AE AC
DE
BC.
∴△ADE∽△ABC .
探究新知
定理:平行于三角形一边的直线和其他两边相交,所构成 的三角形与原三角形相似.
符号语言: ∵ DE//BC,
“A”型
A
∴△ADE∽△ABC.D
E
“X”型
D
E
O
B (图1) C B
(图2) C
探究新知
【讨论】过点D作与AC平行的直线与BC相交,可否证 明△ADE∽△ABC?如果在三角形中出现一边的平行 线,那么你应该联想到什么?
BC 3
EF
3
想
若
AB 3 BC 4
,
那么
DE ? EF
3 4
l1
A
B
l2
D
l3
E l4
即 AB DE
BC EF
除此之外,
还有其他对应线
C
段成比例吗?
F l5
探究新知
事实上,当l3
//l4
//
l5时,都可以得到
AB BC
DE EF
,
BC
还可以得到AB
EF DE
AB
,AC
DE DF
BC
,AC
EF DF
人教版 数学 九年级 下册
27.2 相似三角形
27.2.1 相似三角形的判定 第1课时
导入新知
1.相似多边形的特征是什么?
A
A1
2.怎样判定两个多边形相似?
3.什么叫相似比?
B
C B1
C1
4.相似多边形中,最简单的就是相似三角形.如果∠A =∠A1,
∠B=∠B1,∠C=∠C1,
AB A1B1