高考数学二轮复习第3部分考前增分策略专题1考前教材重温7概率与统计课件理2
- 格式:ppt
- 大小:1.47 MB
- 文档页数:75
2018版高考数学二轮复习第3部分考前增分策略专题1 考前教材重温2函数与导数教学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学二轮复习第3部分考前增分策略专题 1 考前教材重温 2 函数与导数教学案理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学二轮复习第3部分考前增分策略专题1考前教材重温 2 函数与导数教学案理的全部内容。
2.函数与导数■要点重温…………………………………………………………………………·1.几种常规函数:(1)一次函数:f(x)=ax+b(a≠0).当b=0时,f(x)为奇函数.[应用1] 若一次函数y=f(x)在区间[-1,2]上的最大值为3,最小值为1,则f(x)的解析式为________.[答案] f(x)=\f(2,3)x+错误!,或f(x)=-错误!x+错误!.(2)二次函数:①一般式:f(x)=ax2+bx+c(a≠0);②顶点式:f(x)=a(x-h)2+k(a≠0);③零点式:f(x)=a(x-x1)(x-x2)(a≠0);④区间最值:一看开口方向,二看对称轴与所给区间的相对位置关系.[应用2]若函数y=12x2-2x+4的定义域、值域都是[2,2b],则b=________。
【导学号:07804160】[答案]2[应用3]设函数f(x)=x2+2(a-1)x+1在区间(-∞,4)上是减函数,则a的取值范围是________.[答案] a≤-3(3)三次函数的解析式的两种形式:①一般式:f(x)=ax3+bx2+cx+d(a≠0);②零点式:f(x)=a(x-x1)(x-x2)(x-x3)(a≠0).[应用4]已知函数f(x)=ax3+bx2+cx+d的图象如图2,则b的取值范围是________.图2[答案] b<0[应用5]若函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则a的取值范围为________.[答案]a>2或a<-1(4)反比例函数:y=错误!(x≠0)平移⇒y=a+错误!(x≠0)(中心为(b,a)).(5)分段函数:分段处理,有时结合函数图象来研究问题.[应用6] 已知实数a≠0,函数f(x)=错误!,若f(1-a)=f(1+a),则a=________.[解析] 当a<0时,-(1-a)-2a=2(1+a)+a,a=-34;当a>0时,-(1+a)-2a=2(1-a)+a,a=-\f(3,2)(舍);综上可知a=-错误!.[答案] -错误![应用7] 设函数f(x)=错误!若f(x0)〉1,则x0的取值范围是________。
7.概率与统计■要点重温…………………………………………………………………………· 1.随机抽样方法简单随机抽样、系统抽样、分层抽样的共同点是抽样过程中每个个体被抽取的机会相等,且是不放回抽样.[应用1] 某社区现有480个住户,其中中等收入家庭200户、低收入家庭160户,其他为高收入家庭.在建设幸福社区的某次分层抽样调查中,高收入家庭被抽取了6户,则该社区本次抽取的总户数为________.[解析] 设本次抽取的总户数为x ,由抽样比例可知6x =480-200-160480,则x =24.[答案] 242.对于统计图表问题,求解时,最重要的就是认真观察图表,从中提取有用信息和数据.对于频率分布直方图,应注意的是图中的每一个小矩形的面积是数据落在该区间上的频率.茎叶图没有原始数据信息的损失,但数据很大或有多组数据时,茎叶图就不那么直观、清晰了.[应用2] 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图23所示:图23若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.[解析] 由题意知,将1~35号分成7组,每组5名运动员,落在区间[139,151]的运动员共有4组,故由系统抽样法知,共抽取4名. [答案] 4 3.样本数据的数字特征在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,众数是最高矩形的中点的横坐标. 标准差的平方就是方差,方差的计算(1)基本公式s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].(2)简化计算公式①s 2=1n [(x 21+x 22+…+x 2n )-n x 2],或写成s 2=1n(x 21+x 22+…+x 2n )-x 2,即方差等于原数据平方和的平均数减去平均数的平方.[应用3] (1)某工厂对一批新产品的长度(单位:mm)进行检测,如图24是检测结果的频率分布直方图,据此估计这批产品的中位数为( )图24A .20B .25C .22.5D .22.75(2)已知样本数据3,4,5,x ,y 的平均数是5,标准差是2,则xy =( ) A .42 B .40 C .36D .30(3)某公司为了解用户对其产品的满意度,随机调查了40个用户,根据用户满意度的评分制成频率分布直方图(如图25),则该地区满意度评分的平均值为________.【导学号:07804193】图25[解析] (1)产品的中位数出现在概率是0.5的地方.自左至右各小矩形面积依次为0.1,0.2,0.4,……,设中位数是x ,则由0.1+0.2+0.08·(x -20)=0.5,得x =22.5,故选C. (2)由3+4+5+x +y 5=5得x +y =13,①由15-2+-2+-2+x -2+y -2]= 2得x 2+y 2-10x -10y +45=0, ② ①×10+②得,x 2+y 2=85③①2-③得,2xy =84,即xy =42,故选A.(3)由直方图估计评分的平均值为55×0.05+65×0.2+75×0.35+85×0.25+95×0.15=77.5.[答案] (1)C (2)A (3)77.5 4.变量间的相关关系变量间的相关关系以散点图为基础,设(x 1,y 1),(x 2,y 2)…,(x n ,y n )是两个具有线性相关关系的变量的一组数据,其回归方程为y ^=b ^x +a ^,则 ⎩⎪⎨⎪⎧b^=∑n i =1x i-x y i-y ∑ni =1x i-x2=∑ni =1x i y i -n x y ∑ni =1x 2i -nx2a ^=y -b ^x .[应用4] 假设某商品的销售量x (件)与利润y (万元)有如下统计数据:且已知∑i =15x 2i =90,∑i=15y 2i =140.8,∑i =15x i y i =112.3,79≈8.9,2≈1.4.(1)对x ,y 进行线性相关性检验;(2)如果x 与y 具有线性相关关系,求出回归直线方程,并估计销售量为10件时,利润约是多少?附相关公式:r =∑i =1nx i -xy i -y∑i =1nx i -x2∑i =1n y i -y2,b ^=∑i = 1nx i -xy i -y∑i = 1nx i -x2=∑i = 1nx i y i -n x·y∑i = 1nx 2i -n x2,a ^=y -b ^·x .[解] (1)x =2+3+4+5+65=4,y =2.2+3.8+5.5+6.5+7.05=5,相关系数r 的分子为∑i =15()x i-x ()y i-y =∑i =15x i y i -5x ·y =122.3-5×4×5=12.3,∑i =15()x i-x 2= ∑i =15x 2i-5()x 2= 90-5×16 = 10,∑i =15(y i -y )2=∑i =15y 2i -5(y )2=140.8-125=15.8, 所以r =12.310×15.8=12.3158=12.379×2≈0.987.因为0.987>0.75,所以x 与y 之间具有很强的线性相关关系. (2)因为b ^=∑ni =1x i y i -n x ·y∑5i =1x 2i -nx2=12.310=1.23, a ^=y -b ^·x =0.08,所以所求的回归直线方程为y ^=1.23x +0.08.当x =10时,y ^=1.23×10+0.08=12.38,即估计销售量为10 件时,利润约为12.38 万元. 5.独立性检验两个分类变量X 和Y 相关的可信度,常通过随机变量K 2的观测值k =n ad -bc 2a +ba +cb +dc +d来衡量, k 的值越大,说明“X 与Y 有关系”成立的可能性越大.[应用5] 甲乙两个学校高三年级分别为1100人,1000人,为了统计两个学校在地区第二次模拟考试中数学科目的成绩,采用分层抽样的方法抽取了105名学生的成绩,并作出了部分频率分布表如下(规定考试成绩在[120,150]内为优秀): 甲校:(2)由以上统计数据填写下面的2×2列联表,并判断是否有97.5%的把握认为这两个学校的数学成绩有差异.K 2=n ad a +bc +d a +cb +d.附:[解] (1)x =6,y =7. 估计甲校的优秀率为1055≈18.2%;乙校的优秀率为2050=40%.(2)填表如下:K 2=-30×75×55×50≈6.109.∵6.109>5.024,∴有97.5%的把握认为这两个学校的数学成绩有差异. 6.解排列组合问题的常用策略相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果. [应用6] (1)4个不同的小球放入编号为1、2、3、4的4个盒中,则恰有1个空盒的放法共有________种.(2)从1、3、5、7中任取2个数字,从0、2、4、6、8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有________个.(用数字作答)[解析] (1)把4个球分成3组,每组至少1个,即分的小球个数分别为2,1,1的3组,有C 24C 12C 11A 22种.最后将三组球放入4个盒中的3个,有分配方法数A 34种,因此,放法共有C 24C 12C 11A 22×A 34=144(种).(2)将问题分成三类:①含数字5,不含数字0,则选元素的过程有C 13·C 24种方法,将5排在末位,则组数的过程有A 33种方法,依据分步计数原理得这一类共有C 13C 24A 33=108个;②含数字0,不含数字5,则选元素的过程有C 23C 14种方法,将0排在末位,则组数过程有A 33种方法,这一类共有C 23C 14A 33=72个;③含数字0,也含数字5,则选元素的过程有C 13C 14,若0在末位,则组数过程有A 33种方法,若0不在末位,则组数过程有C 12A 22种方法,这一类共有C 13C 14(A 33+C 12A 22)=120个.根据分类计数原理,其中能被5整除的四位数共有108+72+120=300个 [答案] (1)144 (2)300 7.二项式系数的性质(1)对称性:C k n =C n -kn (k =0,1,2,…,n ).(2)系数和:C 0n +C 1n +…+C n n =2n ,C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.(3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第⎝ ⎛⎭⎪⎫n 2+1项,二项式系数为C n2n ;n 为奇数时,(n +1)为偶数,中间两项的二项式系数最大为第n +12项及第n +12+1项,其二项式系数为.[应用7] (1)设二项式⎝ ⎛⎭⎪⎫x -12n(n ∈N *)展开式的二项式系数和与各项系数和分别为a n ,b n ,则a 1+a 2+…+a nb 1+b 2+…+b n=( )A .2n -1+3 B .2(2n -1+1)C .2n +1D .1(2)⎝⎛⎭⎪⎫x -2+1x 4展开式中的常数项为________. [解析] (1)二项式⎝ ⎛⎭⎪⎫x -12n(n ∈N *)展开式的二项式系数和为2n,各项系数和为⎝ ⎛⎭⎪⎫1-12n=12n ,则a n =2n,b n =12n ,a 1+a 2+…+a n b 1+b 2+…+b n=n-1-12n=2n +1,故选C.(2)⎝⎛⎭⎪⎫x -2+1x 4=x -8x 4,由二项式定理知(x -1)8通项为T r +1=C r 8x8-r(-1)r,令r=4得T 5=C 48x 4(-1)4=70x 4,故⎝⎛⎭⎪⎫x -2+1x 4展开式中的常数项为70.[答案] (1)C (2)70 8.概率的计算公式(1)互斥事件有一个发生的概率P (A +B )=P (A )+P (B ),若事件A 与B 对立P (B )=1-P (A ).(2)古典概型的概率计算公式:P (A )=m n =card Acard I;[应用8] 某班班会,准备从包括甲、乙两人的七名同学中选派4名学生发言,要求甲、乙两人中至少有1人参加,则甲、乙都被选中且发言时不相邻的概率为________. [解析] 由题意可分两种情况只有甲乙中一人参加,有C 12C 35A 44=480. 甲乙两人参加有C 25A 44=240则满足条件总的发言总数为480+240=720. 甲乙两人参加,且发言时不相邻的包括情况有C 25A 22A 23=120. 则甲、乙都被选中且发言时不相邻的概率为120720=16.[答案] 16(3)几何概型的概率计算公式:P (A )=构成事件A 的区域长度面积和体积试验的全部结果所构成的区域长度面积和体积.[应用9] 在棱长为2的正方体ABCD A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )【导学号:07804194】A .π12B .1-π12C .π6D .1-π6[解析] 记“点P 到点O 的距离大于1”为A , P (A )=23-12×43π×1323=1-π12. [答案] B(4)条件概率的概率计算公式:P (B |A )=P A ∩B P A =n A ∩Bn A.[应用10] 盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A.35 B .59 C.110D .25[解析] 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B , 则P (AB )=C 26C 210=13,∴P (B |A )=P ABP A =1335=59.[答案] B(5)相互独立事件同时发生的概率计算公式是:P (A ·B )=P (A )·P (B ); (6)独立事件重复试验的概率计算公式是:P n (k )=C k n P k (1-P )n -k;(7)若X ~N (μ,σ2),则满足正态分布的三个基本概率的值是:①P (μ-σ<X ≤μ+σ)=0.682 6;②P (μ-2σ<X ≤μ+2σ)=0.954 4;③P (μ-3σ<X ≤μ+3σ)=0.997 4.[应用11] 某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为________.图26[解析] 三个电子元件的使用寿命均服从正态分布N (1000,502),得三个电子元件的使用寿命超过1000小时的概率为P =12,超过1000小时时元件1或元件2正常工作的概率P 1=1-(1-P )2=34.那么该部件的使用寿命超过1000小时的概率为P 2=P 1×P =38.[答案] 389.离散型随机变量的均值、方差(1)离散型随机变量的均值、方差:均值:E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n ;方差:D (X )=[x 1-E (X )]2p 1+[x 2-E (X )]2p 2+…+[x n -E (X )]2p n . (2)两点分布与二项分布的均值、方差.①若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). ②若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).[应用12] 由于我市去年冬天多次出现重度污染天气,市政府决定从今年3月份开始进行汽车尾气的整治,为降低汽车尾气的排放量,我市某厂生产了甲、乙两种不同型号的节排器,分别从两种节排器中随机抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图27所示.图27节排器等级如表格所示(1)如果从甲型号中按节排器等级用分层抽样的方法抽取10件,然后从这10件中随机抽取3件,求至少有2件一级品的概率;(2)如果从乙型号的节排器中随机抽取3件,求其二级品数X 的分布列及数学期望. [解] (1)由已知及频率分布直方图中的信息知,甲型号的节排器中一级品的概率为35,二级品的概率为25,则用分层抽样的方法抽取10件,其中有6件一级品,4件二级品,所以从这10件节排器中随机抽取3件,至少有2件一级品的概率 P =1-C 34+C 24C 16C 310=23. (2)由已知及频率分布直方图中的信息知,乙型号的节排器中一级品的概率为710,二级品的概率为14,三级品的概率为120.如果从乙型号的节排器中随机抽取3件,则二级品数X 可能的值为0,1,2,3 .又P (X =0)=C 03×⎝ ⎛⎭⎪⎫343=2764,P (X =1)=C 13×⎝ ⎛⎭⎪⎫141×⎝ ⎛⎭⎪⎫342=2764,P (X =2)=C 23×⎝ ⎛⎭⎪⎫142×34=964,P (X =3)=C 33×⎝ ⎛⎭⎪⎫143=164.所以X 的分布列为E (X )=0×64+1×64+2×64+3×64=4.■查缺补漏…………………………………………………………………………·1.高三学生体检,某班级随机抽取5名女学生的身高x (厘米)和体重y (公斤)的数据如下表:根据上表可得回归直线方程为y =0.92x +a ,则a =( )【导学号:07804195】A .-96.8B .96.8C .-104.4D .104.4A [回归直线方程过点(x ,y ),而x =165,y =55,所以a =55-0.92×165=-96.8,选A.]2.(x 2-x -2)6的展开式中x 2的系数等于( )A .-48B .48C .234D .432B [(x 2-x -2)6=(2-x )6(1+x )6=(C 0626-C 1625x +C 2624x 2-…)(C 06+C 16x +C 26x 2+…)所以展开式中x 2的系数为C 0626C 26-C 1625C 16+C 2624C 06=48.选B.]3.如图28是某居民小区年龄在20岁到45岁的居民上网情况的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列, 则年龄在[35,40)的频率是( )图28A .0.04B .0.06C .0.2D .0.3C [[30,35),[35,40),[40,45]的概率和为1-(0.01+0.07)×5=0.6,又[30,35),[35,40),[40,45]的概率依次成等差数列,所以[35,40)的频率为0.63=0.2.选C.]4.某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( ) A .192种 B .216种 C .240种D .288种B [完成这件事件,可分两类:第一类,最前排甲,其余位置有A 55=120种不同的排法;第二类,最前排乙,最后有4种排法,其余位置有A 44=24种不同的排法;所以共有A 55+4A 44=216种不同的排法.]5.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A.π4 B .π-22C.π6D .4-π4D [如图所示,正方形OABC 及其内部为区域D ,且区域D的面积为4,而区域D 中阴影部分内的点到坐标原点的距离大于2,易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D.]6.若(1+2x )(1-2x )7=a 0+a 1x +a 2x 2+…+a 8x 8,则a 0+a 1+a 2+…+a 7的值为( )A .-2B .-3C .253D .126C [令x =1,得a 0+a 1+a 2+…+a 8=-3,a 8=2×(-2)7=-256, ∴a 0+…+a 7=-a 8-3=253.选C.]7.已知某路段最高限速60 km/h ,电子监控测得连续6辆汽车的速度用茎叶图表示如图29(单位:km/h).若从中任取2辆,则恰好有1辆汽车超速的概率为( )图29A.415 B .25 C.815D .35C [由茎叶图可知,这6辆汽车中有2辆汽车超速,所以从中任取2辆,则恰好有1辆汽车超速的概率为P =C 12C 14C 26=815,故选C.]8.如图30,图案共分9个区域,有6种不同颜色的涂料可供涂色,每个区域只能涂一种颜色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相邻区域的颜色不相同,则涂色方法有( )【导学号:07804196】图30A .360种B .720种C .780种D .840种B [由图可知,区域2,3,5,4不能同色,所以2和9同色、3和6同色、4和7同色、5和8同色,且各区域的颜色均不相同,所以涂色方法有A 46×2=720种,故选B.] 9.已知某人投篮的命中率为34,则此人投篮4次,至少命中3次的概率是________.189256 [该人投篮4次,命中3次的概率为P 1=C 34⎝ ⎛⎭⎪⎫343⎝ ⎛⎭⎪⎫1-34=2764;该人投篮4次,命中4次的概率为P 2=C 44⎝ ⎛⎭⎪⎫344=81256,故至少命中3次的概率是P =2764+81256=189256.]10.已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码.图31(1)若第1组抽出的号码为2,则所有被抽出职工的号码为________;(2)分别统计这5名职工的体重(单位:kg),获得体重数据的茎叶图如图31所示,则该样本的方差为________.(1)2,10,18,26,34 (2)62 [(1)分段间隔为405=8,则所有被抽出职工的号码为2,10,18,26,34.(2)x =15(59+62+70+73+81)=69.s 2=15[(59-69)2+(62-69)2+(70-69)2+(73-69)2+(81-69)2]=62.]11.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x i ,y i )(i =1,2,…,6)如下表所示:已知变量x ,y 具有线性负相关关系,且∑i =16x i =39,∑i =16y i =480,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲:y ^=4x +54;乙:y ^=-4x +106;丙:y ^=-4.2x +105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a ,b 的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”.现从检测数据中随机抽取2个,求这两个检测数据均为“理想数据”的概率.[解] (1)∵变量x ,y 具有线性负相关关系,∴甲是错误的.又∵∑6i =1x i =39,∑6i =1y i =480,∴x =6.5,y =80,满足方程y ^=-4x +106,故乙是正确的.由∑6i =1x i =39,∑6i =1y i =480,得a =8,b =90.(2)由计算可得“理想数据”有3个,即(4,90),(6,83),(8,75).从检测数据中随机抽取2个,共有15种不同的情形,其中这两个检测数据均为“理想数据”有3种情形.故所求概率为P =315=15.12.某技术公司新开发了A ,B 两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:(1)(2)生产一件产品A ,若是正品可盈利80元,次品则亏损10元;生产一件产品B ,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记X 为生产1件产品A 和1件产品B 所得的总利润,求随机变量X 的分布列和数学期望.[解] (1)产品A 为正品的概率为40+32+8100=45. 产品B 为正品的概率约为40+29+6100=34. (2)随机变量X 的所有取值为180,90,60,-30,P (X =180)=45×34=35; P (X =90)=15×34=320; P (X =60)=45×14=15; P (X =-30)=15×14=120.所以,随机变量X 的分布列为:E (X )=180×35+90×320+60×5+(-30)×20=132.。
第3讲 统计与统计案例1.(2014·湖南)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2D .p 1=p 2=p 32.(2015·福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得线性回归方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元D .12.2万元3.(2014·天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.4.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.1.以选择题、填空题的形式考查随机抽样、样本的数字特征、统计图表、回归方程、独立性检验等.2.在概率与统计的交汇处命题,以解答题中档难度出现.热点一抽样方法1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成.例1(1)某月月底,某商场想通过抽取发票存根的方法估计该月的销售总额.先将该月的全部销售发票的存根进行了编号,1,2,3,…,然后拟采用系统抽样的方法获取一个样本.若从编号为1,2,3,…,10的前10张发票的存根中随机抽取1张,然后再按系统抽样的方法依编号顺序逐次产生第2张、第3张、第4张、……,则抽样中产生的第2张已编号的发票存根,其编号不可能是()A.13 B.17C.19 D.23(2)为了研究雾霾天气的治理,某课题组对部分城市进行空气质量调查,按地域特点把这些城市分成甲、乙、丙三组,已知三组城市的个数分别为4,y,z,依次构成等差数列,且4,y,z+4成等比数列,若用分层抽样抽取6个城市,则乙组中应抽取的城市个数为________.思维升华(1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个号码间隔相同;(3)分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.跟踪演练1(1)(2015·西北工业大学附中二模)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B .07 C .02D .01(2)(2014·广东)已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10热点二 用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.例2 (1)(2015·湖北)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. ①直方图中的a =________;②在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.(2)(2014·陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的平均数和方差分别为()A.1+a,4 B.1+a,4+aC.1,4 D.1,4+a思维升华(1)反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的平均数、众数和中位数、方差等.(2)由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.跟踪演练2(1)某商场在庆元宵促销活动中,对元宵节9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.(2)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A.甲B.乙C.甲乙相等D.无法确定热点三 统计案例1.线性回归方程方程y ^=b ^x +a ^称为线性回归方程,其中b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^=y -b ^x ,(x ,y )称为样本点的中心. 2.随机变量K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .例3 (1)(2015·北京)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.(2)(2014·江西)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A.成绩B.视力C.智商D.阅读量思维升华(1)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值;回归直线过样本点的中心(x,y),应引起关注.(2)独立性检验问题,要确定2×2列联表中的对应数据,然后代入K2取值范围求解即可.跟踪演练3(1)(2015·大庆一中模拟)某单位为了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y ^=b ^x +a ^中b ^=-2,预测当气温为-4℃时,用电量的度数约为( ) A .65 B .66 C .67D .68(2)春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )参照附表,得到的正确结论是( )A .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”1.高考前夕,摸底考试后随机抽取甲、乙两班各10名学生的数学成绩,绘成茎叶图如图所示.记甲、乙两班的平均成绩分别是x 甲,x 乙,中位数分别为m 甲,m 乙,则( ) A.x 甲<x 乙,m 甲>m 乙 B.x 甲>x 乙,m 甲>m 乙 C.x 甲>x 乙,m 甲<m 乙D.x 甲<x 乙,m 甲<m 乙2.某校为了了解高三学生寒假期间的学习情况,抽查了100名学生,统计他们每天的平均学习时间,绘成的频率分布直方图如图所示,则这100名学生中学习时间在6至10小时之间的人数为________.3.某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时?(注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x )提醒:完成作业专题七第3讲二轮专题强化练专题七第3讲统计与统计案例A组专题通关1.(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()A.90 B.100 C.180 D.3002.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号应是()A.13 B.19 C.20 D.513.为了了解某城市今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为120,则抽取的学生人数是()A.240 B.280 C.320 D.4804.某车间加工零件的数量x 与加工时间y 的统计数据如下表:现已求得上表数据线性回归方程y ^=b ^x +a ^中的b ^值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( ) A .84分钟 B .94分钟 C .102分钟D .112分钟5.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数x 甲,x 乙和中位数y 甲,y 乙进行比较,下面结论正确的是( ) A.x 甲>x 乙,y 甲>y 乙 B.x 甲<x 乙,y 甲<y 乙 C.x 甲<x 乙,y 甲>y 乙D.x 甲>x 乙,y 甲<y 乙6.从某中学高一年级中随机抽取100名同学,将他们的成绩(单位:分)数据绘制成频率分布直方图(如图).则这100名学生成绩的平均数,中位数分别为________.7.新闻媒体为了了解观众对央视某节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:试根据样本估计总体的思想,估计约有________的把握认为“喜爱该节目与否和性别有关”. 参考附表:(参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )8.以下四个命题,其中正确的是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程y ^=0.2x +12中,当解释变量x 每增加一个单位时,预报变量y ^平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量K 2的值越小,“X 与Y 有关系”的把握程度越大. 9.(2014·课标全国Ⅱ改编)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .10.(2015·福建)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.B 组 能力提高11.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③回归方程y ^=b ^x +a ^必过(x ,y );④有一个2×2列联表中,由计算得K 2=13.079,则有99.9%的把握确认这两个变量间有关系. 其中错误的个数是( ) 参考附表:A.0 B .1 C .2 D .312.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.13.(2014·重庆)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.学生用书答案精析第3讲 统计与统计案例高考真题体验1.D [由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.] 2.B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).] 3.60解析 根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.4.24解析 底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24. 热点分类突破 例1 (1)D (2)2解析 (1)因为第一组的编号为1,2,3,…,10,所以根据系统抽样的定义可知第二组的编号为11,12,13,…,20,故第2张已编号的发票存根的编号不可能为23.(2)由题意可得⎩⎪⎨⎪⎧2y =4+z ,y 2=4×(z +4),即⎩⎪⎨⎪⎧y =2+z 2,y 2=4z +16,解得z =12,或z =-4(舍去),故y =8.所以甲、乙、丙三组城市的个数分别为4,8,12. 因为一共要抽取6个城市,所以抽样比为64+8+12=14.故乙组城市应抽取的个数为8×14=2.跟踪演练1 (1)D (2)A解析 (1)从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,其中第二个和第四个都是02,重复,去掉第四个02,得对应的数值为08,02,14,07,01,所以第5个个体编号为01.故选D. (2)该地区中、小学生总人数为 3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20,故选A.例2 (1)①3 ②6 000 (2)A解析 (1)由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. (2)x 1+x 2+…+x 1010=1,y i =x i +a ,所以y 1,y 2,…,y 10的平均数为1+a ,方差不变仍为4. 故选A.跟踪演练2 (1)10 (2)A解析 (1)设11时至12时的销售额为x 万元. 由频率分布直方图可知: 0.100.40=2.5x,所以x =10.(2)x甲=(0.042+0.053+0.059+0.061+0.062+0.066+0.071+0.073+0.073+0.084+0.086+0.097)÷12≈0.068 9, x乙=(0.041+0.042+0.043+0.046+0.059+0.062+0.069+0.079+0.087+0.092+0.094+0.096)÷12=0.067 5,s 2甲=112[(0.042-0.068 9)2+(0.053-0.068 9)2+…+(0.097-0.068 9)2]≈0.000 212. s 2乙=112[(0.041-0.067 5)2+(0.042-0.067 5)2+…+(0.096-0.067 5)2]≈0.000 429. 所以甲、乙两地浓度的方差较小的是甲地. 例3 (1)①乙 ②数学 (2)D解析 (1)①由散点图可知:越靠近坐标原点O 名次越好,乙同学语文成绩好,而总成绩年级名次靠后;而甲同学语文成绩名次比总成绩名次差,所以应是乙同学语文成绩名次比总成绩名次靠前.②丙同学总成绩年级名次比数学成绩年级名次差,所以丙同学成绩名次更靠前的是数学. (2)根据数据求出K 2的值,再进一步比较大小.A 中,a =6,b =14,c =10,d =22,a +b =20,c +d =32,a +c =16,b +d =36,n =52,K 2=52×(6×22-14×10)220×32×16×36=131 440.B 中,a =4,b =16,c =12,d =20,a +b =20,c +d =32,a +c =16,b +d =36,n =52,K 2=52×(4×20-16×12)220×32×16×36=637360.C 中,a =8,b =12,c =8,d =24,a +b =20, c +d =32,a +c =16,b +d =36,n =52,K 2=52×(8×24-12×8)220×32×16×36=1310.D 中,a =14,b =6,c =2,d =30,a +b =20,c +d =32,a +c =16,b +d =36,n =52, K 2=52×(14×30-6×2)220×32×16×36=3 757160.∵131 440<1310<637360<3 757160, ∴与性别有关联的可能性最大的变量是阅读量. 跟踪演练3 (1)D (2)C解析 (1)由图表知,x =18+13+10-14=10,y =24+34+38+644=40,又因为线性回归方程y ^=b ^x +a ^过样本点的中心(x ,y ),所以40=-2×10+a ^,即a ^=60,所以线性回归方程y ^=-2x +60,所以当x =-4℃时,y ^=-2×(-4)+60=68, 故应选D.(2)由公式可计算K 2的观测值k 0=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(45×15-30×10)255×45×75×25≈3.03>2.706,所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选C. 高考押题精练1.A [甲班10名学生的数学成绩的平均数为x 甲=69+67+70+71+78+79+82+82+81+9210=77.1,乙班10名学生的数学成绩的平均数为 x乙=68+71+71+72+74+78+87+88+89+9910=79.7,所以x 甲<x 乙.中位数分别为m 甲=78+792=78.5,m 乙=74+782=76,所以m 甲>m 乙. 故选A.] 2.58解析 由图知,(0.04+0.12+x +0.14+0.05)×2=1,解得x =0.15,所以学习时间在6至10小时之间的频率是(0.15+0.14)×2=0.58,所求人数是100×0.58=58. 3.解 (1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y=3.5,∑i =14x 2i =54,∴b ^=0.7,∴a ^=1.05,∴y ^=0.7x +1.05,回归直线如图所示.(3)将x =10代入线性回归方程,得y ^=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时.二轮专题强化练答案精析第3讲 统计与统计案例1.C [由题意抽样比为3201 600=15,∴该样本的老年教师人数为900×15=180.] 2.C [抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.]3.D [由频率分布直方图知:学生的体重在65~75 kg 的频率为(0.012 5+0.037 5)×5=0.25, 则学生的体重在50~65 kg 的频率为1-0.25=0.75.从左到右第2个小组的频率为0.75×26=0.25. 所以抽取的学生人数是120÷0.25=480.]4.C [由表中数据得:x =20,y =30,又b ^=0.9,故a ^=30-0.9×20=12,∴y ^=0.9x +12.将x =100代入线性回归方程,得y ^=0.9×100+12=102.∴预测加工100个零件需要102分钟.故选C.]5.B6.125,124解析 由图可知(a +a -0.005)×10=1-(0.010+0.015+0.030)×10,解得a =0.025,则x =105×0.1+115×0.3+125×0.25+135×0.2+145×0.15=125.中位数在120~130之间,设为x ,则0.01×10+0.03×10+0.025×(x -120)=0.5,解得x =124.7.99%解析 假设喜爱该节目和性别无关,分析列联表中数据,可得K 2=110×(40×30-20×20)260×50×60×50≈7.822>6.635,所以有99%的把握认为“喜爱该节目与否和性别有关”.8.②③解析 ①是系统抽样;对于④,随机变量K 2的值越小,说明两个变量有关系的把握程度越小.9.解 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑i =17 (t i -t )2=9+4+1+0+1+4+9=28,∑i =17 (t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i =17(t i -t )(y i -y )∑i =17 (t i -t )2=1428=0.5,a ^=y -b ^t =4.3-0.5×4=2.3, 所求线性回归方程为y ^=0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2017年的年份代号t =11代入(1)中的线性回归方程,得y ^=0.5×11+2.3=7.8, 故预测该地区2017年农村居民家庭人均纯收入为7.8千元.10.解 方法一 (1)融合指数在[7,8]内的“省级卫视新闻台”记为A 1,A 2,A 3;融合指数在[4,5)内的“省级卫视新闻台”记为B 1,B 2,从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},共9个.所以所求的概率P =910. (2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×220+5.5×820+6.5×720+7.5×320=6.05. 方法二 (1)融合指数在[7,8]内的“省级卫视新闻台”记为A 1,A 2,A 3;融合指数在[4,5)内的“省级卫视新闻台”记为B 1,B 2,从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:{A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{B 1,B 2},共10个.其中,没有1家融合指数在[7,8]内的基本事件是:{B 1,B 2},共1个.所以所求的概率P =1-110=910. (2)同方法一.11.B [一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y ^=3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y ^ =b ^ x +a ^ 必过点(x ,y ),③正确;因为K 2=13.079>10.828,故有99.9%的把握确认这两个变量有关系,④正确.故选B.]12.10解析 设5个班级中参加的人数分别为x 1,x 2,x 3,x 4,x 5,则由题意知x 1+x 2+x 3+x 4+x 55=7, (x 1-7)2+(x 2-7)2+(x 3-7)2+(x 4-7)2+(x 5-7)2=20,五个整数的平方和为20,则必为0+1+1+9+9=20,由|x -7|=3可得x =10或x =4.由|x -7|=1可得x =8或x =6.由上可知参加的人数分别为4,6,7,8,10,故最大值为10.13.解(1)据直方图知组距为10,由(2a+3a+6a+7a+2a)×10=1,解得a=1200=0.005.(2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A1,A2,成绩落在[60,70)中的3人为B1,B2,B3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),其中2人的成绩都在[60,70)中的基本事件有3个:(B1,B2),(B1,B3),(B2,B3),故所求概率为P=310.。