食品化学复习(详细版)
- 格式:doc
- 大小:42.00 KB
- 文档页数:8
食品化学总复习☆食品中的水存在形式:体相水与结合水的区分:结合水的特点:不易结冰(-40℃不结冰);不能作为溶剂;不能被微生物利用;用NMR氢谱或量热分析法分析体相水的特点:易结冰;可作为溶剂;能被微生物利用;可用简单的加热方法从食品中分离出来★疏水水合作用:向水中添加疏水物质时,由于它们与水分子产生斥力,从而使疏水基团附近的水分子之间的氢键键合增强,使得熵减小,此过程成为疏水水合。
H2O+R→R(水合)☆疏水相互作用: 当水与非极性基团接触时,为减少水与非极性实体的界面面积,疏水基团之间进行缔合,这种作用成为疏水相互作用。
R(水合)+ R(水合)→R(水合)+H2O☆水分活度(aw):水分活度是指食品中水的蒸汽压与该温度下纯水的饱和蒸汽压的比值.水分活度的物理意义:表征生物组织和食品中能参与各种生理作用和化学作用的水分含量与总含水量的定量关系.☆水分吸湿等温线(MSI):在恒温条件下,以食品的含水量(用每单位干物质质量中水的质量表示)对水分活度绘图形成的曲线,称为水分吸附等温线或水分吸湿等温线.☆滞后现象:采用回吸的方法绘制的MSI和按解吸的方法绘制的MSI并不互相重叠的现象称为滞后现象.☆论述水分活度与食品稳定性之间的关系:1. 食品中aw与微生物生长的关系aw<0.8时, 细菌不生长;aw<0.77时, 大部分酵母不生长;aw<0.7时, 霉菌不生长;aw<0.5时, 几乎所有的微生物都不生长。
2. aw与食品中化学反应的关系○1对淀粉老化的影响含水量在30%-60%范围,淀粉老化速度最快;若含水量降至10-15%时,水分基本上以结合水状态存在,淀粉不会老化.○2对蛋白质变性的影响aw增大,蛋白质氧化加速,导致蛋白质变性;当水分含量达4%时,蛋白质变性仍能缓慢进行,当水分含量在2%以下,则不会变性.○3对酶促褐变的影响当aw下降至0.25-0.3的范围,酶促褐变进行缓慢,但随aw↑,反应速度↑○4对非酶褐变的影响非酶褐变速度随aw增大而加速, aw在0.6-0.7之间时,速度最大,当aw降低到0.2以下时,褐变难以发生.○5对脂肪氧化酸败的影响aw在0-0.35范围内,随aw↑,反应速度↓;aw在0.35-0.8范围内,随aw↑,反应速度↑;aw>0.8时,随aw↑,反应速度增加很缓慢.★糖苷: 是由单糖或低聚糖的半缩醛羟基和另一个分子中的-OH、-NH2、-SH (巯基)等发生缩合反应而得的化合物。
《食品化学》期末复习资料1 简要概括食品中的水分存在状态。
食品中的水分有着多种存在状态,一般可将食品中的水分分为自由水(或称游离水、体相水)和结合水(或称束缚水、固定水)。
其中,结合水又可根据被结合的牢固程度,可细分为化合水、邻近水、多层水;自由水可根据这部分水在食品中的物理作用方式也可细分为滞化水、毛细管水、自由流动水。
但强调的是上述对食品中的水分划分只是相对的。
2 简述食品中结合水和自由水的性质区别?食品中结合水和自由水的性质区别主要在于以下几个方面:⑴食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得很多,随着食品中非水成分的不同,结合水的量也不同,要想将结合水从食品中除去,需要的能量比自由水高得多,且如果强行将结合水从食品中除去,食品的风味、质构等性质也将发生不可逆的改变;⑵结合水的冰点比自由水低得多,这也是植物的种子及微生物孢子由于几乎不含自由水,可在较低温度生存的原因之一;而多汁的果蔬,由于自由水较多,冰点相对较高,且易结冰破坏其组织;⑶结合水不能作为溶质的溶剂;⑷自由水能被微生物所利用,结合水则不能,所以自由水较多的食品容易腐败。
3 比较冰点以上和冰点以下温度的αW差异。
在比较冰点以上和冰点以下温度的αW时,应注意以下三点:⑴在冰点温度以上,αW是样品成分和温度的函数,成分是影响αW的主要因素。
但在冰点温度以下时,αW与样品的成分无关,只取决于温度,也就是说在有冰相存在时,αW不受体系中所含溶质种类和比例的影响,因此不能根据αW值来准确地预测在冰点以下温度时的体系中溶质的种类及其含量对体系变化所产生的影响。
所以,在低于冰点温度时用αW值作为食品体系中可能发生的物理化学和生理变化的指标,远不如在高于冰点温度时更有应用价值;⑵食品冰点温度以上和冰点温度以下时的αW值的大小对食品稳定性的影响是不同的;⑶低于食品冰点温度时的αW不能用来预测冰点温度以上的同一种食品的αW。
4 MSI在食品工业上的意义MSI即水分吸着等温线,其含义为在恒温条件下,食品的含水量(每单位干物质质量中水的质量表示)与αW的关系曲线。
食品化学复习资料一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,未选、错选或多选均无分。
1.牛乳中含量最高的蛋白质是( )A、酪蛋白B、β-乳球蛋白C、α-乳清蛋白D、脂肪球膜蛋白2.在食品生产中,一般使用浓度的胶即能产生极大的粘度甚至形成凝胶。
( )A、<0.25%B、0.25~0.5%C、>0.5%3.奶油、人造奶油为()型乳状液。
A、O/WB、W/OC、W/O/WD、O/W或W/O4.油脂的性质差异取决于其中脂肪酸的()。
A、种类B、比例C、在甘三酯间的分布D、在甘三酯中的排列5.下列哪一种酶不属于糖酶()。
A、α-淀粉酶B、转化酶C、果胶酶D、过氧化物酶6.下列何种不属于催化果胶解聚的酶()。
A、聚甲基半乳糖醛酸酶B、果胶裂解酶C、果胶酯酶D、果胶酸裂解酶7.下列不属于酶作为催化剂的显著特征为()。
A、高催化效率B、变构调节C、高专一性D、酶活的可调节性8.虾青素与( )结合时不呈红色,与其分离时则显红色。
A、蛋白质B、糖C、脂肪酸D、糖苷9.肉中()含量增高,则肉变得僵硬。
A.肌球蛋白 B.肌动蛋白 C. 肌动球蛋白D. 肌原球蛋白10.DE为的水解产品称为麦芽糖糊精。
A、<20B、>20C、≦20,D、=2011.为W/O型的食品是()。
A、牛乳B、淋淇淋C、糕点面糊D、人造奶油12.食品工业中常用的乳化剂硬酯酰乳酸钠(SSL)为()。
A、离子型B、非离子型C、O/W型D、W/O型13.一般认为与果蔬质构直接有关的酶是()。
A、蛋白酶B、脂肪氧合酶C、果胶酶D、多酚氧化酶14.导致水果和蔬菜中色素变化有三个关键性的酶,但下列()除外。
A、脂肪氧合酶B、多酚氧化酶C、叶绿素酶D、果胶酯酶15.下列何种蛋白酶不属于酸性蛋白酶()。
A、真菌蛋白酶B、凝乳酶C、胃蛋白酶D、胰蛋白酶16.活性氧法是用以测定油脂的抗氧化的能力;所测得的数值的单位为()。
1、酶活力:就是酶催化能力,用酶催化反应的速度来表示。
在25℃及其他酶最适条件下,在1min内1μmol的底物转化为产物的酶量称为酶的国际单位(IU)。
单位时间内催化反应生成产物的量称为比活力。
每毫克酶蛋白含有的酶活力单位酶活力单位。
2、影响酶促反应速度的因素:1.底物浓度的影响。
在低底物浓度时, 反应速度及底物浓度成正比。
当底物浓度达到一定值,几乎所有的酶都及底物结合后,反应速度达到最大值(Vmax),此时再增加底物浓度,反应速度不再增加。
2、酶浓度的影响。
在底物浓度充足、反应条件适宜时,反应速度及酶浓度成正比。
3. 温度的影响。
酶促反应的最适温度高于酶活力的最适温度。
4. pH 的影响。
在一定的pH 下, 酶具有最大的催化活性,通常称此pH 为最适pH。
3、米氏常数Km的意义:不同的酶具有不同Km值,它是酶的一个重要的特征物理常数。
Km值只是在固定的底物,一定的温度和pH条件下,一定的缓冲体系中测定的,不同条件下具有不同的Km值。
Km值表示酶及底物之间的亲和程度:Km 值大表示亲和程度,酶的催化活性4、不可逆抑制作用:抑制剂及酶的必需活性基团以非常牢固的共价键结合而引起酶活力的丧失,不能用透析、超滤等物理方法除去抑制剂而使酶恢复活性,称为~。
5、可逆的抑制作用:抑制剂通过非共价键及酶和(或)酶-底物复合物进行可逆结合而使酶活性降低或失活,可采用透析、超滤等方法将抑制剂除去而使酶恢复活性,称为~。
分为:竞争性、非竞争性、反竞争性6、食品酶研究的内容和意义:研究食品原料体内酶的变化及作用。
通过控制来减少食物贮藏时成分的损失,同时使食品具有更好的品质。
研究酶学原理及酶制剂在食品工中的应用。
达到控制和改善品质及贮藏性的目的。
7、酶促褐变:当果蔬受到损伤时,组织和氧接触,由酶催化造成变色的作用。
8、酶促褐变的控制:控制: 针对酶促褐变的三个条件:酚类物质,氧和氧化酶类。
(1)热处理法:理论值70~95℃7s。
食品化学复习资料食品化学复习资料食品化学作为食品科学的重要学科之一,研究的是食品中的化学成分、化学变化以及与人体健康的关系。
在食品安全和营养方面,食品化学的知识是必不可少的。
本文将从食品的组成、食品加工过程中的化学反应以及食品添加剂等方面,为大家提供一些食品化学复习资料。
一、食品的组成食品由许多不同的化学成分组成,包括水分、碳水化合物、脂肪、蛋白质、维生素、矿物质等。
水分是食品中最基本的成分,它不仅是食品的溶剂,还能影响食品的质地和口感。
碳水化合物是食品中的主要能量来源,包括单糖、双糖和多糖。
脂肪是食品中的另一种重要能量来源,同时也是维生素的溶剂和传递体。
蛋白质是构成人体组织和维持生命所必需的,它们由氨基酸组成。
维生素和矿物质是人体所需的微量元素,对于人体的正常生长和发育至关重要。
二、食品加工过程中的化学反应食品加工过程中会发生许多化学反应,这些反应不仅会影响食品的质地和口感,还会对食品的营养价值产生影响。
例如,烹调过程中的加热反应会导致食物中的维生素和蛋白质的损失。
此外,食品中的糖类和氨基酸在高温下会发生糖胺反应和美拉德反应,产生有机化合物的香气和色素。
这些反应不仅能够改善食品的风味,还能增加其诱人的色泽。
三、食品添加剂食品添加剂是指为了改善食品质量、延长食品保质期、增加食品的色泽、口感和营养价值而加入的物质。
常见的食品添加剂包括防腐剂、色素、甜味剂、增稠剂等。
防腐剂可以抑制微生物的生长,延长食品的保质期。
色素可以改变食品的色泽,增加食欲。
甜味剂可以替代糖类,减少热量的摄入。
增稠剂可以增加食品的黏稠度,改善食品的质地。
然而,食品添加剂也存在一定的风险。
一些食品添加剂可能会引起过敏反应,甚至对人体健康产生不良影响。
因此,在选择食品时,我们应该尽量选择不含或含量较低的食品添加剂,避免长期过量摄入。
四、食品化学与健康食品化学与人体健康密切相关。
食品中的营养成分和化学物质可以影响人体的生理功能和健康状况。
食品化学期末复习重点第1章(绪论)你认为食品化学的“增长点”是什么?答1、继续研究不同食品的组成性质和在食品中加工储藏中的变化及其对食品品质和安全性的影响2.研发新食品,发现并去除食品资源中的有害成分,同时保护有益成分的营养和功能性3、继续研究解决现有食品工业生产中存在的各种技术问题,如变色,味,质地粗糙,货架期短,风味等问题4.研究食品中功能因子的组成、结构、性质、去除活性、定量和定性分析、分离提取方法及综合开发措施,为保健食品的开发提供科学依据5、现代储藏保鲜技术中辅助性的化学处理剂和膜剂的研究应用6.利用现代分析手段和高新技术,深入研究食品的风味化学和加工技术。
7.新型食品添加剂的开发、生产和应用研究8、快速定量,定性分析方法或新的检测技术的研究开发9、资源精深加工和综合利用的研究10、食品基础原料的改性技术的研究第一章水分1结合水:指食品中那些与非水组分通过氢键结合的水。
2自由水:也称为“散装水”。
除了结合水,剩余的水被称为自由水,远离非水成分。
3毛细管水:食品中的组织含有天然的毛细管,其内部保留的水称为毛细管水,实际上主要存在于细胞间隙中。
4水活度:指溶液(食物)中水的蒸汽压与同一温度下纯水的饱和蒸汽压之比。
5“滞后”现象:对于食品体系,采用向干燥样品中添加水(回吸作用)的方法绘制水分吸着等温线和按解吸过程绘制的等温线并不相互重叠,这种不重叠性称为滞后现象。
6食品的吸湿等温线:吸湿等温线,MSI。
在恒定温度下,以食物的aw值为横坐标。
此时,食物中达到平衡的水分含量是纵坐标,绘制的曲线称为吸湿等温线。
8单层水:指第一层水分子层中直接与强极性基团(如-COOH、-NH2等)结合的水,称为单层水,也称为“邻水”。
9.结合水主要性质为:①冰点为-40℃,②没有溶剂作用,③食物中的微生物孢子不能利用结合水进行发芽和繁殖,④低流动性。
10.第二章蛋白质1、蛋白质功能性质:在食品加工、贮藏、制备和消费过程中蛋白质对食品产生需宜特征作出贡献的那些物理、化学性质。
食品化学复习题及答案高中食品化学是一门研究食品的组成、结构、性质和变化规律的学科,是食品科学的重要组成部分。
在高中化学课程中,学生们需要掌握一定的食品化学知识。
下面将为大家提供一些食品化学的复习题及答案,帮助大家巩固所学知识。
1. 什么是食品的化学成分?答案:食品的化学成分主要包括水分、蛋白质、脂肪、碳水化合物、维生素、矿物质等。
2. 什么是食品的营养成分?答案:食品的营养成分是指食品中对人体具有营养作用的物质,包括蛋白质、脂肪、碳水化合物、维生素、矿物质等。
3. 什么是食品的添加剂?答案:食品的添加剂是指为了改善食品的质量、保持食品的新鲜度、增加食品的色、香、味等特性而向食品中添加的化学物质。
4. 请列举几种常见的食品添加剂。
答案:常见的食品添加剂包括防腐剂、抗氧化剂、增稠剂、乳化剂、漂白剂、甜味剂等。
5. 什么是食品的酸碱度?答案:食品的酸碱度是指食品溶液中的氢离子浓度,用pH值表示。
pH值越小,说明食品越酸;pH值越大,说明食品越碱性。
6. 什么是食品的酸碱中和反应?答案:食品的酸碱中和反应是指当酸性食品与碱性食品混合时,酸和碱中的氢离子和氢氧根离子互相结合,生成水和盐的反应。
7. 为什么食品加热会发生变化?答案:食品加热会发生变化是因为加热能够改变食品中分子的结构和相互作用,从而影响食品的性质和口感。
8. 什么是食品的褐变反应?答案:食品的褐变反应是指食品中的氨基酸和糖类在加热过程中发生的一系列反应,产生棕色物质,使食品变色。
9. 什么是食品的氧化反应?答案:食品的氧化反应是指食品中的脂肪、维生素等与氧气发生反应,导致食品变质、氧化。
10. 请列举一些常见的食品氧化反应。
答案:常见的食品氧化反应包括食用油的氧化、水果的氧化变质等。
通过以上的复习题及答案,我们可以回顾和巩固食品化学的基本知识。
食品化学作为一门重要的学科,对我们了解食品的组成和性质,保障食品的安全和质量具有重要意义。
希望大家通过复习,能够更好地掌握食品化学知识,为今后的学习和生活提供帮助。
食品化学复习一名词解释水分活度〔Aw〕:水分活度是指食品中水分存在的状态,即水分与食品结合程度〔游离程度〕,是食品中水的蒸气压与同温度下纯水的饱和蒸气压的比值油脂同质多晶:自然油脂多为混合甘油酯,故其无固定熔点。
自然脂肪因结晶类型的不同而导致其熔点相差较大的现象称为油脂的同质多晶。
食品非酶促褐变:非酶促褐变是指食品在加工、贮藏过程中由于外表接触空气,其中酚类等物质在非酶促条件下被氧化而发生的显著颜色变化、趋向加深的现象蛋白质变性:蛋白质在某些物理和化学因素作用下,其特定的空间构象被破坏,但一级构造仍保持完整未被破坏,从而导致其理化性质的转变和生物活性的丧失。
玻璃化转变温度(Tg):玻璃转化温度Tg 是指非晶态的食品体系从玻璃态橡胶态的转变〔称为玻璃化转变〕时的温度。
油脂乳化:将油脂与水溶液相互均匀分散形成油包水型或水包油型的相对稳定体系。
蛋白质盐溶:在蛋白质水溶液中参加少量的中性盐,如氯化钠等,会增加蛋白质分子外表的电荷,增加蛋白质分子与水分子的作用,从而使蛋白质在水溶液中的溶解度增大。
这种现象称为蛋白质盐溶。
淀粉老化:经过糊化的α-淀粉在室温或低于室温下放置后,会变得不透亮甚至分散而沉淀,这种现象称为淀粉老化。
其本质是分子间形成氢键失去水分,分子排列从无序到有序。
水分的吸附等温线〔MSI〕:在恒定温度下,以食品的水分含量〔用每单位干物质质量中水的质量表示〕对它的水分活度绘图形成的曲线,称为水分的吸附等温线固体脂肪指数〔SFI〕:肯定温度下脂肪中固体与液体的比值称为固体脂肪指数蛋白质起泡性:蛋白质在气-液外表形成坚韧的薄膜使大量的气泡并入并稳定的力量果葡糖浆:是以酶法水解淀粉所得的葡糖糖液经葡糖糖异构酶的异构化作用,将其中一局部葡萄糖异构成果糖而形成的由果糖和葡萄糖组成的一种混合糖糖浆蛋白质胶凝性:变性的蛋白质分子聚拢并形成有序的蛋白质网络构造的过程酶促褐变;酶促褐变是指在有氧条件下,酚酶催化酚类物质形成醌及其聚合物的反响过程。
食品化学复习知识点一、名词解释1、食品化学: 是从化学角度和分子水平上研究食品的化学组成、结构、理化性质、营养和安全性质以及它们在生产、加工、储存和运销过程中的变化及其对食品品质和安全性影响的科学。
2、构型:一个分子各原子在空间的相对分布或排列, 即各原子特有的固定的空间排列, 使该分子所具有的特定的立体结构形式。
3、变旋现象:当单糖溶解在水中的时候, 由于开链结构和环状结构直接的相互转化, 出现的一种现象。
4、间苯二酚反应:5、膨润现象: 淀粉颗粒因吸水, 体积膨胀到数十倍, 生淀粉的胶束结构即行消失的现象。
6、糊化:生淀粉在水中加热至胶束结构全部崩溃, 淀粉分子形成单分子, 并为水所包围而成凝胶状态, 由于淀粉分子是链状或分支状, 彼此牵扯, 结果形成具有粘性的糊状黏稠体系的现象。
7、淀粉老化:经过糊化后的淀粉在室温或低于室温的条件下放置后, 溶液变得不透明甚至凝结而沉淀的现象。
8、多糖(淀粉)的改性:指在一定条件下通过物理或化学的方法使多糖的形态或结构发生变化, 从而改变多糖的理化性能的过程。
(如胶原淀粉)9、同质多晶现象: 同一种物质具有不同固体形态的现象。
10、油脂塑性: 指在一定压力下表现固体脂肪具有的抗应变能力。
11、油脂的精炼: 采用不同的物理或化学方法, 将粗油(直接由油料中经压榨、有机溶剂提取到的油脂)中影响产品外观(如色素等)、气味、品质、的杂质去除, 提高油脂品质, 延长储藏期的过程。
(碱炼: NaOH去除游离脂肪酸)12、氨基酸的等电点:当氨基酸在某一pH值时, 氨基酸所带正电荷和负电荷相等, 即净电荷为零, 此时的pH值成为氨基酸的等电点。
13、蛋白石四级结构: 由多条各自具有三级结构的肽链通过非共价键连接起来的结构形式。
14、蛋白质的变性: 把蛋白质二级及其以上的高级结构在一定条件下(如加热、酸、碱、有机溶剂、重金属离子等)遭到破坏而一级结构并未发生变化的过程。
15、水合性质:由于蛋白质与水的相互作用, 使蛋白质内一部分水的物理化学性质不同于正常水。
食品化学江西科技师范大学授课老师:赵利谭政第一章引论1.食品化学:从化学的角度和分子水平研究食品的化学组成、结构、物理化学性质、功能性质、安全性质及食品加工贮藏过程中的变化。
2.食品的特点:安全无毒;有营养物质;赋有一定的色、香、味;内部组分之间不断发生反应和变化;容易受外界环境影响而发生变质。
食品的定义:是可供人类食用或饮用的物质。
3.食品的主要特性:颜色、风味、质构、营养价值。
第二章水1.水在食品中的作用?水对食品的外观形态、色泽、硬度、风味、鲜度等性质具有重要的影响。
水是微生物生长繁殖和生物体内化学反应的必需条件,关系到食品腐败变质的问题,影响到食品的耐贮性。
水是食品加工中的重要原料,水在食品中起着膨润、浸透、溶解、分散、均匀化等多种作用。
水可以除去食品加工中的部分有害物质。
水在食品加工制造中作为反应和传热的介质。
大多数食品加工的单元操作都与水有关2.为什么水冻结比解冻快?在0℃时,冰的导热率约为同温下水的导热率的4 倍,这意味着冰传导热能比非流动水(如食品原料组织中的水)快得多。
冰的热扩散率比水近乎大9 倍,这表明在一定的环境中,冰经受温度变化的速率比水快得多。
3.水分子为什么有强烈的缔合倾向?水分子呈V字样的形状,同时0-H键具有极性,这就是造成不对称的电荷分布和纯水在蒸汽状态时具有1.84D的偶极距。
水分子的极性产生了分子间吸引力,因而水分子具有强烈的缔合倾向。
4.水的三种结构模型:混合模型、连续模型、填隙式模型。
5.结合水的分类:化合水:结合最强的水,已成为非水物质的整体部分;邻近水:占据着非水成分的大多数亲水基团的第一层位置;多层水:占有第一层中剩下的位置以及形成了邻近水外的几层。
6.疏水水合和疏水相互作用以及笼状水合物及其作用:疏水水合:谁与非极性物质混合时,在这些不相容的非极性实体临近处,水形成了特殊结构,使得熵下降的过程。
疏水相互作用:如果存在两个分离的非极性基团,那么不相容的水环境将促进它们之间的缔合,从而减少H2O----非极性实体界面面积,这个热力学熵有力的过程就叫做疏水相互作用。
食品化学江西科技师范大学授课老师:赵利谭政第一章引论1.食品化学:从化学的角度和分子水平研究食品的化学组成、结构、物理化学性质、功能性质、安全性质及食品加工贮藏过程中的变化。
2.食品的特点:安全无毒;有营养物质;赋有一定的色、香、味;内部组分之间不断发生反应和变化;容易受外界环境影响而发生变质。
食品的定义:是可供人类食用或饮用的物质。
3.食品的主要特性:颜色、风味、质构、营养价值。
第二章水1.水在食品中的作用?水对食品的外观形态、色泽、硬度、风味、鲜度等性质具有重要的影响。
水是微生物生长繁殖和生物体内化学反应的必需条件,关系到食品腐败变质的问题,影响到食品的耐贮性。
水是食品加工中的重要原料,水在食品中起着膨润、浸透、溶解、分散、均匀化等多种作用。
水可以除去食品加工中的部分有害物质。
水在食品加工制造中作为反应和传热的介质。
大多数食品加工的单元操作都与水有关2.为什么水冻结比解冻快?在0℃时,冰的导热率约为同温下水的导热率的4 倍,这意味着冰传导热能比非流动水(如食品原料组织中的水)快得多。
冰的热扩散率比水近乎大9 倍,这表明在一定的环境中,冰经受温度变化的速率比水快得多。
3.水分子为什么有强烈的缔合倾向?水分子呈V字样的形状,同时0-H键具有极性,这就是造成不对称的电荷分布和纯水在蒸汽状态时具有1.84D的偶极距。
水分子的极性产生了分子间吸引力,因而水分子具有强烈的缔合倾向。
4.水的三种结构模型:混合模型、连续模型、填隙式模型。
5.结合水的分类:化合水:结合最强的水,已成为非水物质的整体部分;邻近水:占据着非水成分的大多数亲水基团的第一层位置;多层水:占有第一层中剩下的位置以及形成了邻近水外的几层。
6.疏水水合和疏水相互作用以及笼状水合物及其作用:疏水水合:谁与非极性物质混合时,在这些不相容的非极性实体临近处,水形成了特殊结构,使得熵下降的过程。
疏水相互作用:如果存在两个分离的非极性基团,那么不相容的水环境将促进它们之间的缔合,从而减少H2O----非极性实体界面面积,这个热力学熵有力的过程就叫做疏水相互作用。
表示如右:R(水合)+r(水合)→R2(水合)+H2O(R是非极性基团)疏水相互作用:①为蛋白质折叠提供主要推动力②维持蛋白质的四级结构③疏水结构位于蛋白质分子内部7.水分活度测定方法:将已知含水量的样品置于恒温密闭的小容器中,使其达到平衡,测定容器内的压力或相对湿度(ERH )按式A w=ERH/100 计算。
8.冰点以上和冰点以下的Aw的差异:冰点以上:Aw是样品组成、温度的函数,其中组成起着重要的作用;冰点以下:Aw与样品的组成无关,仅取决于温度。
不能根据冰点以下温度的Aw预测冰点以上温度的Aw。
9.水分吸着等温线:在恒定温度下,食品水分含量与Aw之间的关系曲线。
决定其形状因素:试样成分、试样物理结构、试样预处理、温度、制作方法。
P2410.滞后现象:水分回吸等温线与解吸等温线之间的不一致被称为滞后现象。
两条线中间形成滞后环。
11.形成滞后现象的原因及其现实意义:解吸过程中一些水分与非水成分之间的相互作用而无法释出水分;样品中不规则的形状产生毛细管现象的部位,欲填满或抽空水分需给予不同蒸汽压(要抽出需P 内>P 外,要填满即吸着时则需P 外>P 内);解吸作用时,因组织改变,当再吸水时无法紧密结合水分,由此可导致回吸相同水分含量时处于较高的水分活度;温度、解吸的速度和程度及食品类型等都影响滞后环的形状。
12.影响Aw的因素以及Aw与食品稳定性的关系:(一)影响Aw的重要因素水分含量,食品的水分含量越高,Aw也较高,有些食品的水分含量相近,Aw可能相差很大有些食品的Aw相近,含水量相差很大温度冰点以上:样品组成、温度冰点以下:温度非水成分在温度不变的条件下,食品中非水成分越多并且非水成分与水结合力越强,Aw 的值就越小。
在非水成分及非水成分与水结合形式基本不变的条件下,温度越高Aw 值就越大。
13. Aw比水分含量能更好反映食品稳定性的原因:Aw对微生物生长有更为密切的关系;Aw与引起食品品质下降的诸多化学反应、酶促反应以及质构变化有高度的相关性;用Aw比用水分含量更清楚地表示水分在不同区域移动的情况;从MSI图中所示的单分子层水的Aw(0.2-0.3)所对应的水分含量是干燥食品的最佳要求;Aw比水分含量更易测定,且不破坏试样。
详见PPT 课件第三章碳水化合物1.单糖结构:单糖含有手性碳原子,即不对称碳原子,它连接着4个不同的原子或功能基团,在空间存在两种不同的构型,呈镜面对称。
N碳糖含有n-2个手性碳原子。
任何一个手性碳原子具有不同的构型称为差向异构。
2.糖苷结构及特性:糖在酸性条件下与醇发生反应,失去水后形成的产物为糖苷,一般有呋喃或吡喃糖环。
在中性和碱性条件下一般是稳定的;在酸性条件下能被水解;可被糖苷酶水解。
分为N-糖苷、O-糖苷、S-糖苷。
3.非酶褐变:在没有酶参与的情况下发生的褐变。
非酶褐变:羰氨反应、焦糖化反应、抗坏血酸的褐变。
美拉德反应:还原糖同游离氨基酸或蛋白质分中氨基酸残基的游离氨基酸发生羰氨反应。
4.非酶褐变对食品质量的影响:1、对食品营养质量的影响2、对食品色泽的影响3 、对食品香味的影响 4、非酶褐变产物的抗氧化作用 5 、非酶褐变产生有害成分5.低聚糖连接键:低聚果糖:β-2,1糖苷键。
低聚木糖:β-1,4糖苷键。
环状糊精:α-1,4糖苷键。
低聚果糖2、低聚木糖3、甲壳低聚糖6.环状糊精结构特性:高度对称性;圆柱形(-OH 在外侧,C-H和环O在内侧;环的外侧亲水,中间空穴是疏水区域);作为微胶囊壁材,包埋脂溶性物质(风味物、香精油、胆固醇)。
7.淀粉结构:淀粉分为直链淀粉(α-1,4糖苷键)和直链淀粉(α-1,4糖苷键为主链;α-1,6糖苷键为支链)。
8.淀粉糊化:加热破坏了结晶胶束区弱的氢键后,淀粉颗粒开始水合膨胀,结晶区消失,粘度增加,双折射消失的过程。
三个阶段:①淀粉分子随着体系温度的增加,吸收少量的水;水分子进入淀粉粒内部后,淀粉通过氢键与水分子产生作用,颗粒的体积增加不多,外观上没有明显的变化,淀粉粒内部晶体结构没有改变,淀粉粒只是可逆的溶胀,体系的黏度稍微增加;②温度增加,淀粉粒开始糊化,淀粉粒大量吸附水,淀粉粒体积膨胀,偏光十字在脐点处变暗,淀粉分子间的氢键被破坏,破坏范围从无定形区扩展到结晶区,分子结构发生伸展;随后,淀粉粒继续膨胀,形成巨大的网状结构,淀粉粒的偏光十字彻底消失,体系黏度增加至最大,发生了不可逆的变化过程。
此时淀粉分子虽然还没有全部分散,但是分子间的结合已经被破坏。
所以从本质上看,糊化是温度和水破坏了淀粉分子间的相互作用、断裂氢键,使淀粉分子分散度增加的一个过程,从直观上表现出分散系的黏度增加,透明度增加;淀粉分散系最后加热处理,已经膨胀到极点的颗粒开始破碎,最后分散为糊状物,体系的黏度也达到最大,完成了整个淀粉的加热糊化。
影响因素:淀粉种类;体系温度,淀粉晶体结构;直链淀粉/支链淀粉的比例;pH值;水分活度(水分含量)。
详见P67课堂笔记影响淀粉糊化性质的因素淀粉的种类体系的温度淀粉晶体结构淀粉分子间的结合程度、分子排列紧密程度、淀粉分子形成微晶区的大小等,影响淀粉分子的糊化难易程度。
淀粉分子间的缔合程度大、分子排列紧密,破坏这些作用和拆开微晶区所需要的能量就多,淀粉粒就不容易糊化;9.如何控制淀粉老化?将淀粉(或含淀粉的食品)糊化后,在80℃以下的高温迅速除去水分(水分含量最好达10%以下),或冷至0℃以下迅速脱水。
脂类(极性脂类如磷脂、硬脂酰乳酸钠、单甘酯等)进入淀粉的螺旋结构,所形成的包合物可阻止直链淀粉分子间的平行定向、相互靠近及结合,对淀粉的抗老化很有效。
一些大分子物质如蛋白质、半纤维素、植物胶等对淀粉的老化也有减缓的作用,作用机制与它们对水的保留、干扰淀粉分子之间的结合有关。
10.改性淀粉:变性淀粉是指利用物理、化学和酶的方法处理天然淀粉,制得使其性质发生变化、加强或具有新的性质的淀粉衍生物。
改性方法:物理方法、酶方法、化学方法(氧化反应、酯化反应、醚化反应)11.纤维素:构成植物细胞壁的主要材料。
由葡萄糖以α-1,4糖苷键连接。
结构:纤维素分子易于缔合,形成多晶的纤维束;结晶区由氢键连接而成;结晶区之间由无定形区隔开;改性纤维素是水溶性胶。
12.果胶:以α-1,4糖苷键连接。
三种形态:原果胶、果胶、果胶酸。
天然果胶分两类:高甲氧基果胶(HM):羟基被甲醇酯化的百分数(DE)大于50%;低甲氧基果胶(LM):DE<50%。
形成凝胶条件:高甲氧基形成凝胶条件为高糖浓度和低pH值;低甲氧基形成凝胶条件为无糖但有二价金属离子存在。
详见P75课堂笔记。
第四章脂类1.酰基甘油及不饱和脂肪酸结构特征:详见P85-P89课堂笔记。
2.同质多晶:同一种物质在不同的结晶条件下具有不同的晶体形态,称为同质多晶现象。
不同形态的固体晶体称为同质多晶体。
3.油脂的晶型及晶型的转换取决定因素:α晶型转变为β’晶型的速度很快;β晶型转变为β晶型的速度较慢;单酰甘油或山梨酸醇酯等乳化剂的存在可延缓或抑制β晶型的产生;β晶型和β晶型都易保持不变,而α晶型很容易转变为β’晶型和β晶型,保持比较困难;当构成油脂的脂肪酸碳链和不饱和程度相差不大时,油脂容易形成β晶型;相差较大时,油脂则易形成β晶型。
4.脂肪塑形:指固体脂肪在外力超过分子间作用力时开始流动,当外力停止时,重新恢复原有稠度。
取决于脂肪中的固液比。
影响油脂塑性的因素:油脂的晶型:油脂为β型时,因为β型在结晶时会包含大量小气泡,从而赋予产品较好的塑性;β型结晶所包含的气泡大而少,塑性交差。
熔化温度范围:从开始熔化到熔化结束的温度范围越大,油脂的塑性也越好;固液两相比:油脂中固液两相比适当时,塑性最好。
固体脂过多,则形成刚性交联,油脂过硬,塑性不好;液体油过多,则流动性大,油脂过软,易变形,塑性也不好。
5.脂肪自动氧化:然油脂暴露在空气中会自发的进行氧化,使其性质、风味发生改变,被称之为“ 酸败”或“哈败”。
影响因素:光、微量金属、抗氧化剂、温度、脂肪酸组成。
三个过程:诱导阶段、波及阶段、终结阶段。
第五章蛋白质1.蛋白质结合风味物的机制主要包括非极性配位体(风味物分子)与蛋白质表面的疏水性小区或空穴的相互作用。
胃蛋白酶作用于N-乙酰-L-苯丙胺酰-L-二碘酪氨酸;过氧化物酶作用于愈创木酚;胰凝乳蛋白酶作用于酪蛋白;碱性磷酸酯酶作用于P-硝基苯磷酸酯。
2.蛋白质变性:蛋白质二级,三级和四级结构变化,但不涉及主链上肽链的断裂,使天然蛋白质的理化性质改变并失去原来生理活性。
可逆性:加热变性冷却复原;三级或四级结构变化。
不可逆性:二级结构变化;二硫键断裂。