第4章 贪心算法
- 格式:ppt
- 大小:1.68 MB
- 文档页数:45
贪⼼算法(4):活动选择问题我们继续回到上⼀堂课留下的课外习题:活动选择问题。
活动选择问题是很常见的场景。
例如各个部门共享⼀个会议室,利⽤该算法能使会议室安排尽量多的会议。
【问题】给你n个活动的开始时间和结束时间,从中选择你可以参与的活动,但是同⼀时间你只能参与⼀个活动,请找出你可以参与的最多活动数。
例如:考虑下⾯3个活动a1,a2和a3, 它们{开始时间点,结束时间点}分别为:a1 {start=10,finish=20}a2 {start=12,finish=25}a3 {start=20,finish=30}贪⼼算法直接在每⼀步选择当前看来最好的选择。
在开始时,选择活动结束时间最早的那个活动,这样能够给其他活动尽可能的腾出多余的时间。
⽽后每⼀步都在剩下的活动中选取,也遵循类似的原则。
由于获取已经按照结束时间排序好,所以这⾥第⼀个选择的活动就是a0,由于a0于时间20结束,马上再找⼀个活动,只有a2可以选择,a2结束之后再也没有活动可选了。
因此得到答案:最多可以参加两个活动(a0,a2)。
算法分析和设计现在请你设计⼀种贪⼼算法解决类似活动选择问题。
我们设计下列贪⼼算法的贪⼼策略:选择其余活动中完成时间最短的下⼀个活动,并且开始时间⼤于或等于先前所选活动的结束时间。
我们可以根据他们的完成时间对活动进⾏排序,以便我们始终将下⼀个活动视为最⼩完成时间活动。
算法描述如下{k}}U{1},必定仍然是⼀个最佳解决⽅案,说明如下:因为S 中的活动是独⽴的,⽽在排序队列中,【活动1】在所有活动中具有最⼩的结束时间,因为k不等于1,【活动k】的完成时间必定是⼤于等与【活动1】的完成时间,因此把【活动k】换成【活动1】后的新⽅案S‘必定也是最佳解决⽅案。
算法实现在以下C/C++代码实现中,假设活动已根据其完成时间进⾏了排序。
#include<stdio.h>// n --> 活动个数// s[] --> 数组保存所有活动的开始时间// f[] --> 数组保存所有活动的结束时间void printMaxActivities(int s[], int f[], int n){int i, j;printf ('选择以下的活动\n');// 第⼀个活动总是选中i = 0;printf('%d ', i);// 依次检查余下的活动for (j = 1; j < n; j++){//如果某活动在之前选择的活动结束之后开始if (s[j] >= f[i]){printf ('%d ', j);i = j;}}}//主程序int main(){int s[] = {1, 3, 0, 5, 8, 5};int f[] = {2, 4, 6, 7, 9, 9};int n = sizeof(s)/sizeof(s[0]);printMaxActivities(s, f, n);return 0;}注意:若是finish数组没有排序,需要先对它进⾏排序。
贪心算法的基本原理贪心算法(Greedy Algorithm)是一种常用的算法思想,它在求解最优化问题时通常能够得到较好的近似解。
贪心算法的基本原理是:每一步都选择当前状态下的最优解,从而希望最终能够得到全局最优解。
在实际应用中,贪心算法常常用于解决一些最优化问题,如最小生成树、最短路径、任务调度等。
一、贪心算法的特点贪心算法具有以下特点:1. 简单:贪心算法通常比较简单,易于实现和理解。
2. 高效:贪心算法的时间复杂度通常较低,能够在较短的时间内得到结果。
3. 局部最优:每一步都选择当前状态下的最优解,但不能保证最终能够得到全局最优解。
4. 适用范围:贪心算法适用于一些特定类型的问题,如无后效性、最优子结构等。
二、贪心算法的基本原理贪心算法的基本原理可以概括为以下几个步骤:1. 初始状态:确定问题的初始状态,定义问题的输入和输出。
2. 状态转移:根据当前状态,选择局部最优解,并更新状态。
3. 筛选解:判断当前状态下是否满足问题的约束条件,若满足则保留该解,否则舍弃。
4. 终止条件:重复以上步骤,直至满足终止条件,得到最终解。
三、贪心算法的应用举例1. 找零钱:假设有 25、10、5、1 四种面额的硬币,需要找零 41 元,如何使得找零的硬币数量最少?贪心算法可以先选择面额最大的硬币,然后逐步选择面额较小的硬币,直至找零完毕。
2. 区间调度:给定一组区间,如何选择最多的互不重叠的区间?贪心算法可以先按照区间的结束时间排序,然后依次选择结束时间最早的区间,直至所有区间都被覆盖。
3. 最小生成树:在一个连通的带权无向图中,如何选择边使得生成树的权值最小?贪心算法可以按照边的权值从小到大排序,然后依次选择权值最小且不构成环的边,直至所有顶点都被连接。
四、贪心算法的优缺点1. 优点:贪心算法简单高效,适用于一些特定类型的问题,能够在较短的时间内得到近似最优解。
2. 缺点:贪心算法不能保证一定能够得到全局最优解,可能会出现局部最优解不是全局最优解的情况。
贪心算法程序设计贪心算法程序设计1. 什么是贪心算法贪心算法(Greedy Algorithm)是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法的核心思想是局部最优解能导致全局最优解。
2. 贪心算法的基本步骤贪心算法的基本步骤如下:1. 定义问题的优化目标。
2. 将问题分解成子问题。
3. 选择当前最优的子问题解,将子问题的解合并成原问题的解。
4. 检查是否达到了问题的优化目标,如果没有达到,则回到第二步,继续寻找下一个最优子问题解。
5. 在所有子问题解合并成原问题解后,得到问题的最优解。
3. 贪心算法的应用场景贪心算法的应用非常广泛,几乎可以用于解决各种优化问题。
以下几个常见的应用场景:1. 零钱找零问题:给定一定面额的纸币和硬币,如何找零使得所需纸币和硬币的数量最小?2. 区间调度问题:给定一些活动的开始时间和结束时间,如何安排活动使得可以办理的活动数量最大?3. 背包问题:给定一些具有重量和价值的物品,如何选择物品使得背包的总价值最大?4. 最小树问题:给定一个带权无向图,如何找到一棵树,使得它的边权之和最小?5. 哈夫曼编码问题:给定一组字符和相应的频率,如何构造一个满足最低编码长度限制的二进制编码?4. 贪心算法的优缺点贪心算法的优点是简单、高效,可以快速得到一个近似最优解。
而且对于一些问题,贪心算法能够得到全局最优解。
贪心算法的缺点在于它不一定能够得到全局最优解,因为在每一步只考虑局部最优解,无法回溯到之前的选择。
5. 贪心算法的程序设计在使用贪心算法进行程序设计时,通常需要以下几个步骤:1. 定义问题的优化目标。
2. 将问题分解成子问题,并设计子问题的解决方案。
3. 设计贪心选择策略,选择局部最优解。
4. 设计贪心算法的递推或迭代公式。
5. 判断贪心算法是否能够得到全局最优解。
6. 编写程序实现贪心算法。
6.贪心算法是一种常见的算法思想,它在每一步选择中都采取当前状态下的最优选择,从而希望最终达到全局最优解。
贪心算法基本步骤贪心算法是一种非常常用的算法思想,广泛应用于算法设计中。
本文将介绍贪心算法的基本步骤、实现方式、应用场景以及优缺点。
一、基本步骤贪心算法的基本步骤可概括为:定义最优解的性质->利用贪心策略获得局部最优解->将局部最优解合并成一个整体最优解。
具体来说,一般包括以下几个步骤:1. 确定问题的最优解性质:要知道问题的最优解应该具有怎样的性质或特征,这些性质可以用于判断一个解是否符合规则或结果是否符合要求。
2. 构造候选解集:根据最优解的性质,不断构造可行的候选解集合,并通过一定的方法筛选出其中的解。
3. 选择最优解:从候选解集中选择一个最优解。
4. 验证最优解:通过验证最优解是否合法(满足约束条件)以及是否为问题的最优解,来验证贪心策略的正确性。
二、实现方式贪心算法的实现方式是比较灵活的,有些问题可以通过贪心策略来解决,有些则不行。
一般而言,如果问题的最优解具有贪心选择性质(即每一步的局部最优解能导致全局最优解),则采用贪心策略是可行的。
对于一些场景,我们可以通过规律来得到贪心策略。
例如:1. 集合覆盖问题:从未被覆盖的地方中选择一个覆盖点集最大的点,并删除所有覆盖的集合;2. 分数背包问题:选择性价比最高的物品,先吸纳尽量多的物品,再考虑其他物品。
三、应用场景1. 背包问题:针对背包问题和其变种,常见的贪心策略有分数背包(与完全和01背包有区别)和完全背包问题;2. 活动安排问题:在一些课程、项目或活动间选择,使得能够安排最多活动;3. 区间选择问题:在一些区间间选择相互不重叠的区间,使得能够选出最大的区间数;4. 集合覆盖问题:在一些集合中选择最少的集合,使得能够覆盖所有元素。
四、优缺点优点:1. 算法简单:贪心算法通常比较简单,易于理解和实现;2. 运算速度快:其时间复杂度一般较低,运算速度很快;3. 可以作为其他算法的优化:贪心策略可以应用于其他算法的优化中。
缺点:1. 不一定能够得到最优解:贪心策略仅考虑当前的局部最优解,对于全局最优解可能产生影响;2. 单一性:贪心算法的结果是唯一的,难以应对变化条件的需要,一旦局部最优解不满足当前的情况,算法就会失去原先的效果;3. 实现困难:对于有些问题,贪心算法并不是很好实现,涉及到更多的问题分析和模型的构造。
贪心算法及几个常用的例题贪心算法:一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。
必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
二、贪心算法的基本思路:1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。
三、贪心算法适用的问题贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。
一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
四、贪心算法的实现框架从问题的某一初始解出发;while (能朝给定总目标前进一步)利用可行的决策,求出可行解的一个解元素;由所有解元素组合成问题的一个可行解;五、贪心策略的选择因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
几个经典的例子:一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。
也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。
贪心算法的基本思路如下:1. .建立数学模型来描述问题。
2. 把求解的问题分成若干个子问题。
3. 对每个子问题求解,得到每个子问题的局部最优解。
4. 把每个子问题的局部最优解合成为原来问题的一个解。
对贪心算法的概述和研讨福州第一中学高一(8)班汪涛指导老师:陈颖算法总览当一个问题具有“最优子结构”时,我们可以采用动态规划法解决该问题。
但是有的时候,贪心算法可以更好的处理该类问题。
总体上看,贪心算法是一种高效的、不稳定的算法;但是它在解决问题时有很多独特的优良性质,掌握贪心算法有时可以非常迅速的获得最优解或近似最优解。
关键字:贪心算法(贪婪算法),贪心算法的应用举例,Object Pascal,快速算法,不稳定算法,信息学奥赛。
何时采用何时能,又何时应该采用贪心算法呢?一般认为,凡是经过数学归纳法证明可以采用贪心算法的情况,都应该采用它。
因为它的效率是很高的。
贪心算法的弱点在于它的不稳定性,即有时它不总能返回最优解。
那么能采用贪心算法的问题具有怎样的性质呢?(何时采用贪心算法)1、它具有和动态规划问题相似的性质,即分治法中的“最优子结构”性质,即每个子问题的最优解的集合就是整体最优解。
这是必须的性质,因为贪心算法解决的问题流程就需要依序研究每个子问题,然后综合之得出最后结果。
不能采用分治法解决的问题,是理论上是不能使用贪心算法的。
而且,必须拥有最优子结构性质,才能保证贪心算法返回最优解。
2、它必须具有一种特殊的“贪心选择性”。
这种性质类同于“最优子结构”性质,但又有一些小的差别。
我们知道,在动态规划中,每一个父问题结果的得出需要它的子问题作为条件;但是“贪心选择性”则不需要;贪心选择性所做的是一个非线性的子问题处理过程,即一个子问题并不依赖于另一个子问题,但是子问题间有严格的顺序性。
要证明一个问题具有“贪心选择性”,就必须证明每一步所做的贪心选择最终导致一个问题的整体最优解。
这也是必须的性质。
如果一个问题具有上述两个性质,理论上就应该采用贪心算法。
处理流程经由贪心算法处理的问题需要经过排序。
即把“最贪心”的子结果排在序列的最前面,一直到“最不贪心的”。
这是处理问题的第一步。
然后依序解决问题而得出最终结果。
【精选】贪心算法贪心算法近年来的信息学竞赛中,经常需要求一个问题的可行解和最优解,这就是所谓的最优化问题。
贪心法是求解这类问题的一种常用算法。
在众多的算法中,贪心法可以算的上是最接近人们日常思维的一种算法,他在各级各类信息学竞赛、尤其在一些数据规模很大的问题求解中发挥着越来越重要的作用。
一、什么是贪心法贪心法是从问题的某一个初始状态出发,通过逐步构造最优解的方法向给定的目标前进,并期望通过这种方法产生出一个全局最优解的方法。
做出贪心决策的依据称为贪心准则(策略),但要注意决策一旦做出,就不可再更改。
贪心与递推不同的是,推进的每一步不是依据某一固定的递推式,而是做一个当时看似最佳的贪心选择,不断的将问题实例归纳为更小的相似子问题。
所以,在有些最优化问题中,采用贪心法求解不能保证一定得到最优解,这时我们可以选择其他解决最优化问题的算法,如动态规划等。
归纳、分析、选择贪心准则是正确解决贪心问题的关键。
二、贪心法的特点及其优缺点贪心法主要有以下两个特点:贪心选择性质:算法中每一步选择都是当前看似最佳的选择,这种选择依赖于已做出的选择,但不依赖于未作出的选择。
最优子结构性质:算法中每一次都取得了最优解(即局部最优解),要保证最后的结果最优,则必须满足全局最优解包含局部最优解。
利用贪心法解题的一般步骤是:1、产生问题的一个初始解;2、循环操作,当可以向给定的目标前进时,就根据局部最优策略,向目标前进一步;3、得到问题的最优解(或较优解)。
贪心法的优缺点主要表现在:优点:一个正确的贪心算法拥有很多优点,比如思维复杂度低、代码量小、运行效率高、空间复杂度低等,是信息学竞赛中的一个有力武器,受到广大同学们的青睐。
缺点:贪心法的缺点集中表现在他的“非完美性”。
通常我们很难找到一个简单可行并且保证正确的贪心思路,即使我们找到一个看上去很正确的贪心思路,也需要严格的正确性证明。
这往往给我们直接使用贪心算法带来了巨大的困难。
贪⼼算法-例题讲解前⾔:此博客在写作过程中参考了⼤量资料和博客,不能⼀⼀列举,还请见谅。
概述贪⼼法:从问题的某⼀个初始状态出发,逐步构造最优解从⽽向⽬标前进,并期望通过这种⽅法产⽣出⼀个全局最优解的⽅法贪⼼是⼀种解题策略,也是⼀种解题思想,⽽不是算法贪⼼策略与其他算法的区别贪⼼与递推:贪⼼法推进每⼀步不依据某⼀固定的递推式,⽽是当前看似最佳的贪⼼决策,不断的将问题归纳为更加⼩的相似的⼦问题贪⼼与动态规划:贪⼼是“⿏⽬⼨光”;动态规划是“统揽全局”贪⼼法的优缺点优点:思维复杂度低、代码量⼩、运⾏效率⾼、空间复杂度低等缺点:很难找到⼀个简单可⾏并且保证正确的贪⼼思路贪⼼算法的应⽤贪⼼算法的常⽤范围有明显的贪⼼可证明贪⼼策略的贪⼼(最常见的)贪⼼数据结构:堆/Kruskal/Prim/Dijkstra博弈/游戏策略,这些策略⼤多是贪⼼求较优解或多次逼近求最优解⼏个简单的贪⼼例⼦最优装载问题:给n个物体,第i个物体重量为wi,选择尽量多的物体,使得总重量不超过C贪⼼策略:先拿轻的部分背包问题:有n个物体,第i个物体的重量为wi,价值为vi,在总重量不超过C的情况下让总价值尽量⾼。
每⼀个物体可以只取⾛⼀部分,价值和重量按⽐例计算贪⼼策略:先拿性价⽐⾼的乘船问题:有n个⼈,第i个⼈重量为wi。
每艘船的载重量均为C,最多乘两个⼈。
⽤最少的船装载所有⼈贪⼼策略:最轻的⼈和最重的⼈配对例题(基础)1.删数问题-【问题描述】键盘输⼊⼀个⾼精度的正整数n(n<=240位),去掉其中任意s个数字后剩下的数字按照原来的次序将组成⼀个新的正整数。
编程对给定的n和s,寻求⼀种⽅案,使得剩下组成的新数最⼩。
贪⼼策略为:每⼀步总是选择⼀个使剩下的数最⼩的数字删去,即按⾼位到低位的顺序搜索,若各位数字递增,则删除最后⼀个数字,否则删除第⼀个递减区间的⾸字符。
然后回到串⾸,按上述规则再删除下⼀个数字。
重复以上过程s次,剩下的数字串便是问题的解了。
列举用贪心算法求解的经典问题贪心算法是一种基于贪心策略的算法,它在每一步选择中采取最优的选择,从而达到全局最优的结果。
贪心算法通常求解的是最优化问题,例如最小生成树、最短路经、任务分配等问题,但并不是所有的最优化问题都可以用贪心算法解决,需要根据实际问题进行分析。
下面列举几个经典问题及其贪心算法的解法:1. 钞票找零问题这是一个典型的贪心算法问题,即如何用最少的钞票找零。
贪心算法的思路是,在每一步中选择面值最大的钞票,直到找完为止。
参考资料:- 《算法导论》第16章- 《算法竞赛入门经典》第2章2. 活动选择问题给定n个活动的起止时间,要求安排这些活动,使得尽可能多的活动能够不冲突地进行。
贪心算法的思路是,在每一次选择中选择结束时间最早的活动,因为这样可以给后面的活动留更多的时间。
参考资料:- 《算法竞赛入门经典》第3章- 《算法导论》第16章3. 背包问题将若干个物品放入一个容量为W的背包中,每个物品有自己的重量和价值。
要求在不超过容量的情况下,选择一些物品放入背包中,使得总价值最大。
贪心算法的思路是,选择价值比重量大的物品放入背包中,这样可以使得总价值最大。
参考资料:- 《算法竞赛入门经典》第4章- 《算法导论》第16章4. 最小生成树问题给定一个无向连通图,要求找到一棵生成树,使得边的权值和最小。
贪心算法的思路是,每次选择权值最小的边,加入生成树中,直到生成树包含了所有的节点。
参考资料:- 《算法竞赛入门经典》第7章- 《算法导论》第23章5. 最短路径问题给定一个有向图,求出一个节点到另一个节点的最短路径。
贪心算法的思路是,每次选择最短的路径,从起始节点开始,依次加入路径中的节点,直到到达目标节点。
参考资料:- 《算法竞赛入门经典》第8章- 《算法导论》第24章以上就是贪心算法常用的几个经典问题及其解法。
需要注意的是,贪心算法并不是对所有最优化问题都适用,需要根据具体情况进行分析和判断。