博弈论第三章知识题
- 格式:doc
- 大小:315.95 KB
- 文档页数:10
Document serial number [UU89WT-UU98YT-UU8CB-UUUT-UUT108]第一章导论1、什么是博弈博弈论的主要研究内容是什么2、设定一个博弈模型必须确定哪儿个方面3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、"囚徒的困境”的内在根源是什么举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则的概率你讲收益300万元(包括投资),而的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择(c)如果你是风险规避的,且期望得益的折扣系数为,你的策略选择是什么(d)如果你是风险偏好的,期望得益折算系数为,你的选择又是什么7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么2、为什么说纳什均衡是博弈分析中最重要的概念3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡t専弈的结果是什么6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额S1和S2, 0< sl,s2< 10 000,如果sl+s2W10 000,则两博弈方的要求都得到满足,即分别得到si和s2, 但如果是sl+s2>10 000,则该笔钱就被没收。
问题1:如果开金矿博弈中第三阶段乙选择打官司后的结果尚不能肯定,即下图中a 、b 数值不确定。
试讨论本博弈有哪几种可能的结果。
如果本博弈中的“威胁”和“承诺”是可信的,a 或b 应满足什么条件?①0a <,不借—不分—不打;②01a <<,且2b >,借—不分—打;③1a >,且2b >,借—不分—打(,)a b ;④0a >,且2b <,借—分—(2,2)问题2:三寡头市场需求函数Q P -=100,其中Q 是三个厂商的产量之和,并且已知三个厂商都有常数边际成本2而无固定成本。
如果厂商1和厂商2同时决定产量,厂商3根据厂商1和厂商2的产量决策,问它们各自的产量和利润是多少?1123111231(100)2(98)q q q q q q q q q π=----=---2123221232(100)2(98)q q q q q q q q q π=----=---3123331233(100)2(98)q q q q q q q q q π=----=---331230,(98)/2q q q q π∂=⇒=--∂ 代入,11212122(98)/2,(98)/2q q q q q q ππ=--=--(a ,b ) (0,4)12120,0q q ππ∂∂==∂∂,得***12398/3,49/3q q q ===***1234802/9,2401/9πππ===。
问题3:设两个博弈方之间的三阶段动态博弈如下图所示。
(1)若a 和b 分别等于100和150,该博弈的子博弈完美纳什均衡是什么?(2)T N L --是否可能成为该博弈的子博弈完美纳什均衡路径,为什么?(3)在什么情况下博弈方2会获得300单位或更高的得益?(1)博弈方1在第一阶段选择R ,在第三阶段选择S ,博弈方2在第二阶段选择M 。
(2)不可能。
T N L --带来的利益50明显小于博弈方1在第一阶段R 的得益300;无论a 和b 是什么数值,该路径都不能构成Nash 均衡,不能成为子博弈完美Nash 均衡。
问题1:如果开金矿博弈中第三阶段乙选择打官司后的结果尚不能肯定,即下图中a 、b 数值不确定。
试讨论本博弈有哪几种可能的结果。
如果本博弈中的“威胁”和“承诺”是可信的,a 或b 应满足什么条件?①0a <,不借—不分—不打;②01a <<,且2b >,借—不分—打; ③1a >,且2b >,借—不分—打(,)a b ; ④0a >,且2b <,借—分—(2,2)问题2:三寡头市场需求函数Q P -=100,其中Q 是三个厂商的产量之和,并且已知三个厂商都有常数边际成本2而无固定成本。
如果厂商1和厂商2同时决定产量,厂商3根据厂商1和厂商2的产量决策,问它们各自的产量和利润是多少?1123111231(100)2(98)q q q q q q q q q π=----=---2123221232(100)2(98)q q q q q q q q q π=----=---(a ,b )(0,4)3123331233(100)2(98)q q q q q q q q q π=----=--- 331230,(98)/2q q q q π∂=⇒=--∂代入,11212122(98)/2,(98)/2q q q q q q ππ=--=--12120,0q q ππ∂∂==∂∂,得***12398/3,49/3q q q === ***1234802/9,2401/9πππ===。
问题3:设两个博弈方之间的三阶段动态博弈如下图所示。
(1)若a 和b 分别等于100和150,该博弈的子博弈完美纳什均衡是什么?(2)T N L --是否可能成为该博弈的子博弈完美纳什均衡路径,为什么?(3)在什么情况下博弈方2会获得300单位或更高的得益?(1)博弈方1在第一阶段选择R ,在第三阶段选择S ,博弈方2在第二阶段选择M 。
(a ,b )50,300(2)不可能。
T N L --带来的利益50明显小于博弈方1在第一阶段R 的得益300;无论a 和b 是什么数值,该路径都不能构成Nash 均衡,不能成为子博弈完美Nash 均衡。
(3)由于T N L --不是本博弈的子博弈完美Nash 均衡,因此博弈方2不可能通过该路径实现300单位的得益,唯一有可能实现300单位及以上的得益的路径为L N S --,要使该路径成为子博弈完美Nash 均衡而且博弈方2得到300单位及以上的得益必须300,300a b >≥。
问题4:企业甲和企业乙都是彩电制造商,都可以选择生产低档产品或高档产品,每个企业在四种不同的情况下的利润如以下得益矩阵所示。
如果企业甲先于企业乙进行产品选择并投入生产,即企业乙在决定产品时已经知道企业甲的选择,而且这一点双方都清楚。
(1)用扩展型表示这一博弈。
(2)这一博弈的子博弈完美纳什均衡是什么?扩展型表示的博弈若甲选择高档,乙选择低档,甲得1000元,乙得700元;若甲选择低档,乙选择高档,那么甲得700元,乙得1000元,所以:甲的策略为:选择生产高档产品;乙的策略是:若甲选择高档,乙选择低档;若甲选择低档,乙选择高档。
本博弈的子博弈Nash均衡是:甲选择生产高档彩电,乙选择生产低档彩电。
问题5:乙向甲索要1000元,并且威胁甲如果不给就与他同归于尽。
当然甲不一定相信乙的威胁。
请用扩展型表示该博弈,并找出纯策略纳什均衡和子博弈完美纳什均衡。
两个纯策略Nash均衡:(给,实施),(不给,不实施)实施的威胁不可信,甲在第一阶段选择不给,乙在第二阶段不实施(生命诚可贵);这是子博弈完美纳什均衡;另一个(给,实施)不可信。
问题6:两个寡头企业进行价格竞争博弈,企业1的利润函数是q c aq p ++--=21)(π,企业2的利润函数是p b q +--=22)(π,其中p 是企业1的价格,q 是企业2的价格。
求:(1)两个企业同时决策的纯策略纳什均衡; (2)企业1先决策的子博弈完美纳什均衡; (3)企业2先决策的子博弈完美纳什均衡; (4)是否存在参数c b a ,,的特定值或范围,使两个企业都希望自己先决策? 解:(1)122()02()0p aq c pq b qππ∂=--+=∂∂=--=∂,解得:,p ab c q c =-=12,b ab c ππ==-(2)22()0q b qπ∂=--=∂,代入得到21)p ab c b π=--++(,12)0p ab c pπ∂=--+=∂(,得p ab c =-,企业1的子博弈完美纳什均衡企业1的定价p ab c =-,企业2的定价q b =,利润也与(1)相同。
与同时选择无异。
-1000,1000)(3)将p aq c =-代入222))q b p q b aq c π=--+=--+-(( 22)0q b a qπ∂=--+=∂(,解得2aq b =+,代入得22a p abc =+-*12a b b π=+>,2*24a ab c ab c π=+->- (4)只有先决策的利润大于后决策时的利润时才有激励。
①当24a ab c ab c +->-0a ⇒≠,企业2希望先决策;②当2ab b >+时,企业1希望先决策,只要0a <都希望自己先决策。
20,0,0,024a ab b abc ab c >+>->+->,因此当0,2aa b <>-和c ab <时都能满足,这样才参数范围都希望自己先决策。
问题7:三寡头市场有倒转的需求函数为Q a Q P -=)(,其中321q q q Q ++=,i q 是厂商i 的产量。
每一个厂商生产的边际成本为常数c ,没有固定成本。
如果厂商1先选择产量1q ,厂商2和厂商3观察到1q 后同时选择2q 和3q ,问它们各自的产量和利润是多少?解:[]123()()1,2,3i i a c q q q q i π=----=21232312332020a c q q q q a c q q q q ππ∂=----=∂∂=----=∂2311()3q q a c q ==--,代入得1111()3a c q q π=--令*11110,()2d q a c dq π==-,代入得:**231()6q q a c ==-*2*2*2123111(),(),()123636a c a c a c πππ=-=-=-问题8:考虑如下的双寡头市场战略投资模型:企业1和企业2目前情况下的生产成本都是2=c 。
企业1可以引进一项新技术使单位成本降低到1=c ,该项技术需要投资f 。
在企业1作出是否投资的决策(企业2可以观察到)后,两个企业同时选择产量。
假设市场需求函数为q q p -=14)(,其中p 是市场价格,q 是两个企业的总产量。
问上述投资额f 处于什么水平时,企业1会选择引进新技术?解:以未引进技术为基准1121121222(14)2(14)2q q q q q q q q ππ=---=---,令12120q q ππ∂∂==∂∂,得12124,16q q ππ==⇒==如果引进技术,1121121222(14)(14)2q q q q fq q q q ππ=----=---令12120q q ππ∂∂==∂∂,得1211411196,,339q q f π'==⇒=- 只有引进技术后得到的利润大于未引进技术的总利润时,即196169f ->,即196521699f <-=时企业1才会引进新技术。
问题9:如果学生在考试之前全面复习,考好的概率为90%,如果学生只复习一部分重点,则有50%的概率考好。
全面复习花费的时间1001=t 小时,重点复习只需要花费202=t 小时。
学生的效用函数为:e W U 2-=,其中W 是考试成绩,有高低两种分数h W 和l W ,e 为努力学习的时间。
问老师如何才能促使学生全面复习?解:学生全面复习的期望得益10.9(200)0.1(200)0.90.1200h l h l u w w w w =⨯-+⨯-=+-学生重点复习的期望得益20.5(40)0.5(40)0.50.540h l h l u w w w w =⨯-+⨯-=+-根据激励相容的条件,12u u ≥,所以有0.90.12000.50.540h l h l w w w w +-≥+-所以:0.4()160h l w w -≥故:400h l w w -≥奖学金与学习成绩全面挂钩,才能激励学生的学习;单靠成绩没有这么大的力度。
问题10:某人正在打一场官司,不请律师肯定会输,请律师后的结果与律师的努力程度有关。
假设当律师努力工作(100小时)时有50%的概率能赢,律师不努力工作(10小时)则只有15%的概率能赢。
如果诉讼获胜可得到250万元赔偿,失败则没有赔偿。
因为委托方无法监督律师的工作,因此双方约定根据结果付费,赢官司律师可获赔偿金额的10%,失败则律师一分钱也得不到。
如果律师的效用函数为e m 05.0.-,其中m 是报酬,e 是努力小时数,且律师有机会成本5万元。
求这个博弈的均衡。
解:第三阶段,律师努力的期望得益:0.5200.557.5⨯-⨯=不努力的期望得益:0.1524.50.850.5 3.25⨯-⨯= 满足激励相容约束第二阶段:7.5 3.25&7.55>> 接受委托并努力工作第一阶段:委托,接受委托,代理人努力工作,那么0.52250.50112.50⨯+⨯=>委托是必然的选择。
打官司的人提出委托,律师接受委托并努力工作。
(225,20)(0,-5)(225,24.5)(0,-0.5)。