山东省平原县2018-2019年人教版九年级上期中模拟测试(有答案)
- 格式:docx
- 大小:243.83 KB
- 文档页数:13
2018-2019学年度第一学期人教版九年级数学上册期中综合检测试卷(21-23章)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列方程中是关于一元二次方程的为()A. B.C. D.2.抛物线的对称轴是()A. B. C. D.3.一元二次方程的二次项系数、一次项系数、常数项分别是()A.;;B.;;C.;;D.;;4.如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:① ;② ;③;④方程的根为,;⑤当时,随着的增大而增大.其中正确结论是()A.①②③B.①③④C.②③④D.①④⑤5.若、是方程的两个根,则:的值为()A. B. C. D.6.若点关于原点对称点的坐标为,则点的坐标是()A. B.C. D.7.已知是二次函数且有最大值,则A. B. C. D.8.用配方法解方程,可变形为()A. B.C. D.9.已知二次函数的图象如图所示,则这个二次函数的表达式为()A. B.C. D.10.已知关于的函数关系式为,(为正常数,为时间),则函数图象为()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.把二次函数配方成顶点式为________.12.当________时,方程的两个根互为相反数.13.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为________.14.某单位在两个月内将开支从元降到元,如果每月降低开支的百分率相同,设为,则由题意可以列出关于的方程是________.15.关于的一元二次方程(是常数)有两个整数解,则的值可以是________(写出一个即可).16.已知关于的方程有两个相等的实数根,则的值是________.17.设,是方程的两个实数根,则的值为________.18.两个数的和为,这两个数的积最大可以达到________.19.若方程的一个根是,则另一个根是________,________.20.某种商品的价格为元,准备进行两次降价,如果每次降价的百分率都是,经过两次降价后的价格(单位:元)随每次降价的百分率的变化而变化,则与之间的关系式为________.三、解答题(共 7 小题,共 60 分)21.(12分) 用适当的方法解下列方程:;(2);(3).22.(8分) 在正方形网格中,建立如图所示的平面直角坐标系,的三个顶点都在格点上,点的坐标,请解答下列问题:画出关于轴对称的,并写出点,,的坐标;将绕点逆时针旋转,画出旋转后的,并写出点,的坐标.23.(8分) 某农场去年种植了亩地的南瓜,亩产量为,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为.则今年南瓜的种植面积为________亩;(用含的代数式表示)如果今年南瓜亩产量的增长率是种植面积的增长率的,今年南瓜的总产量为,求南瓜亩产量的增长率.24.(8分) 某中学课外兴趣活动小组准备围建一个矩形花草园,其中一边靠墙,另外三边周长为米的篱笆围成.已知墙长为米(如图所示),设这个花草园垂直于墙的一边长为米.若花草园的面积为平方米,求;若平行于墙的一边长不小于米,这个花草园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;当这个花草园的面积不小于平方米时,直接写出的取值范围.25.(8分) 如图,已知,.求证:;若,问经过怎样的变换能与重合?26.(8分) 如图,已知抛物线与坐标轴分别交于点、和点,动点从原点开始沿方向以每秒个单位长度移动,动点从点开始沿方向以每秒个单位长度移动,动点、同时出发,当动点到达原点时,点、停止运动.直接写出抛物线的解析式:________;求的面积与点运动时间的函数解析式;当为何值时,的面积最大?最大面积是多少?当的面积最大时,在抛物线上是否存在点(点除外),使的面积等于的最大面积?若存在,求出点的坐标;若不存在,请说明理由.27.(8分) 如图,在中,,,.将绕点顺时针旋转得.①求点旋转经过的路径长;②求线段的长;如图,过点作的垂线与的延长线交于点,将绕点顺时针旋转得.在图中画出线段绕点旋转所形成的图形(用阴影表示),并求出该图形的面积.答案1.C2.C3.B4.D5.D6.B7.A8.B9.B10.A11.12.13.,14.15.,,,写出一个16.或17.18.19.20.21.解:(1),所以,;,或,所以,;(3),,或,所以,.22.解:如图所示,,,;(2)如图所示,,.23..今年南瓜亩产量为,根据题意得:,整理得:,解得:或(舍去).答:南瓜亩产量的增长率为.24.解:根据题意知平行于墙的一边的长为米,则有:,解得:或,∵ ,∴ ,故;设苗圃园的面积为,∴ ,∵ ,∴苗圃园的面积有最大值,∵ ,解得:,∴ ,∴当时,即平行于墙的一边长米,最大 . 平方米;当时,最小;由题意得,解得:或,又∵ ,∴ .25.证明:在与中,,,;∴ ,∴ .解:先将绕点逆时针旋转,再将沿直线对折,即可得与重合.或先将绕点顺时针旋转,再将沿直线对折,即可得与重合.26.; ∵点、,∴ ,,令,得:,解得:,,∵点在轴的负半轴上,∴点,∴ ,根据题意得:当点运动秒时,,,∴ ,∴ ,∴,即,∴当时,最大;由知:当时,最大,∴当时,,,∴ ,,由勾股定理得:,设直线的解析式为:,将,,代入上式得:,,∴直线的解析式为:,过点作,交抛物线与点,如图,设直线的解析式为:,将代入得:,∴直线的解析式为:,将,与联立成方程组得:,解得:,,∴;过点作,垂足为,∵当时,,∴,过点作,垂足为,且使,过点作轴,垂足为,如图,可得,∴,即:,解得:,∴,由勾股定理得:,∴,过点作,与抛物线交与点,如图,设直线的解析式为:,将,代入上式得:,∴直线的解析式为:,将,与联立成方程组得:,解得:,,∴ 或,综上所述:当的面积最大时,在抛物线上存在点(点除外),使的面积等于的最大面积,点的坐标为:或或.27.解: ①∵ ,,,∴ .∴点旋转的路径;…②如下图所示:在中,,,∴.∴.∴;… 如图所示:…∵ ,∴.在中,,,∴.…。
德州市平原县九年级上学期语文期中考试试卷姓名:________ 班级:________ 成绩:________一、书写 (共1题;共3分)1. (3分)根据拼音写出相应的汉字。
打开一部史书,犹如展开一部历史的长卷,dì tīng________历史的脉搏,咀嚼人生无xiá________顾及的甘苦;翻开一册文学经典,如同走进一片风景shèng________地,饱览人生梦寐以求的诗境,在姹紫嫣红中尽享惬意。
二、默写 (共1题;共6分)2. (6分)补全下列名句中的空缺部分。
(1)________,芳草萋萋鹦鹉洲。
(崔颢《黄鹤楼》)(2)但愿人长久,________。
(苏轼《水调歌头》)(3)杜牧在《泊秦淮》中讽刺晚唐统治者醉生梦死、荒淫误国的诗句是:________,________。
(4)《破阵子•为陈同甫赋壮词以寄之》中,用马快弦急说明战斗激烈的句子是:________,________。
三、文言文阅读 (共2题;共23分)3. (6分)(2018·义乌) 用现代汉语给下列句子中的划线词作注释。
居①数月,其马将②胡骏马而归。
(《塞翁失马》)策③之不以其道,食④之不能尽其材,鸣之而不能通其意。
(《马说》)一鼓作⑤气,再⑥而衰,三而竭。
(《曹刿论战》)①居:________;②将:________;③策:________;④食:________;⑤作:________;⑥再:________4. (17分)(2017·门头沟模拟) 阅读《桃花源记》(节选),完成后面小题。
桃花源记陶渊明晋太元中,武陵人捕鱼为业。
缘溪行,忘路之远近。
忽逢桃花林,夹岸数百步,中无杂树,芳草鲜美,落英缤纷。
渔人甚异之。
复前行,欲穷其林。
林尽水源,便得一山。
山有小口,仿佛若有光。
便舍船,从口入。
初极狭,才通人。
复行数十步,豁然开朗。
土地平旷,屋舍俨然,有良田美池桑竹之属。
九年级数学上学期期中模拟试题一、单项选择题(本大题共10小题,每小题3分,共30分)1.下列函数不属于二次函数的是( )A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x D.y=2(x+3)﹣x22.下列关于x的方程中,一定是一元二次方程的为( )A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.2x+3x=0 D.x2﹣1=03.将一元二次方程5x2﹣1=4x化成一般形式后,一次项系数和二次项系数分别为( )A.5,﹣1 B.5,4 C.﹣4,5 D.5x2,﹣4x4.已知x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,则m的值是( )A.﹣1 B.0 C.1 D.0或15.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有实数根,则k的取值范围是( )A.k>0 B.k=0 C.k≥0 D.k≥0且k≠16.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.如果一元二次方程x2+(m+1)x+m=0的两个根是互为相反数,那么有( )A.m=0 B.m=﹣1C.m=1 D.以上结论都不对8.某超市2005年一月份的营业额为200万元,三月份营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率是( )A.10% B.15% C.20% D.25%9.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是( )A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)10.抛物线y=x2+x﹣4的对称轴是( )A.x=﹣2 B.x=2 C.x=﹣4 D.x=4二、填空题(每题5分,共30分)11.若函数y=(m﹣3)+2m﹣13是二次函数,则m=__________.12.我校上届九年级学生毕业时,每个同学都将自己的照片向全班其他同学各送了一张留作纪念,全班共送了1980张照片.如果全班有x名同学,则可列方程为__________.13.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是__________.14.已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为__________.15.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式__________.三、解答题(共7题,共75分)写出必要的解题过程和步骤.16.(16分)解下列方程:(1)x2﹣3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)x2﹣5x+1=0(4)(2x﹣1)2=9.17.根据条件求二次函数的解析式:(1)二次函数的图象经过点(﹣1,0),(3,0),且最大值是3.(2)抛物线y=(k2﹣2)x2﹣4kx+m的对称轴是直线x=2,且它的最低点在直线y=﹣x+2上,求函数解析式.18.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)已知方程有两个不相等的实数根α,β,且满足αβ=1,求m的值.19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k取值范围.20.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?21.二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=﹣1.(1)求函数解析式;(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?(3)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.22.如图,二次函数y=﹣mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x 的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.数学试卷一、单项选择题(本大题共10小题,每小题3分,共30分)1.下列函数不属于二次函数的是( )A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x D.y=2(x+3)﹣x2【考点】二次函数的定义.【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行判断即可.【解答】解:A、B、C都是二次函数,C是一次函数,故选:C.【点评】此题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.下列关于x的方程中,一定是一元二次方程的为( )A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.2x+3x=0 D.x2﹣1=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0时,是一元一次方程,故A错误;B、是一元一次方程,故B错误;C、是一元一次方程,故C错误;D、是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.将一元二次方程5x2﹣1=4x化成一般形式后,一次项系数和二次项系数分别为( )A.5,﹣1 B.5,4 C.﹣4,5 D.5x2,﹣4x【考点】一元二次方程的一般形式.【分析】要确定一次项系数和二次项系数,首先要把方程化成一般形式.【解答】解:∵一元二次方程5x2﹣1=4x化成一般形式为5x2﹣1﹣4x=0,∴一次项系数和二次项系数分别为﹣4、5.故选:C.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4.已知x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,则m的值是( )A.﹣1 B.0 C.1 D.0或1【考点】一元二次方程的解.【分析】把x=1代入已知方程,列出关于m的新方程,通过解该方程来求m的值.【解答】解:∵x=1是关于x的一元二次方程x2+mx﹣2=0的一个根,∴12+m﹣2=0,即m﹣1=0,解得m=1.故乡:C.【点评】本题考查了一元二次方程的解的定义.此题实际上是解关于系数m的一元一次方程.5.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有实数根,则k的取值范围是( )A.k>0 B.k=0 C.k≥0 D.k≥0且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣1=0有实数根,∴△=b2﹣4ac=4+4(k﹣1)≥0,且k﹣1≠0,解得:k≥0,且k≠1.故选:D.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.以及方程的意义.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.【点评】本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.7.如果一元二次方程x2+(m+1)x+m=0的两个根是互为相反数,那么有( )A.m=0 B.m=﹣1C.m=1 D.以上结论都不对【考点】根与系数的关系.【分析】根据根与系数的关系、相反数的定义可知x1+x2=﹣(m+1)=0,据此可以求得m的值.【解答】解:设该一元二次方程的两个根分别是x1、x2,则根据题意知x1+x2=﹣(m+1)=0,即m+1=0,解得,m=﹣1;故选B.【点评】本题考查了根与系数的关系.解答该题时,需挖掘出隐含在题干中的已知条件x1+x2=0.8.某超市2005年一月份的营业额为200万元,三月份营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率是( )A.10% B.15% C.20% D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】可设增长率为x,那么三月份的营业额可表示为200(1+x)2,已知三月份营业额为288万元,即可列出方程,从而求解.【解答】解:设增长率为x,根据题意得200(1+x)2=288,解得x=﹣2.2(不合题意舍去),x=0.2,所以每月的增长率应为20%,故选C.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”)9.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是( )A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).故选:A.【点评】本题主要是对抛物线一般形式中对称轴,顶点坐标,开口方向的考查,是中考中经常出现的问题.10.抛物线y=x2+x﹣4的对称轴是( )A.x=﹣2 B.x=2 C.x=﹣4 D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.【点评】数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为x=.二、填空题(每题5分,共30分)11.若函数y=(m﹣3)+2m﹣13是二次函数,则m=﹣3.【考点】二次函数的定义.【分析】根据y=ax2+bx+c(a≠0)是二次函数,可得答案.【解答】解:由y=(m﹣3)+2m﹣13是二次函数,得,解得m=﹣3,故答案为:﹣3.【点评】本题考查了二次函数的定义,利用y=ax2+bx+c(a≠0)是二次函数是解题关键.12.我校上届九年级学生毕业时,每个同学都将自己的照片向全班其他同学各送了一张留作纪念,全班共送了1980张照片.如果全班有x名同学,则可列方程为x(x﹣1)=1980.【考点】由实际问题抽象出一元二次方程.【分析】设全班有x名同学,则每位同学送出去(x﹣1)份照片,根据全班共送了1980张照片,列方程即可.【解答】解:设全班有x名同学,则每位同学送出去(x﹣1)份照片,由题意得,x(x﹣1)=1980.故答案为:x(x﹣1)=1980.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是20%.【考点】一元二次方程的应用.【专题】增长率问题;压轴题.【分析】设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,150降至96就是方程的平衡条件,列出方程求解即可.【解答】解:设每次降价的百分率为x.150×(1﹣x)2=96x=20%或180%(180%不符合题意,舍去)答:平均每次降价的百分率为20%.【点评】一元二次方程应用的关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.14.已知一个三角形的两边长分别为2和9,第三边的长为一元二次方程x2﹣14x+48=0的一个根,则这个三角形的周长为19.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】综合题.【分析】易得方程的两根,那么根据三角形的三边关系,得到符合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣14x+48=0得第三边的边长为6或8,依据三角形三边关系,不难判定边长2,6,9不能构成三角形,2,8,9能构成三角形,∴三角形的周长=2+8+9=19.故答案为:19.【点评】综合考查了解一元二次方程﹣因式分解法和三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.15.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x ﹣2)2﹣1.【考点】待定系数法求二次函数解析式.【专题】压轴题;开放型.【分析】已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.【点评】此题是开放题,考查了学生的综合应用能力,解题时要注意别漏条件.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.三、解答题(共7题,共75分)写出必要的解题过程和步骤.16.(16分)解下列方程:(1)x2﹣3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)x2﹣5x+1=0(4)(2x﹣1)2=9.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)利用因式分解法解方程;(2)先把方程变形为3x(x﹣2)+2(x﹣2)=0,然后利用因式分解法解方程;(3)利用求根公式法解方程;(4)利用直接开平方法解方程.【解答】解:(1)(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1;(2)3x(x﹣2)+2(x﹣2)=0,(x﹣2)(3x+2)=0,x﹣2=0或3x+2=0,所以x1=2,x2=﹣;(3)△=52﹣4×1×1=21,x=,所以x1=,x2=;(4)2x﹣1=±3,所以x1=2,x2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.17.根据条件求二次函数的解析式:(1)二次函数的图象经过点(﹣1,0),(3,0),且最大值是3.(2)抛物线y=(k2﹣2)x2﹣4kx+m的对称轴是直线x=2,且它的最低点在直线y=﹣x+2上,求函数解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】(1)利用抛物线的对称性得到抛物线的顶点坐标为(1,3),则设交点式y=a(x+1)(x﹣3),然后把顶点坐标代入求出a即可;(2)利用抛物线对称轴方程得到﹣=2,解得k1=2,k2=﹣1,由于抛物线有最低点,则k=2,再利用最低点在直线y=﹣x+2上可确定抛物线的顶点坐标为(2,1),然后根据顶点式写出抛物线解析式.【解答】解:(1)∵二次函数的图象经过点(﹣1,0),(3,0),∴抛物线的对称轴为直线x=1,而函数的最大值是3,∴抛物线的顶点坐标为(1,3),设抛物线解析式为y=a(x+1)(x﹣3),把(1,3)代入得a•2•(﹣2)=3,解得a=﹣,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=﹣x2+x+;(2)x=﹣=2,整理得k2﹣k﹣2=0,解得k1=2,k2=﹣1,∵抛物线有最低点,∴k2﹣2>0,∴k=2,当x=2时,y=﹣x+2=1,即抛物线的顶点坐标为(2,1),∴抛物线解析式为y=2(x﹣2)2+1.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.18.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)已知方程有两个不相等的实数根α,β,且满足αβ=1,求m的值.【考点】根的判别式;根与系数的关系.【分析】(1)求得方程根的判别式,证明其总大于或等于0即可;(2)利用根与系数的关系求得αβ=,代入可得到关于m的方程,求解即可.【解答】(1)证明:∵△=(m+2)2﹣8m=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0,∴方程总有两个实数根;(2)解:∵方程有两个不相等的实数根α,β,∴由根与系数的关系可得αβ=,∵αβ=1,∴=1,∴m=2.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程根与系数的关系,19.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k取值范围.【考点】二次函数与不等式(组);抛物线与x轴的交点.【分析】(1)根据图象可知x=1和3是方程的两根;(2)找出函数值大于0时x的取值范围即可;(3)首先找出对称轴,然后根据图象写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围.【解答】解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为1和3;(2)由图象可知当1<x<3时,不等式ax2+bx+c>0;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为x=2,开口向下,即当x>2时,y随x的增大而减小;(4)由图象可知,二次函数y=ax2+bx+c(a≠0)的最大值为2,若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,则k<2.【点评】本题主要考查了二次函数与不等式以及抛物线与x轴的交点的知识,解答本题的关键是熟练掌握二次函数的性质以及图象的特点,此题难度不大.20.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【考点】二次函数的应用;二次函数的最值.【专题】应用题.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解:(1)设每千克应涨价x元,则(10+x)(500﹣20x)=6 000解得x=5或x=10,为了使顾客得到实惠,所以x=5.(2)设涨价z元时总利润为y,则y=(10+z)(500﹣20z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.21.二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=﹣1.(1)求函数解析式;(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?(3)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.【考点】抛物线与x轴的交点;二次函数图象与几何变换;待定系数法求二次函数解析式.【分析】(1)利用抛物线的对称性可知抛物线经过点(﹣3,0),然后利用待定系数法可求得抛物线的解析式;(2)将(1)的抛物线解析式化为顶点式,然后进行进行平移即可;(3)如图所示:四边形ADCB的面积=△AED的面积+梯形DCOE的面积+△OBC的面积.【解答】解:(1)∵抛物线的对称轴为x=﹣1,∴抛物线经过点(﹣3,0).设抛物线的解析式为y=a(x+3)(x﹣1),将点(0,3)代入得:﹣3a=3,解得:a=﹣1.∴抛物线的解析式为y=﹣(x+3)(x﹣1).整理得:抛物线的解析式为y=﹣x2﹣2x+3.(2)y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴将抛物线向右平移一个单位长度,再向下平移4个单位长度可得到y=﹣x2的图象.(3)如图所示:由(2)可知点D的坐标为(﹣1,4).四边形ADCB的面积=△AED的面积+梯形DCOE的面积+△OBC的面积=++==4++=9.【点评】本题主要考查的是求二次函数的解析式、平移与坐标变化、不规则图形的面积,将不规则图形的面积转化规则图形的面积是解题的关键.22.如图,二次函数y=﹣mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x 的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.【考点】二次函数综合题.【分析】(1)由顶点坐标(0,2)可直接代入y=﹣mx2+4m,求得m=,即可求得抛物线的解析式;(2)由图及四边形ABCD为矩形可知AD∥x轴,长为2x的据对值,AB的长为A点的总坐标,由x与y的关系,可求得p关于自变量x的解析式,因为矩形ABCD在抛物线里面,所以x小于0,大于抛物线与x负半轴的交点;(3)由(2)得到的p关于x的解析式,可令p=9,求x的方程,看x是否有解,有解则存在,无解则不存在,显然不存在这样的p.【解答】解:(1)∵二次函数y=﹣mx2+4m的顶点坐标为(0,2),∴4m=2,即m=,∴抛物线的解析式为:y=﹣x2+2;(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上,∴AD∥x轴,又∵抛物线关于y轴对称,∴D、C点关于y轴分别与A、B对称.∴AD的长为2x,AB长为y,∴周长p=2y+4x=2(﹣x2+2)﹣4x=﹣(x+2)2+8.∵A在抛物线上,且ABCD组成矩形,∴x<2,∵四边形ABCD为矩形,∴y>0,即x>﹣2.∴p=﹣(x+2)2+8,其中﹣2<x<2.(3)不存在,证明:假设存在这样的p,即:9=﹣(x+2)2+8,解此方程得:x无解,所以不存在这样的p.【点评】本题考查的二次函数与几何矩形相结合的应用,比较综合,只要熟练二次函数的性质,数形结合,此题算是中档题,考点还是比较基础的.。
九年级(上)期中数学试卷一.选择题(本大题共12小题,每小题3分,共36分)1.下列函数中,是二次函数的是()A.B.y=(x+2)(x﹣2)﹣x2C.D.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣23.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣44.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥05.是关于x的一元二次方程,则m的值应为()A.m=2 B. C. D.无法确定6.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C.D.﹣27.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程3x2+2x﹣5=0的一次项系数是.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.15.根据图中的抛物线可以判断:当x 时,y随x的增大而减小;当x= 时,y有最小值.16.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).18.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是.三、解答题(本大题共7小题,共66分)19.解方程:x2﹣2x=x﹣2.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.21.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.22.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.23.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?24.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.25.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B 的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.参考答案与试题解析一.选择题(本大题共12小题,每小题3分,共36分)1.下列函数中,是二次函数的是()A.B.y=(x+2)(x﹣2)﹣x2C. D.【考点】二次函数的定义.【分析】整理一般形式后,根据二次函数的定义判定即可.【解答】解:A、函数式整理为y=x2﹣x,是二次函数,正确;B、函数式整理为y=﹣4,不是二次函数,错误;C、是正比例函数,错误;D、是反比例函数,错误.故选A.【点评】本题考查二次函数的定义.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先观察再确定方法解方程.根据左边乘积为0的特点应用因式分解法.【解答】解:根据题意可知:x+3=0或x﹣2=0;即x1=﹣3,x2=2.故选B.【点评】此题较简单,只要同学们明白有理数的乘法法则即可,即两数相乘等于0,那么其中一个数必然等于0.3.如果2是一元二次方程x2=c的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣4【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=2代入方程x2=c可得c=4,故本题选C.【点评】本题考查的是一元二次方程的根即方程的解的定义.4.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2﹣4ac满足的条件是()A.b2﹣4ac=0 B.b2﹣4ac>0 C.b2﹣4ac<0 D.b2﹣4ac≥0【考点】根的判别式.【分析】已知一元二次方程的根的情况,就可知根的判别式△=b2﹣4ac值的符号.【解答】解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0.故选:B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.是关于x的一元二次方程,则m的值应为()A.m=2 B. C. D.无法确定【考点】一元二次方程的定义.【专题】计算题.【分析】根据一元二次方程的定义,令2m﹣1=2,求出m的值即可.【解答】解:∵是关于x的一元二次方程,∴2m﹣1=2,∴m=,故选C.【点评】本题考查了一元二次方程的概念.要知道,只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程.6.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C.D.﹣2【考点】二次函数图象上点的坐标特征.【专题】压轴题;数形结合.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.【点评】本题考查了二次函数图象上点的坐标特征,观察图象判断出a是负数且经过坐标原点是解题的关键.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.【点评】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.【点评】本题主要考查的是旋转角的定义,掌握旋转角的定义是解题的关键.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.【点评】本题主要考查的是旋转的性质、四边形的内角和是360°,求得∠BAD′=70°是解题的关键.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.【点评】此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.二、填空题(本大题共6小题,每小题3分,共18分)13.一元二次方程3x2+2x﹣5=0的一次项系数是 2 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),其中a,b,c分别叫二次项系数,一次项系数,常数项.根据定义即可求解.【解答】解:一元二次方程3x2+2x﹣5=0的一次项系数是:2.故答案为:2.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.14.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【专题】数形结合.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.15.根据图中的抛物线可以判断:当x <1 时,y随x的增大而减小;当x= 1 时,y有最小值.【考点】二次函数的性质.【分析】要确定抛物线的单调性首先要知道其对称轴,然后根据对称轴来确定x的取值范围.【解答】解:根据图象可知对称轴为x=(﹣1+3)÷2=1,所以当x<1时,y随x的增大而减小;当x=1时,y有最小值.故填空答案:<1;=1.【点评】此题主要考查了函数的单调性与对称性.16.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2 .【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.【点评】此题主要考查了一元二次方程的一般形式,关键是注意不要漏掉二次项系数不能等于0这一条件.17.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是①③(填序号).【考点】根的判别式;一元一次方程的解.【专题】分类讨论.【分析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.【解答】解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【点评】本题主要考查了根的判别式以及一元一次方程的解的知识,解答本题的关键是掌握根的判别式的意义以及分类讨论的思想.18.如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4④2AB=3AC.其中正确结论是①④.【考点】二次函数综合题.【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故答案为:①④.【点评】本题考查的是二次函数综合题,涉及到二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键,同时要熟悉二次函数图象上点的坐标特征.三、解答题(本大题共7小题,共66分)19.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程-因式分解法;根与系数的关系.【专题】计算题;证明题.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.【点评】本题是对根的判别式与根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.并且本题考查了一元二次方程的解的定义,已知方程的一个根求方程的另一根与未知系数是常见的题型.21.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.【点评】本题主要考查的是正方形的性质、旋转的性质、勾股定理的应用,依据正方形的性质和旋转的性质证得点B、A′、D三点在一条直线上,从而求得A′D的长度是解题的关键.22.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.【点评】本题考查了二次函数的性质,能根据解析式推知函数图象是解题的关键,另外要能准确判断出函数的对称轴.23.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【专题】计算题.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元【点评】本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.24.在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.【考点】坐标与图形变化-旋转;全等三角形的判定;正方形的性质;扇形面积的计算.【专题】综合题;压轴题.【分析】(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.【解答】解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.【点评】本题用到的知识点是:扇形面积=,求一些线段的长度或角的度数,总要整理到已知线段的长度上或已知角的度数上.25.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B 的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求m的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)将y=mx2﹣2mx﹣3m化为交点式,即可得到A、B两点的坐标;(2)先用待定系数法得到抛物线C1的解析式,过点P作PQ∥y轴,交BC于Q,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到△PBC面积的最大值;(3)先表示出DM2,BD2,MB2,再分两种情况:①DM2+BD2=MB2时;②DM2+MB2=BD2时,讨论即可求得m 的值.【解答】解:(1)y=mx2﹣2mx﹣3m=m(x﹣3)(x+1),∵m≠0,∴当y=0时,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)设C1:y=ax2+bx+c,将A、B、C三点的坐标代入得:,解得,故C1:y=x2﹣x﹣.如图:过点P作PQ∥y轴,交BC于Q,由B、C的坐标可得直线BC的解析式为:y=x﹣,设P(x, x2﹣x﹣),则Q(x, x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,S△PBC=S△PCQ+S△PBQ=PQ•OB=×(﹣x2+x)×3=﹣(x﹣)2+,当x=时,S△PBC有最大值,Smax=,×()2﹣﹣=﹣,P(,﹣);(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,顶点M坐标(1,﹣4m),当x=0时,y=﹣3m,∴D(0,﹣3m),B(3,0),∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,MB2=(3﹣1)2+(0+4m)2=16m2+4,BD2=(3﹣0)2+(0+3m)2=9m2+9,当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,解得m=﹣1(∵m<0,∴m=1舍去);②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,解得m=﹣(m=舍去).综上,m=﹣1或﹣时,△BDM为直角三角形.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的交点式,待定系数法求抛物线的解析式,待定系数法求直线的解析式,三角形的面积公式,配方法的应用,勾股定理,分类思想的运用,综合性较强,有一定的难度.。
A BCDE第一学期期中考试年级:九年级 科目: 数学班级:________姓名:________考生须知 1.本试卷共6页,共三道大题,26个小题,满分120分。
考试时间120分钟。
2.在试卷和答题纸上准确填写班级、姓名、学号3.答案一律填写在答题纸、机读卡上,在试卷上作答无效。
4.考试结束,将试卷和答题纸一并交回。
一、 选择题 (每题4分, 共40分) 1.如果252=+b b a ,那么b a 的值是( )A.21 B.2 C.51D.52. 关于x 的一元二次方程042=++mx x 有两个正整数根,则m 可能取的值为( ) A.0>m B.4>m C. −4,−5 D. 4,53. 将抛物线()312+-=x y 向左平移1个单位,向下平移3个单位后所得抛物线的解析式为( )A.()22-=x y B.()622+-x C.62+=x y D.2x y =4. 如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD=1,DB=2, 则△ADE 的面积与△ABC 的面积的比等于( )A.21B.C. D .915. 某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,列方程为( )A.()200210030-=-x xB.()200302100=--x x xC.()200210030=-xD. ()()200210030=--x xAB C D EFH 第4题图6. 如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点, 为使△D EM ∽△ABC ,则点M 所在位置应是F 、G 、H 、K 四点中的( ) A .K B .H C .G D .F7. 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,E 为BC 中点,则sin∠AEB 的值是( )A.55B. 54C. 53 D. 43 8. 若二次函数bx x y +=2的图象的对称轴是经过点(2,0)且平行于y 轴的直线, 则关于x 的方程52=+bx x 的解为( )A. 01=x ,42=xB. 11=x ,52=xC. 11=x ,52-=xD. 11-=x ,52=x9. 如图,在矩形ABCD 中,AB=3,BC=4,点P 在BC 边上运动,连接DP ,过点A 作AE ⊥DP ,垂足为E ,设DP=x ,AE=y ,则能反映y 与x 之间函数关系的大致图象是( ) A.B.C.D.10.如图是二次函数y=ax 2+bx+c( a ≠0 )在平面直角坐标系中的图象,根据图形判断 ①b>0;② a −b+c<0;③ 2a+b>0; ④ b 2+8a>4ac 中正确的是( )A. ①②B. ①③C. ③④D. ②④第6题图y 3 x 5 4 512 o y 3 x 5 4 512 o y 3 x 5 4 512 o y 3 x 5 4 512 o y ECABDP二、填空题 (每题4分, 共24分)11.已知二次函数()1322+-=x y .当时,y 随x 的增大而减小.12. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是.13.如果关于x 的一元二次方程x 2+ 4x –m = 0没有实数根,那么m 的取值范围是________. 14.如图,Rt△ABC 中,∠ACB=90°,AC=6cm ,BC=8cm ,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .若△BPQ 与△ABC 相似,则t 的值为______. 15. 如图,∠AOB =90º,将Rt △OAB 绕点O 按逆时针方向旋转至Rt△O A′B′,使点B 恰好落在边A′B′上.已知B tan =2,OB= 5,则BB′ =.16.在平面直角坐标系xoy 中,直线x = 2和抛物线2ax y =在第一象限交于点A ,过A 作AB x ⊥轴于点B .如果a 取1,2,3,…,n 时对应的△AOB 的面积为1S ,2S ,3S ,…,n S ,那么=1S _____;=++++n S S S S ...321_____________.三、解答题(共56分)④③②① 第12题图 第14题图B'A'BAO第15题图AP B QC 第10题图第9题图 第7题图17.(5分)计算:()011345sin 2230cos 3--︒-+︒-18. (5分)解方程:19.(6分) 如图,在△ABC 中,AB=AC=8,BC=6,点D 为BC 上一点,BD=2.过点D 作射线DE 交AC 于点E ,使∠ADE=∠B .求线段EC 的长度.20.(6分) 已知关于x 的一元二次方程有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.21. (5分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边 的三角形称为格点三角形,图中的△ABC 就是格点三角形.在建立平面直角坐标系后, 点B 的坐标为(-1,-1).(1) 把△ABC 绕点A 按逆时针方向旋转90°后得到△AB 1C 1,画出△AB 1C 1的图形并直接写出 点B 1的坐标为;(2) 在现有坐标系下.......把△ABC 以点A 为位似中心放大,使放大前后对应边长的比为1 : 2, 第19题图画出△AB2C2.22.(6分)如图,小明住在一栋住宅楼AC上,他在家里的窗口点B处,看楼下一条公路的两侧点F和点E处(公路的宽为EF),测得俯角α、β分别为30°和60°,点F、E、C在同一直线上.(1)请你在图中画出俯角α和β.(2)若小明家窗口到地面的距离BC=6米,求公路宽EF是多少米?(结果精确到0.1米;可能用到的数据733≈).123. (5分)已知在△ABC 中,BAC ∠=90°,AD BC ⊥于点D ,点E 为AC 中点,延长ED 、AB 交于点F .求证:FADFAC AB =24. (7分)已知:二次函数y=ax 2+bx+c , y 与x 的一些对应值如下表:x…… −1 0 1 2 3 4 …… ax 2+bx+c ……3−13……(1)根据表格中的数据,确定二次函数解析式为;(2)填齐表格中空白处的对应值并利用上表,用五点作图法,画出二次函数y=ax 2+bx+c 的图象. (3)当 1 < x ≤4时,y 的取值范围是;(4)设y=ax 2+ bx + c 的图象与x 轴的交点为A 、B 两点(A 点在B 点左侧),与y 轴交于点C ,P 点为线段AB 上一动点,过P 点作PE ∥AC 交BC 于E ,连结PC ,当△PEC 的面积最大时, 求P 点的坐标.25.(5分)阅读下面材料:小明遇到下面一个问题:如图1所示,AD 是△ABC 的角平分线,m AB =,n AC =, 求DCBD的值.小明发现,分别过B ,C 作直线AD 的垂线,垂足分别为E ,F.通过推理计算,可以解决问题(如图2).F E D C BAD BCA(1)请回答,=DCBD参考小明思考问题的方法,解决问题:如图3,四边形ABCD 中,2=AB ,6=BC ,︒=∠60ABC , BD 平分ABC ∠,BD CD ⊥.AC 与BD 相交于点O. (2)=OCAO(3)=∠DCO tan26. (6分)已知:在等边△ABC 中,点D 为BC 边的中点,点F 在AB 上,连结DF 并延长到点E ,使BDF BAE ∠=∠,点M 在线段DF 上,且DBM ABE ∠=∠. (1)如图,线段AE 、MD 之间的数量关系为 ; 请证明你的结论.(2)在(1)的条件下,延长BM 到P ,使BM MP =,连接CP , 若AB =7,AE =72,求tan∠BCP 的值.练习答案一.选择题(每题4分,共40分,每题只有一个正确答案):FED B CAODBCA图2图1图3二.填空题(每题4分,共24分):题号11 1213 14 15 16 答案3≤x○2 4-<m1或4132524;n n 222+三.解答题 ( 共56分): 17. ()011345sin 2230cos 3--︒-+︒-解:=122221233-⋅-+⋅ =0 18. 0132=--x x 解:∵a=3,b=−1,c=−1 ∴1342=-=∆ac b 6131±=x 61311+=x ,61312-=x19. 解:ECBDDC AB =, ∴EC248=,∴EC=1 20.题号 1 2 3 4 5 6 7 8 9 10 答案ACDDDBBDCC21. (1) 把△ABC 绕点A 按逆时针方向旋转90°后得到△A 1B 1C ,画出△A 1B 1C 的图形并直接写出 点B 1的坐标为(7,−1); (2)图略22.解:由题意得CF BC BEC F ⊥︒=∠︒=∠,,6030 336tan ===CF CF BC F ,CF=36 36tan ===CECE BC BEC ,CE=32 ∴EF=CF-CE=9.634≈(米)α β23. 证明:∵BC AD ⊥ 又F F ∠=∠ ∴︒=∠=∠90ADC ADB ∴△FDB ∽△FAD ∵︒=∠90BAC ∴DADBFA DF =∴︒=∠+∠9043 ∵C ∠=∠3,︒=∠=∠90BAC ADB 又︒=∠+∠904C ∴△ADB ∽△CAB ∴C ∠=∠3 ∴AC DAAB DB =∵E 为AC 中点 ∴DADBAC AB =∴DE=AE=CE ∴FADFAC AB =∴2∠=∠C ∵21∠=∠ ∴31∠=∠24. (1)根据表格中的数据,确定二次函数解析式为342+-=x x y ;(2)填齐表格中空白处的对应值并利用上表,用五点作图法画出二次函数y=ax 2+bx+c 的图象. (3)当 1 < x ≤4时, y 的取值范围是31≤≤-y ; (4)解:设P(m ,0).则PB=3−m ,()m S PBC -=∆323,3=∆ABC S ()()23343---=-=∆∆∆m m S S S PBE PBC PEC =493432-+-m m=()432432+--m x …… −1 0 1 2 3 4 …… ax 2+bx+c (8)3−13……F E D C BA∴当m=2时,S 最大∴P 点坐标为(2,0)25. (1)请回答,=DC BD n m (2)=OC AO 31(3)=∠DCO tan 23 26. (1)如图,线段AE 、MD 之间的数量关系为 AE=2MD ; 证明:。
2018~2019学年度第一学期期中考试九年级语文试题(本卷满分140分,考试时间120分钟)一、积累与运用(20分)1.古诗文默写。
(10分)(1),万古惟留楚客悲。
(2)知汝远来应有意,。
(3),凫雁满回塘。
(4),病树前头万木春。
(5)欲渡黄河冰塞川,。
,忽复乘舟梦日边。
(6)但愿人长久,。
(7)居庙堂之高则忧其民,。
(8),在乎山水之间也。
山水之乐,。
2.下列词语中字形和加点字的注音全都正确的一项是(3分)【】A.赃物骈进娉.婷(pīng)矗.立(chù)荡然无存B.摇曳治裁妖娆.(ráo)恪.守(kè)断章取义C.惊骇风骚箴.言(jiān )冠冕.(miǎn)强聒不舍D.嘶哑呢喃飘逸.(yì)亵.渎(xiè)心无旁鹜3.阅读下面一段文字,按要求回答问题。
(4分)最近,美国领导人发表演讲,对中国进行无端指责, A “中国会对美国发动网络攻击”。
美国明明是制定网络攻击战略的国家,明明是公认的黑客大本营,却频频将自己描绘成受网络攻击的受害者。
究其原因,就是 B 通过妖魔化中国转移舆论视线,缓解自身压力,谋求一己之私。
互联网从美国起源,全球互联网核心基础设施大多在美国,各种核心技术的主要供应商是美国企业,美国还有最大的网络情报机构、全球首支大规模成建制的网军。
作为互联网强国的美国,即使肆意侵犯别国权益,还一再把自己打扮成受害者。
如此推卸责任、混淆是非,令人愕然。
(1)为A、B两处选择最恰当的词语。
(2分)备选词语:宣称妄称企图企盼(2)请修改文中画线句子的语病,把正确的句子写在下面。
(2分)4.下列关于文学常识、文化知识表述不正确的一项是(3分)【】A.《三国演义》是我国第一部章回体长篇历史演义小说,着重叙述魏、蜀、吴三国的兴衰过程。
雨果,法国作家,代表作品有小说《战争与和平》《巴黎圣母院》《悲惨世界》《九三年》等。
B.曹雪芹,名霑,字梦阮,号雪芹,清代小说家。
九年级(上)期中数学试卷一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.一元二次方程x2﹣2x=0的根是( )A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正方形D.正五边形3.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( )A.3cm B.4cm C.5cm D.6cm4.下列函数解析式中,一定为二次函数的是( )A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+5.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第( )象限.A.四B.三C.二D.一6.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( ) A.B. C.D.7.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A.10 B.14 C.10或14 D.8或108.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm29.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=__________.12.二次函数y=﹣x2+2x﹣3图象的顶点坐标是__________.13.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是__________.14.两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了__________.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为__________.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是__________.(结果保留π)17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为__________元时,该服装店平均每天的销售利润最大.18.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有__________个三角形(用含n的代数式表示)三、解答题:本大题共6小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.(1)计算:(﹣1)2015+()2﹣(π﹣3.14)0+()﹣1(2)先化简,再求值:(+)•(x2﹣1),其中x满足x2﹣4x+3=0.20.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.22.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)24.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.数学试卷一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.一元二次方程x2﹣2x=0的根是( )A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.2.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正方形D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( )A.3cm B.4cm C.5cm D.6cm【考点】垂径定理;勾股定理.【分析】连接OA,先利用垂径定理得出AC的长,再由勾股定理得出OC的长即可解答.【解答】解:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm,∵⊙O的半径为5cm,∴OC===4cm,故选B.【点评】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理的应用是解题的关键.4.下列函数解析式中,一定为二次函数的是( )A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.【点评】本题考查了二次函数的定义,y=ax2+bx+c (a≠0)是二次函数,注意二次函数都是整式.5.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第( )象限.A.四B.三C.二D.一【考点】根的判别式;一次函数图象与系数的关系.【分析】根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.【解答】解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.6.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( )A.B. C.D.【考点】二次函数的图象.【专题】压轴题.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.7.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A.10 B.14 C.10或14 D.8或10【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.【专题】压轴题.【分析】先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.【点评】此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.8.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【考点】切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.【专题】应用题.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S扇形OAB==4π,故D正确.故选C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.9.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【专题】压轴题.【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征和含30度的直角三角形三边的关系.10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).【分析】①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.【点评】本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2015=0得:a+b﹣2015=0,即a+b=2015.故答案是:2015.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.12.二次函数y=﹣x2+2x﹣3图象的顶点坐标是(1,﹣2).【考点】二次函数的性质.【分析】此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.【解答】解:∵y=﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).【点评】本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.13.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是240πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算即可.【解答】解:这张扇形纸板的面积=×2π×10×24=240π(cm2).故答案为:240πcm2【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了30°.【考点】旋转的性质.【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数;【解答】解:∵三角板是两块大小一样斜边为4且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′=2,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30°.【点评】考查了含有30°角的直角三角形的性质,等边三角形的判定,旋转的性质和扇形面积的计算,本题关键是得到CE′是△ACB的中线.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为x(x﹣1)=2×5.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】关系式为:球队总数×每支球队需赛的场数÷2=2×5,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=2×5.故答案是:x(x﹣1)=2×5.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是8﹣2π.(结果保留π)【考点】扇形面积的计算;等腰直角三角形.【分析】根据等腰直角三角形性质求出∠A度数,解直角三角形求出AC和BC,分别求出△ACB 的面积和扇形ACD的面积即可.【解答】解:∵△ACB是等腰直角三角形ABC中,∠ACB=90°,∴∠A=∠B=45°,∵AB=4,∴AC=BC=AB×sin45°=4,∴S△ACB===8,S扇形ACD==2π,∴图中阴影部分的面积是8﹣2π,故答案为:8﹣2π.【点评】本题考查了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解此题的关键是能求出△ACB和扇形ACD的面积,难度适中.17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.【考点】二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x (元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.18.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)【考点】规律型:图形的变化类.【专题】规律型.【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有3n+1个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…∴第n个图案有3n+1个三角形.故答案为:3n+1.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.三、解答题:本大题共6小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.(1)计算:(﹣1)2015+()2﹣(π﹣3.14)0+()﹣1(2)先化简,再求值:(+)•(x2﹣1),其中x满足x2﹣4x+3=0.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据0指数幂及负整数指数幂的计算法则、数的乘方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:(1)原式=﹣1+﹣1+2=;(2)原式=•(x2﹣1)=2x+2+x﹣1=3x+1,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=3×3+1=10.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)①如图,利用关于y轴对称的点的坐标特征得到B点坐标,则可得到线段AB;②如图,利用网格特点和性质得性质作AD平行x轴,再以C点为圆心,CA为半径画弧交AD 于D,则线段CD为所作;(2)先证明ABCD为平行四边形,由于过平行四边形中心的直线平分平行四边形的面积,所以确定平行四边形ABCD的中心坐标,然后利用一次函数图象上点的坐标特征求k.【解答】解:(1)①如图,AB为所作;②如图,CD为所作;(2)∵AB与AC关于y轴对称,∴AB=AC,∴∠ABC=∠ACB,∵AD∥x轴,∴∠DAC=∠ACB,∠ADC=∠DCx,∵线段CA绕点C顺时针旋转一个角,得到对应线段CD,∴CA=CD,∴∠CAD=∠ADC,∴∠ABC=∠DCx,∴AB∥CD,∴四边形ABCD为平行四边形,∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),把(,2)代入y=kx得,k=2,解得k=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平行四边形的判定与性质.21.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【考点】切线的判定.【专题】证明题.【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【解答】(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.22.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【专题】代数综合题.【分析】(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.【解答】(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.【点评】本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.23.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设平均每年下调的百分率为x,根据题意列出方程,求出方程的解即可得到结果;(2)如果下调的百分率相同,求出2016年的房价,进而确定出100平方米的总房款,即可做出判断.【解答】解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为5265×(1﹣10%)=4738.5(元/米2),则100平方米的住房总房款为100×4738.5=473850=47.385(万元),∵20+30>47.385,∴张强的愿望可以实现.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.24.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.【考点】二次函数综合题.【专题】几何综合题.【分析】(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.【解答】解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.【点评】本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.。
德州市平原县九年级上学期语文期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共1题;共2分)1. (2分) (2019八下·福州开学考) 下列文学常识说法正确的一项是()A . 汪曾祺是我国著名作家,代表作有小说《昆明的雨》《受戒》《骆驼祥子》等。
B . 司马迁的《史记》是我国第一部纪传体通史,对后世传记文学有深远影响。
C . 托尔斯泰是法国著名作家,著有《人类群星闪耀时》《复活》《战争与和平》。
D . 消息是迅速、简要地报道将要发生的事件的一种新闻体裁,常见且运用广泛。
二、默写 (共1题;共12分)2. (12分)(2016·杭州) 古诗文默写。
①潮平两岸阔,风正一帆悬。
________,________。
(王湾《次北固山下》)②八百里分麾下炙,________,________。
(辛弃疾《破阵子·为陈同甫赋壮词以寄之》)③夫战,勇气也。
________,________,三而竭。
(《曹刿论战》)④岁月匆匆,“时间都去哪儿了”,我们不由得想起孔子在河边的那声感叹:“________,________。
”(请选用《论语·子罕》中的句子填写)⑤王勃《送杜少府之任蜀州》中的诗句“________,________”,表达了千山万水也不能阻隔朋友真情的意思。
⑥杨绛先生走完了她一个多世纪的人生历程,安然辞世。
她丰厚的文学遗产和非凡的人格魅力,将永远滋养我们的精神世界,正所谓“________,________”。
(请选用龚自珍《己亥杂诗》中的诗句填写)三、现代文阅读 (共3题;共47分)3. (10分)阅读下面这段文字,按要求回答问题。
文化是民族的根。
中华民族优秀的文化,积淀着久远的岁月印痕。
(A)它绽放在春节缤纷的花炮中,闪烁在京剧斑斓的脸谱中,跳动在二胡凄美的弓弦上,,传扬在诗词浪漫的意境里……传统文化承载着民族的记忆,五彩纷呈的形式令人赏心悦目。
EDCBA 第一学期期中质量检测九年级数学(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-(x +2)2-3的顶点坐标是()A .(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.如图,在△ABC 中,若DE ∥BC ,AD ∶BD=1∶2,若△ADE 的面积等于2, 则△ABC 的面积等于() A.6B.8C.12D.183.如图,△ABC 中,∠C=90°,BC=2,AB=3,则下列结论正确的是()A .35sin =A B .32cos =AC .32sin =A D .25tan =A 4.若如图所示的两个四边形相似,则α∠的度数是()A .87B .60C .75D .1205.已知2sin α=1(α为锐角),则α的度数为() A .30°B.45°C.15°D.60°6.已知二次函数y=2(x+1)(x -a),其中a>0,若当x ≤2时,y 随x 增大而减小,当x ≥2时y 随x 增大而增大,则a 的值是() A.3B.5C.7D.不确定CBAα6075 α601387.将∠α放置在正方形网格纸中,位置如图所示,则tan α的值是()A .2B .21 C .25 D .552 8.已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是()9.如图,□ABCD 中,EF ∥AB ,DE ∶EA=1∶2,EF=4,则 CD 的长为() A .43B .8C .12D .1610.如图,已知矩形ABCD 的长AB 为5,宽BC 为4.E 是BC 边上的一个动点,AE ⊥EF,EF 交CD 于点F .设BE=x,FC=y ,则点E 从点B 运动到点C 时,能表示y 关于x 的函数关系的大致图象是()二、填空题(本大题共6个小题,每小题3分,共18分) 11.已知b b a +=25,则ab=________. 12.已知方程)0(02≠=++a c bx ax 的解是,3,521-==x x 那么抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点的坐标分别是______________.lαMM'N'NA'C'B'CBDAD'13.将一副三角尺如图所示叠放在一起,则BEEC的值是.14.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5米,测得AB=2米,BC=14米,则楼高CD为米.第16题15.如图,这个二次函数图象的表达式可能是.(只写出一个).16.我们把对称中心重合,四边分别平行的两个正方形之间的部分叫做“方环形”,易知方环形四周的宽度相等.当直线l与方环形的邻边相交时(如图),l分别交'''',,,AD AD DC DC AD,于'',,,M M N N,l与DC的夹角为α,那么''MMN N的值为(用含α的三角比表示).三、解答题(本大题共13小题,共72分,第17-26题,每题5分,第27题7分,第28题7分,第29题8分,解答应写出必要的文字说明、证明过程或演算步骤)17.计算:tan 30cos 60tan 45sin 30.︒-︒⨯︒+︒18.如图,在△ABC 中,D 、E 两点分别在AC 、AB 两边上,ABC ADE ∠=∠,3,7==AD AB , 2.7AE =,求AC 的长19.已知:如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AB =8,BC =3.求:sin ∠ACD 的值及AD 的长.20.如图,二次函数21y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,且点B 的坐标为(1,0), 点C 的坐标为(0,3)-,一次函数2y mx n =+的图象 过点A 、C .(1)求二次函数的解析式;ABCOxyECBAD(2)求二次函数的图象与x 轴的另一个交点A 的坐标; (3)根据图象写出21<y y 时,x 的取值范围.21.如图,在Rt △ABC 中,∠C=90°,53sin =B , 点D 在BC 边上,DC=AC=6, 求tan ∠BAD 的值.22.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数关系式是260 1.5s t t =-.飞机着陆后滑行多远才能停下来?飞机着陆后滑行多长时间能停下来?23.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;DCBAFECABD(2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.24.如图,矩形ABCD 中,E 为AD 中点,EF ⊥EC 交AB 于点F ,连接FC (AB>AE ),△AEF 和△EFC 相似吗?若相似,证明你的结论;若不相似,请说明理由.25.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
[键入文字] [键入文字] [键入文字]九年级人教版数学上学期期中模拟测试一、选择题:1、如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1 B.2 C.﹣1 D.﹣22、(2018•包头)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为()A.6 B.5 C.4 D.33、某城市 2014 年底已有绿化面积 300 公顷,经过两年绿化,绿化面积逐年增加,到 2016 年底增加到 363 公顷,设绿化面积平均每年的增长率为x,由题意,所列方程正确的是( )A.300(1+x)=363B.300(1+x)2=363C.300(1+2x)=363D.363(1-x)2=3004、菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16 或12 D.245、(2018•临安区)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1) B.(﹣1,1)C.(﹣1,﹣1) D.(1,﹣1)6、如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D 在x轴上,点A、E、F 在y 轴上,下面判断正确的是().A.△DEF是△ABC绕点O 顺时针旋转60°得到的B.△DEF是△ABC绕点O 逆时针旋转90°得到的C.△ DEF是△ABC绕点O 顺时针旋转90°得到的D.△DEF是△ABC绕点O 顺时针旋转120°得到的7、下列图形都是按照一定规律组成,第一个图形中共有 2 个三角形,第二个图形中共有 8 个三角形,第三个图形中共有14 个三角形,…,依此规律,第五个图形中三角形的个数是()A.22 B.24 C.26 D.288、(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5 根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于39、已知二次函数y=ax2+4ax+c的图象与x轴的一个交点为(﹣1,0),则它与x轴的另一个交点的坐标是()A.(﹣3,0)B.(3,0)C.(1,0)D.(﹣2,0)10、某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣511、在平面直角坐标系中,A点坐标为(3,4),将线段OA绕原点O逆时针旋转90°得到线段OA′,则点A′的坐标是()A. (﹣4,3)B. (﹣3,4)C. (3,﹣4)D. (4,﹣3)12、(2018•滨州)如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0 时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.41 2 二、填空题:13、(2018•泰州)已知 3x ﹣y=3a 2﹣6a+9,x+y=a 2+6a ﹣9,若 x ≤y ,则实数 a 的值为.14、已知点 A 的坐标为(2,3),O 为坐标原点,连接 OA ,将线段 OA 绕点 A 按顺时针方向旋转 90°得 AB ,则点B 的坐标为15、将抛物线 y=x 2﹣4x+5 向右平移 1 个单位长度,再向下平移 2 个单位长度,则平移后的抛物线的顶点坐标是.16、(2018•乌鲁木齐)把拋物线 y=2x 2﹣4x+3 向左平移 1 个单位长度,得到的抛物线的解析式为 . 17、如图,⊙O 的直径 AB 长为 10,弦 AC 的长为 6,∠ACB 的角平分线交⊙O 于 D ,则 CD 长为.18、已知二次函数 y=﹣(x ﹣h )2(h 为常数),当自变量 x 的值满足 2≤x ≤5 时,与其对应的函数值 y 的最大值为﹣1,则 h 的值为。
19、△ABC 是等边三角形,点 O 是三条高的交点.若△ABC 以点 O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是.20、文具店销售某种笔袋,每个 18 元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜 36 元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.21、如图三角形 ABC 中,AB=3,AC=4,以 BC 为边向三角形外作等边三角形 BCD ,连 AD ,则当∠BAC=度时,AD 有最大值.22、已知二次函数 y=ax 2+bx+c 的图象如图所示,下列结论:①9a ﹣3b+c=0;②4a ﹣2b+c >0;③方程 ax 2+bx+c ﹣4=0 有两个相等的实数根;④方程 a (x ﹣1)2+b (x ﹣1)+c=0 的两根是 x =﹣2,x =2.其中正确结论的个数是三、解答题:23、已知二次函数y=x2+bx+c的图象经过(0,3),(4,3).(1)求b、c 的值.(2)开口方向,对称轴为,顶点坐标为.(3)该函数的图象怎样由y=x2的图象平移得到.24、(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l 与该抛物线总有两个交点;(2)设直线l 与该抛物线两交点为A,B,O 为原点,当k=﹣2 时,求△OAB的面积.25、(2018•德州)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为 550 台.假定该设备的年销售量 y(单位:台)和销售单价 x(单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于 70 万元,如果该公司想获得 10000 万元的年利润,则该设备的销售单价应是多少万元?26、(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D 是 AB 边上一点(点D 与 A,B 不重合),连结CD,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF 时,求∠BEF的度数.27、在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;(2)若将△OCD 绕 O 旋转到如图(2)的位置,连 AD、BC,取 BC 的中点 M,请探究线段 OM、AD 之间的关系,并证明你的结论;(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC 的面积;若不存在,请说明理由.答案:一、选择题:1、B2、B3、B4、A5、A6、C7、C8、D9、A10、D11、A12、B二、填空题:13、314、(﹣1,5)15、(3,-1)16、y=2x2+117、7√2.18、1 或619、120°20、48621、120,7.22、4三、解答题:23、解:(1)由于二次函数y=x2+bx+c的图象经过点(0,3)、(4,3),则,解得:;(2)由二次函数y=x2﹣4x+3可知:a=1,开口方向向下;原二次函数经变形得:y=(x﹣2)2﹣1,故顶点为(2,﹣1),对称轴是直线x=2故答案为向上,直线x=2,(2,﹣1);(3)y=(x﹣2)2﹣1是由y=x2向右平移2个单位,向下平移1个单位得到的.24、解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l 与该抛物线总有两个交点;(2)当k=﹣2 时,∴y=﹣2x+1过点A 作AF⊥x轴于F,过点B 作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1 与x 轴的交点C 为(,0)∴OC=∴S △AO B =S △AOC +S △BO C =OC •AF+OC•BE =OC (AF+BE )=××(2 ﹣1+1+2 ) =25、(1)设年销售量 y 与销售单价 x 的函数关系式为 y=kx+b (k≠0),将(40,600)、(45,550)代入 y=kx+b ,得:,解得:,∴年销售量 y 与销售单价 x 的函数关系式为 y=﹣10x+1000.(2)设此设备的销售单价为 x 万元/台,则每台设备的利润为(x ﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x ﹣30)(﹣10x+1000)=10000, 整理,得:x 2﹣130x+4000=0,解得:x 1=50,x 2=80.∵此设备的销售单价不得高于 70 万元,∴x=50.26、解:(1)由题意可知:CD=CE ,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°27、(1)如图1中,作BH⊥OB,AH⊥OA,连接OM延长OM交BH于P,连接ON延长ON交AH于Q,连接PQ.∵OA=OB,∠AOB=∠OAH=∠OBH=90°,∴四边形OAHB 是正方形,∵CM=MB,∴OM=MB,∴∠MBO=∠MOB,∵∠MBO+∠MBP=90°,∠MOB+∠MPB=90°,∴∠MBP=∠MPB,∴BM=PM=OM,同理可证ON=NQ,∴MN=PQ,∵MC=MB,MO=MP,∠CMO=∠PMB,∴△CMO≌△BMP,∴PB=OC,同理可证AQ=OD,∵OC=OD,∴AQ=PB=OC=OD,∵OA=OB=AH=BH,∴AC=BD=PH=QH,∵PQ=PH=AC,∴MN=AC.(2)结论:OM=AD,OM⊥AD.理由:如图2 中,延长OM 到H,使得MH=OM,设AD 交OH 于G,交OB 于K.∵CM=BM,∠CMO=∠BMH,OM=MH,∴△CMO≌△BMH,∴OC=BH=OD,∠COM=∠H,∴OC∥BH,∴∠OBH+∠COB=180°,∵∠AOD+∠COB=180°,∴∠OBH=∠AOD,∵OB=OA,∴△OBH≌△AOD,∴AD=OH,∠OAD=∠BOH,∵∠OAD+∠AKO=90°,∴∠BOH+∠AKO=90°,∴∠OGK=90°,∴AD⊥OH,∴OM=AD ,OM⊥AD.(3)①如图 3 中,当 OC⊥BC 设,作 CH⊥OAY 于 H .∵∠OCB=90°,OB=2OC ,∴∠OBC=30°,∠OCB=60°,∠COH=30°,∴CH=OC=1,BC= OC=2 ,∴S △AB C =S △AOB ﹣S △AO C ﹣S △BOC =6﹣2.②如图 4 中,作 CH⊥AO 于 H .易知∠BOC=60°,∠COH=30°,可得,∴S△AB C =S △AOB +S △BO C ﹣S △AOC =6+2 ,综上所述,△ABC 的面积为6+2 或 6 ﹣2。