4.如图,在正方形网格中,点A,B,C,D均在格点上,则∠ACD+ ∠BDC= 90 °.
解析 如图,取格点E,连接AE,EC,AD,设AC,BD交于点F.
在Rt△AEC和Rt△DAB中,
AC∴RBt△D, AEC≌Rt△DAB
AE AD,
(HL),∴∠ACE=∠ABD.∵∠EAC+∠ACE=90°,∴∠EAC+
DE AD
EC, BE,
∴Rt△ADE≌Rt△BEC(HL),∴AE=BC,
∵AD+BC=7,∴AB=AE+BE=BC+AD=7.
9.(2023河北邯郸大名月考,19,★★☆)如图,点D在BC上,DE ⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD= 145°,则∠EDF= 55° .
B.12 cm
C.12 cm或6 cm
D.以上答案都不对
解析 由题意可知∠C=∠QAP=90°.①当AP=CB时,在Rt△APQ
与Rt△CBA中, PAQP∴RCBt△BA,, APQ≌Rt△CBA(HL),此时AP= BC=6 cm;②当P运动到C点时,AP=AC,在Rt△QAP与Rt△BCA
中, QAPP∴RAAt△CB,,QAP≌Rt△BCA(HL),此时AP=AC=12 cm. 综上所述,AP=6 cm或12 cm.故选C.
3.如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DF,若要用 “斜边、直角边(HL)”直接证明Rt△ABC≌Rt△DFE,还需 补充一个条件,这个条件可以是 BC=EF(或BE=CF) .
解析
补充条件BC=EF,在Rt△ABC和Rt△DFE中,
BC
AB
EF , DF ,