解. 解 原方程对应的齐次方程为323660x y x y xy y -+-='''''',其特征方程为3261160K K K -+-=,解得其特征根为1,2,3,取 11K =, 将11K =,13a =-,26a =,代入方程(15),得2220K K -=,解得21K =或0,利用定理5(i )的通解公式有323212311[]ln 22y x x x dx x dx dx x x c x c x c x --=-=+++⎰⎰⎰. (其中1c ,2c ,3c 为任意常数)例2 求三阶欧拉方程3241313x y x y xy y x ''''''-+-=的通解. 解 原方程对应的齐次方程为32413130x y x y xy y ''''''-+-=,其特征方程为21613()()0K K K -+-=,从而解得特征单实根为11K =,将11K =,14a =-,213a =代入方程(15),得到222250K K -+=,解得 1,2212i K =±. 令212i K =+,则1α=,2β=, 利用定理5(ii )的通解公式有33213{[sin(2ln )cos(2ln )cos(2ln )sin(2ln )]}211ln [sin(2ln )cos(2ln )]816xx x x dx x x x dx dxx x c x c x c x y x ---=+-+=⎰⎰⎰(其中1c ,2c ,3c 为任意常数)2.4 n 阶齐次欧拉方程的求解(求形如K y x =的解)令K y x =是方程(1)的解,将其求导(需要求出y '、y ''(1)n y -、()n y )代入方程(1),并消去K x ,得 1(1)(1)(1)(1)(2)0n n K K K n a K K K n a K a ---++--++++=. (16)定义3 以K 为未知数的一元n 次方程(16)称为n 阶齐次欧拉方程(1)的特征方程.由此可见,如果选取k 是特征方程(16)的根,那么幂函数k y x =就是方程(1)的解.于是,对于方程(1)的通解,我们有如下结论:定理6 方程(1)的通解为112211n n n n y c y c y c y c y --=++++(其中1c ,2c 1n c -,n c 为任意常数),且通解中的每一项都有特征方程(16)的一个根所对应,其对应情况如下表:例1 求方程4(4)3(3)281550x y x y x y xy '''+++=的通解. 解 该欧拉方程的特征方程为(1)(2)(3)8(1)(2)15(1)50K K K K K K K K K K ---+--+-+=,整理,得2(22)0K K K ++=,其根为]cos(ln k β120K K ==,3,41K i =-±,所以原方程的通解为3412ln cos(ln )sin(ln )c cy c c x x x x x=+++. (其中1c ,2c ,3c ,4c 为任意常数)例2 求方程(4)(3)432670x y x y x y xy y ++++='''的通解. 解 该欧拉方程的特征方程为(1)(2)(3)6(1)(2)7(1)10K K K K K K K K K K ---+--+-++=,整理,得410K +=,其根为1,2K i =-,3,4K i =(即一对二重共轭复根),所以原方程的通解为1234cos(ln )sin(ln )ln cos(ln )ln sin(ln )y c x c x c x x c x x =+++.(其中1c ,2c ,3c ,4c 为任意常数)3.结束语从前面的讨论过程来看,和教材中的变量变换法相比,本文中的解决办法更直接、更简单.但需要说明的是,本文中的定理和例题都是在0x >范围内对齐次欧拉方程求解的,如果要在0x <范围内对其求解,则文中的所有ln x 都将变为ln()x -,所得的结果和0x >范围内的结果相似.4.致谢经过这好几个月忙碌的学习跟工作,本次毕业论文的写作已经接近尾声了,但这次毕业论文的写作经历让我感受颇多.首先,自己要有很好的专业知识的储备,这也是写作的基础.其次,自己要有严谨的思维逻辑.再次,自己要善于思考,遇到不懂得问题就要勤于思考,查资料,问老师.最后,自己一定要有坚持不懈的精神.毕业论文的写作是一个长期的过程,在写作过程中我们难免会遇到各种各样的过程,但我们不能因此就放弃,而要做到坚持.要相信“有付出就一定会有所收获”的.在这里首先要感谢我的指导老师胡宏昌教授.胡老师平日里工作繁多,但在我做毕业论文阶段,他都给予了我悉心的指导,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩胡老师的专业水平外,他的治学严谨和科学研究的精神也值得我永远学习,并将积极影响我今后的学习和工作.然后还要感谢大学四年来我的所有的老师跟领导,为我们打下了坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!5、参考文献[1]王高雄,周之铭,朱思铭,王寿松.常微分方程[M].第3版.北京:高等教育出版社,2006:142-144.[2]华东师范大学数学系.数学分析(上)[M].第3版.北京:高等教育出社,1999:87-199.[3]钟玉泉.复变函数论[M].第3版.北京:高等教育出版社,2003:10-11.[4]胡劲松.一类欧拉方程特解的求解.重庆科技学院学报[J],2009,11(2):143-144.[5]胡劲松,郑克龙.常数变易法解二阶欧拉方程.大学数学[J],2005,21(2):116-119.[6]米荣波,沈有建,汪洪波.三阶欧拉方程求解的简化常数变易方法.海南师范大学学报[J],2008,21(3):260-263.[7]胡劲松.齐次欧拉方程的另一种求解方法.重庆工学院学报[J],2004,18(1):4-748.[8]冀弘帅.认识伟大的数学家----欧拉.数学爱好者[J],2006,10:52-53.[9]卓越科学家欧拉.中学生数理化(北师大版)[J],2007,Z2: 101-102.。
欧拉方程推导过程微分方程嘿,朋友!咱们今天来聊聊欧拉方程推导过程微分方程这事儿。
你知道吗?微分方程就像是数学世界里的神秘密码,而欧拉方程就是其中一把关键的钥匙。
想象一下,你在一个充满未知的数学迷宫里探索,欧拉方程就是那盏能照亮前路的明灯。
咱们先从最基础的概念说起。
微分方程,简单来讲,就是描述某个函数的导数与函数本身之间关系的方程。
这就好像是在追踪一个运动员的速度变化和他的位置之间的联系。
欧拉方程呢,通常以这样的形式出现:$x^n y^{(n)} + a_1 x^{n - 1}y^{(n - 1)} + \cdots + a_{n - 1} x y' + a_n y = f(x)$ 。
是不是看起来有点复杂?别担心,咱们一步步来。
比如说,我们假设$y = x^m$是方程的一个解。
那对$y$求导,会得到$y' = m x^{m - 1}$ ,再求导,$y'' = m(m - 1) x^{m - 2}$ ,以此类推。
把这些导数值代入欧拉方程里,经过一系列的运算和整理,你会发现一些神奇的规律。
这就好像是在拼凑一幅复杂的拼图,每一块都有它独特的位置和作用。
有时候,推导欧拉方程就像是在解开一个缠得紧紧的线团,需要耐心和细心。
假如你在推导的过程中遇到困难,难道就要放弃吗?当然不!我们要坚持下去,因为一旦成功推导出来,那种成就感简直无与伦比。
当我们通过努力,把那些复杂的式子化简,最终得到简洁而美妙的结果时,你难道不会感到兴奋吗?这就好比你经过漫长的旅途,终于看到了美丽的风景。
总之,欧拉方程的推导过程虽然可能充满挑战,但只要我们用心去探索,就一定能揭开它神秘的面纱,领略到数学的魅力!朋友,加油吧,相信你一定能行!。
流体力学中的理论模型引言流体力学是研究流体运动规律和性质的学科,是物理学的一个重要分支。
在流体力学中,理论模型是研究和解决流体问题的基础。
理论模型的建立可以帮助我们理解和预测流体行为,对于解决实际问题具有重要意义。
本文将介绍流体力学中常用的一些理论模型及其应用。
一、欧拉方程欧拉方程是描述不可压缩流体力学的基本方程之一。
它是从质量守恒和动量守恒的原理出发推导而来。
欧拉方程可以用来描述流体的运动速度和压力分布。
其基本形式如下:$$\\frac{\\partial \\mathbf{v}}{\\partial t} + (\\mathbf{v} \\cdot \abla)\\mathbf{v} = -\\frac{1}{\\rho}\ abla p + \\mathbf{g}$$其中,$\\mathbf{v}$表示速度矢量,t表示时间,$\\rho$表示流体密度,p表示压力,$\\mathbf{g}$表示重力加速度。
欧拉方程的应用非常广泛,例如在航空航天领域中用于计算飞行器的气动力、在水力工程中用于设计水电站的水轮机等。
二、雷诺方程与欧拉方程相对应的是雷诺方程,它是描述可压缩流体力学的基本方程之一。
雷诺方程是通过在欧拉方程中引入粘性效应而得到的。
其基本形式如下:$$\\frac{\\partial \\mathbf{v}}{\\partial t} + (\\mathbf{v} \\cdot \abla)\\mathbf{v} = -\\frac{1}{\\rho}\ abla p + \\mu \ abla^2 \\mathbf{v} +\\mathbf{g}$$其中,$\\mu$表示动力粘度。
雷诺方程可以用于研究流体的湍流行为和边界层分离等问题。
它在航空航天、汽车工程、海洋工程等领域中都有重要应用。
三、纳维-斯托克斯方程纳维-斯托克斯方程是描述不可压缩流体力学的基本方程。
它是通过在欧拉方程中引入粘性效应并考虑不可压缩条件得到的。
基于非结构网格二维Euler方程的Jameson求解方法姓名:王司文学号:sx摘要本文介绍了基于CFD理论的求解二维可压缩流Euler方程的Jameson中心格式方法。
在空间离散上采用的是有限体积法,时间上采用的是四步显式Runge -Kutta迭代求解。
人工耗散项为守恒变量的二阶和四阶差分项。
边界条件采用的是无反射边界条件,并采用当地时间步长进行加速收敛。
最后对NACA0012翼型划分了三角形,并应用本文程序进行数值模拟,结果较为理想。
关键字:CFD,Jameson中心格式,Euler方程,有限体积法AbstractA method for the numerical solution of the two-dimensional Euler equations has been developed. The cell-centred symmetric finite-volume spatial discretisation is applied in a general formulation. The integration in time, to a steady-state solution, is performed using an explicit, four-stage Runge-Kutta procedure. The artificial dissipation is constructed as a blending of second and fourth differences of the conserved variables. And in the boundary, there is none of the outgoing waves are reflected back into the computational domain. An acceleration technique called local time stepping is used. At last, standard test cases for both subsonic and supersonic flows have been used to validate the method.Key words:CFD, Jameson method,Euler equations, finite-volume第一章引言在工程应用的推动下,计算流体力学随着计算机技术的发展和计算格式的不断更新而迅猛发展。
欧拉方程微分方程详解欧拉方程(Euler's equation)是一类具有特殊形式的二阶常系数线性微分方程。
它的一般形式为:ax^2 y'' + bxy' + cy = 0其中,a、b、c都是常数,且a不等于0。
欧拉方程是一种特殊的微分方程,它的解具有一定的特殊性。
下面我们将对欧拉方程的求解方法进行详细介绍。
首先,我们考虑求解形如x^m的解。
将x^m代入欧拉方程中,得到:a(m)(m-1)x^m + bm*x^m + cx^m = 0化简后得到:am(m-1)x^m + bmx^m + cx^m = 0整理得:am(m-1) + bm + c = 0这是一个关于m的二次方程,可以用求根公式来求解m的值。
当求解得到m的值时,我们就得到了一个形如x^m的解。
接下来,我们考虑求解形如x^m * ln(x)的解。
将x^m * ln(x)代入欧拉方程中,得到:a(m)(m-1)x^m * ln(x) + bmx^m * ln(x) + cx^m * ln(x) = 0将x^m分离出来,得到:x^m * [a(m)(m-1)ln(x) + bm ln(x) + c] = 0由于x不等于0,所以要使上式成立,必须有:a(m)(m-1)ln(x) + bm ln(x) + c = 0这是一个关于m的一次方程,可以用求解一次方程的方法来求解m的值。
当求解得到m的值时,我们就得到了一个形如x^m * ln(x)的解。
最后,我们考虑求解形如x^m * ln^2(x)的解。
将x^m * ln^2(x)代入欧拉方程中,得到:a(m)(m-1)x^m * ln^2(x) + bmx^m * ln^2(x) + cx^m * ln^2(x) = 0将x^m分离出来,得到:x^m * [a(m)(m-1)ln^2(x) + bm ln^2(x) + c] = 0由于x不等于0,所以要使上式成立,必须有:a(m)(m-1)ln^2(x) + bm ln^2(x) + c = 0这是一个关于m的二次方程,可以用求解二次方程的方法来求解m的值。
欧拉方程离散
欧拉方程的离散化过程主要是通过数值方法将连续的微分方程
转化为离散的差分方程。
具体来说,欧拉方法是一种简单的数值方法,用于求解初值问题。
在欧拉方法中,将连续的时间变量离散化,将微分转化为差分,从而将微分方程转化为差分方程。
例如,对于一阶常微分方程dy/dt = f(t,y),欧拉方法将时间变量离散化,假设时间步长为h,那么在时刻t = n*h 和t = (n+1)h 之间,方程可以近似为y(n+1) = y(n) + hf(n,y(n))。
这就是欧拉方法的离散化过程。
需要注意的是,欧拉方法是一种简单的方法,但精度较低,对于一些复杂的问题可能需要更精确的数值方法。