实验 常用工程材料的显微组织观察
- 格式:doc
- 大小:31.50 KB
- 文档页数:3
实验一平衡态铁碳合金成分、组织、性能之间关系的分析1.1典型铁碳合金的平衡组织观察与分析一、实验目的1通过实验能识别铁碳合金在平衡状态下的显微组织。
2掌握碳含量对铁碳合金平衡组织形貌及相组成比例的影响。
二、实验原理简介利用金相显微镜观察金属的内部组织和缺陷的方法称为显微分析或金相分析。
合金在极其缓慢的冷却条件如退火状态下所得到的组织称为平衡组织。
铁碳合金平衡组织的观察与分析要依据Fe-Fe3C相图来进行。
1室温下铁碳合金基本组织特征1铁素体F 铁素体是碳溶于-Fe中形成的间隙固溶体。
经35的硝酸酒精溶液浸蚀后在显微镜下呈现白亮色多边形晶粒。
在亚共析钢中铁素体呈块状分布当合金的含碳量接近于共析成分时铁素体则呈断续的网状分布于珠光体晶界上。
2渗碳体Fe3C 渗碳体是铁与碳形成的一种化合物。
经35的硝酸酒精溶液浸蚀后在显微镜下为白亮色若用苦味酸钠溶液浸蚀则渗碳体呈暗黑色而铁素体仍为白亮色由此可以区别铁素体和渗碳体。
由于铁碳合金的成分和形成条件不同渗碳体可以呈现不同的形状一次渗碳体是由液相中直接结晶出来呈板条状游离分布二次渗碳体是从奥氏体中析出的呈网状分布在珠光体晶界上三次渗碳体是从铁素体中析出呈窄条状分布在铁素体晶界上。
3珠光体P 珠光体是铁素体和渗碳体的两相复合物。
在平衡状态下它是由铁素体和渗碳体相间排列的层片状组织。
经35的硝酸酒精溶液浸蚀后铁素体和渗碳体皆为白亮色而两相交界呈暗黑色线条。
在不同的放大倍数下观察时组织特征有所区别。
如在高倍600倍以上下观察时珠光体中平行相间的宽条铁素体和细条渗碳体都呈白亮色而两相交界为暗黑色在中倍400倍左右下观察时白亮色的渗碳体被暗黑色交界所“吞食”而呈现为细黑条这时看到的珠光体是宽白条铁素体和暗黑细条渗碳体的相间复合物在低倍200倍以下下观察时无论是宽白条的铁素体还是暗黑细条的渗碳体都很难分辨这时珠光体呈现暗黑色块状组织。
4变态莱氏体Ld 变态莱氏体是珠光体和渗碳体组成的复合物。
材料显微组织的特点,
材料显微组织的特点包括以下几个方面:
1. 显微观察:材料显微组织是通过光学显微镜、电子显微镜等显微观察手段进行观察的。
通过显微观察可以获取材料的微观结构信息,包括晶粒形态、晶格结构、晶界特征等。
2. 组织形态:材料显微组织的形态包括晶粒和相的分布及排列方式。
晶粒是材料中的晶体区域,相是由相同元素或不同元素组成的材料区域。
晶粒和相的形态对材料的性能和行为有重要影响。
3. 显微尺度:材料显微组织是在微观尺度下观察的,一般通过放大装置将材料的微观结构放大到可见范围。
显微尺度的观察可以揭示材料的细节特征,例如晶体的平坦度、晶界的曲线特征等。
4. 显微分析:材料显微组织的观察不仅仅是形态的描述,还包括分析性的内容。
比如通过显微组织分析可以确定材料的晶体结构、晶体取向、晶粒大小等信息,从而推测出材料的力学性能、热学性能等。
5. 显微图像:材料显微组织的观察结果一般以显微图像的形式展示。
显微图像可以通过摄像机或扫描仪获取,并通过图像处理软件进行进一步分析和处理。
显微图像可以为材料分析和研究提供便利。
材科基实验显微照相技术及材料显微组织的体视学定量析材料科学是研究材料结构与性能之间关系的学科,而显微照相技术是材料科学中常用的一种分析工具。
通过显微镜观察和摄影,可以获取材料的微观结构信息,并通过图像分析来定量化研究各种显微组织参数。
首先,显微照相技术的原理和方法有多种。
其中,光学显微镜是应用最广泛的一种显微镜,它通过聚焦、放大和投射来实现对样品的观察。
由于光学显微镜对样品的需求较低,使用方便且成本较低,因此它是最主要的显微照相技术之一、此外,透射电子显微镜(TEM)和扫描电子显微镜(SEM)是常用的高分辨率显微照相技术,它们能够提供材料的更高分辨率和更详细的信息。
然后,材料显微组织的体视学定量分析是通过对显微照相图像进行数字图像处理来实现的。
首先,需要对显微图像进行预处理,包括图像增强、噪声去除以及边缘检测等步骤,以提高图像的质量和清晰度。
接下来,可以使用图像分割技术将图像中的不同组织区域分离出来,以便进一步的定量分析。
常用的图像分割方法包括阈值分割和基于边缘检测的分割等。
分割完成后,可以利用图像特征提取技术来获取各种显微组织参数,比如颗粒尺寸分布、颗粒形状、晶粒尺寸和晶界角等。
最后,通过对显微组织参数的分析,可以得到对材料性能的一些定量判断。
例如,颗粒尺寸的分布可以反映材料的颗粒大小均匀性;颗粒形状的分析可以评估材料的颗粒形貌特征;晶粒尺寸和晶界角等参数则可以标示材料的晶粒变化和晶界性质。
这些显微组织参数对于材料的性能和制备有着重要的影响,因此,通过显微照相技术的定量分析可以帮助我们更深入地研究和了解材料的微观结构与性能之间的关系。
综上所述,材料科学中的显微照相技术及材料显微组织的体视学定量分析是一门非常重要的技术。
它通过对显微照相图像的处理和分析,可以获得材料的微观结构信息,进而揭示材料性能与结构之间的关系,对于材料研究和工程应用都具有重要的意义。
金相显微镜实验报告内容一、引言金相显微镜是一种常用的金属材料显微分析工具。
通过观察金属材料的组织结构, 可以分析其性能和质量。
本实验旨在使用金相显微镜观察不同材料的金相组织,并对观察结果进行解析和讨论。
二、实验目的1. 熟悉金相显微镜的基本原理和操作方法。
2. 观察不同材料的金相组织,了解其组织结构特点。
3. 掌握金相组织的观察和分析方法。
三、实验仪器和材料1. 金相显微镜2. 研磨纸和砂纸3. 金相试样(不同材质和处理状态)四、实验步骤1. 样品制备:1. 将金属试样切割成适当大小(通常为10mm * 10mm * 3mm)。
2. 用砂纸将试样的表面磨平,再用研磨纸逐渐细磨,直到试样表面平整光滑。
3. 使用切割机将试样切割成适当大小的楔形样品。
4. 对楔形样品进行粗磨和精磨,用砂纸和研磨纸逐渐细磨,直到样品表面光滑。
2. 试样腐蚀:1. 将处理后的试样放入盛有酸性腐蚀液(如Nital)的容器中。
2. 在腐蚀液中浸泡一段时间,直到试样表面出现明显的腐蚀反应。
3. 从腐蚀液中取出试样,用水清洗干净,并用纸巾轻轻抹干。
3. 金相组织观察:1. 将腐蚀后的试样放置在显微镜载物台上,并固定好。
2. 通过显微镜的目镜和物镜进行对焦调整,使试样图像清晰可见。
3. 使用不同倍数的物镜进行观察,记录观察到的金相组织特征。
五、实验结果与分析通过金相显微镜观察,我们成功得到了不同材料的金相图像并进行了分析。
以下是我们观察到的一些主要结果:1. 结晶体:在显微镜下观察,结晶体呈现出明显的晶粒形状。
不同材料的晶粒大小和形态各异,反映出其不同的冶金处理历史和组织特征。
2. 晶界:晶界是相邻晶粒之间的界面,观察到的晶界可以显示出晶粒大小和形状的变化。
晶界的特征对材料的性能和强度有重要影响。
3. 金相组织:金相组织是材料内部的组织结构,包括晶粒大小、晶粒形态、晶粒分布和相含量等。
在显微镜下观察,不同材料呈现出不同的金相组织,反映了其冶金处理和热处理工艺的影响。
工程材料学实验(常用金属材料的显微组织观察)何艳玲编写机电工程学院材料系常用金属材料的显微组织观察一、实验目的1.观察各种常用合金钢,有色金属和铸铁的显微组织。
2.分析这些金属材料的组织和性能的关系及应用。
二、概述1.几种常用合金钢的显微组织合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。
1)一般合金结构钢、合金工具钢都是低合金钢。
由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。
低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。
例如16Mn淬火后为马氏体组织,40Cr钢经调质处理后的显微组织是回火索氏体,如图1、2所示。
GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织,如图3所示。
图1 16Mn淬火组织图2 40Cr钢调质后的组织图3 GCr15钢淬火低温回火后组织图4 W18Cr4V淬火三次回火后的组织2)高速钢是一种常用的高合金工具钢,例如W18Cr4V。
因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以致它虽然只含有0.7~0.8%的碳,但也已经含有莱氏体组织,所以称为莱氏体钢。
高速钢的铸造状态下与亚共晶白口铸铁的组织相似。
其中莱氏体由合金碳化物和马氏体或屈氏体组成。
莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。
锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。
高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。
它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。
球墨铸铁金相检测标准2021
球墨铸铁是一种具有优良机械性能和耐腐蚀性能的铸铁材料,常用于制造汽车零部件、机械设备、管道和阀门等。
金相检测是对材料显微组织进行观察和分析的一种常见方法,以评估材料的质量和性能。
2021年的球墨铸铁金相检测标准主要包括以下几个方面:
1. 显微组织观察,金相检测标准通常要求对球墨铸铁的显微组织进行观察,包括珠光体、铁素体和渗碳体的分布情况、尺寸和形态等。
这些观察可以通过金相显微镜或扫描电镜等设备进行。
2. 化学成分分析,金相检测标准通常还要求对球墨铸铁的化学成分进行分析,包括主要合金元素(如碳、硅、锰、镁等)的含量和分布情况。
这可以通过化学分析方法(如光谱分析、X射线荧光分析等)来完成。
3. 相对密度和孔隙率检测,球墨铸铁的相对密度和孔隙率对其性能有重要影响,因此金相检测标准通常也包括对这些指标的检测要求,可以通过密度计和金相显微镜等设备进行测定。
4. 力学性能测试,金相检测标准还可能包括对球墨铸铁的力学
性能进行测试,如拉伸强度、硬度、冲击韧性等指标的测定,以评估材料的强度和韧性。
总的来说,球墨铸铁金相检测标准旨在通过对材料显微组织、化学成分、密度、孔隙率和力学性能等方面的检测和分析,全面评估球墨铸铁的质量和性能,确保其符合相关标准要求,以满足不同工程和应用的需要。
具体的标准文件可以参考国家标准化管理委员会发布的相关标准文献,以获取最新的标准要求和测试方法。
钢筋焊接接头试验方法钢筋焊接接头试验方法是评估焊接接头质量和性能的重要环节,它可以确保焊接接头的强度、韧性和可靠性。
下面将详细介绍常用的钢筋焊接接头试验方法。
1. 金相显微镜观察金相显微镜是一种常用的检测钢筋焊接接头材料显微组织及其缺陷的方法。
通过磨削、腐蚀、抛光等处理,可以获得焊接接头的横截面,并使用金相显微镜观察和分析熔合区、热影响区和基材的显微组织,以评估焊缝的质量。
2. 拉伸试验拉伸试验是评价焊接接头强度的常用方法。
在拉伸试验中,将焊接接头试样固定在拉伸试验机上,施加外力逐渐拉伸试样,测量载荷和延伸量。
通过拉伸实验,可以得到焊接接头的抗拉强度、屈服强度、延伸率等力学性能指标,用于评估焊接接头的质量。
3. 冲击试验冲击试验是评估焊接接头韧性的常用方法。
常采用冲击试验机对焊接接头进行冲击试验,测量冲击能量吸收量,得到吸收冲击能量的指标,如冲击韧性指数。
冲击试验可以模拟实际工作条件下的冲击载荷,评估焊接接头对冲击载荷的抵抗能力和防护性能。
4. 弯曲试验弯曲试验可评估焊接接头的弯曲性能。
在弯曲试验中,将焊接接头试样放置于弯曲试验机上,施加弯曲载荷,观察和记录焊接接头的断裂面形态、弯曲承载力和变形情况,评估焊接接头的弯曲性能。
5. 无损检测无损检测是一种非破坏性检测方法,用于评估焊接接头的缺陷和质量问题。
常用的无损检测方法有超声波检测、射线检测和磁粉检测等。
通过无损检测手段可以发现焊接接头的内部缺陷,如焊缝中的气孔、夹杂物、裂纹等,并对其进行评估和分类。
除了上述试验方法,还可以根据具体需要进行其他试验,如疲劳试验、扭转试验等。
需要注意的是,进行钢筋焊接接头试验时,应严格按照相关标准进行操作,确保试验结果的准确性和可信度。
综上所述,钢筋焊接接头试验方法主要包括金相显微镜观察、拉伸试验、冲击试验、弯曲试验和无损检测等方法。
通过这些试验可以全面评估焊接接头的质量和性能,为钢筋焊接工程的安全可靠性提供依据。
钢的热处理及热处理后的显微组织观察工程材料实验二曹瀚文2012011545授课教师:***一、实验目的(1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火;(2)了解加热温度、冷却速度、回火温度等主要因素对45号钢热处理后性能(硬度)的影响;(3)观察碳钢热处理后的显微组织。
二、实验结果三、分析淬火温度、淬火介质及回火温度对45钢性能的影响,画出它们同硬度关系的示意曲线,并根据铁碳相图、C 曲线(或CCT 曲线)和回火时的转变阐明硬度变化的原因。
45.7 27.045.7 27.544.6 26.845.3 32.330.8淬火温度:这个可以从铁碳相图来分析,亚共析钢的淬火加热温度为c3A 以上30~50℃。
亚共析钢加热到c3A 以下时,淬火组织中会保留铁素体,使钢的硬度降低。
若淬火温度太高,会形成粗大马氏体,使力学性能恶化。
●淬火介质:这个可以从C曲线来分析,空→油→水是淬火的速度的依次增加,当奥氏体从高温降温时,如果冷却速度不同,就会以不同的方式通过C曲线,空→油→水对应得到的组织是S+F→M+T→M,因此硬度会依次增加。
●回火温度:这个可以从回火时的转变来分析,回火温度升高时,除去脆性危险区,我们依次得到的是回火M→回火T→回火S,马氏体的碳质量分数也依次降低,因此硬度也就依次降低。
所以我们就得到回火温度升高,硬度会随之降低的曲线。
四、显微组织图(1)T12 780水淬 200回火(回火M)(2)45钢 860油淬(T+M)(3)45钢 860水淬(M)(4)45钢 840水淬 600回火(回火S)(5)T12钢球化退火(6)45钢 860正火五、思考题:(1)45钢常用的热处理是什么?它们的组织是什么?多做什么工件?答:45钢属于中碳结构钢,常用热处理为正火+调制处理,组织为回火索氏体。
可用来制造齿轮、轴类、套筒等零件。
(2)退火状态的45钢试样分别加热到不同温度(例如600~900℃之间)后,在水中冷却,其硬度随加热温度如何变化?为什么?答:亚共析钢的淬火加热温度一般为A以上30~50℃,45钢3c则大概应该在880℃附近。
实验5 常用工程材料的显微组织观察
1.实验目的
2.(1)观察几种常用合金钢、有色金属、铸铁和金属陶瓷(硬质合金)及纤维增强树脂的显微组织。
3.(2)分析这些材料的组织和性能的关系及其应用。
4.
(1)W18Cr4V是一种高速钢。
室温平衡组织由珠光体、碳化物和莱氏体组成。
莱氏体沿晶界呈宽网状
分布,莱氏体中的碳化物粗大,呈骨架状,不能靠热处理消除,必须进行锻造打碎。
锻造退火后的显微组织由索氏体和碳化物组成。
高速钢具有优良的耐热性和高的耐磨性。
淬火温度较高,使奥氏体充分合金化,保证最终有高的热硬性。
(2)1Cr18Ni9是不锈钢。
在大气、海水及其他浸蚀性介质条件下能稳定工作,属于高合金钢。
室温平
衡组织为奥氏体+铁素体+(Cr,Fe)23C6。
(3)灰铸铁中的石墨呈粗大片状,灰铸铁的基体有珠光体、铁素体和珠光体+铁素体三种。
铁素体基体
的铸铁韧性最好,珠光体基体的铸铁抗拉强度最高。
(4)球墨铸铁的组织主要有铁素体基体和珠光体基体两种。
浇铸后石墨呈球形析出,大大削弱了对基
体的割裂作用,使球墨铸铁的性能显著提高。
(5)可锻铸铁由白口铸铁经石墨化退火处理得到。
其中的石墨呈团絮状,也显著的削弱了对基体的割
裂作用,使得可锻铸铁的机械性能比灰铸铁有明显的提高。
(6)未经变质处理的铝硅合金铸造后得到的组织是粗大的硅晶体和α固溶体所组成的共晶体。
粗大的硅
晶体很脆,严重的降低了合金的塑性和韧性。
(7)变质处理后的铝硅合金中添加的Na能促进Si的生核,并能吸附在Si表面阻止Si继续长大,使合
金组织大大细化。
变质处理后的组织为细小均匀的共晶体+初生α固溶体+二次析出的Si。
共晶体中的Si细小,使合金的强度和塑性显著改善。
(8)单相黄铜中的组织为单相α固溶体,其晶粒呈多边形,并伴有大量退火孪晶。
单相黄铜具有良好的
塑性,可以进行各种冷变形。
(9)双相黄铜由α相和β相组成。
α相呈亮白色,β相呈黑色,是以CuZn电子化合物为基的有序固溶体,
在低温下较脆、硬,但在高温下有良好的塑性,所以双相黄铜可以进行热压力加工。
(10)轴承合金是一种软基体硬质点类型的轴承合金。
显微组织为α+β+Cu6Sn5。
软基体硬质点混合组织
能保证轴承合金具有必要的强度、塑性和韧性,以及良好的耐磨性。
(11)YG3显微组织由WC+Co相组成。
硬质合金熔点高,硬度高,具有良好的耐磨性和热硬性,可用
作道具、耐磨零件或磨具。
硬质合金属于颗粒复合材料。
(12)纤维增强树脂是一种纤维复合材料。
韧性好的树脂作为基体,可阻碍材料中裂纹的扩展。
纤维的
抗拉强度高,主要承受外加载荷的作用。
玻璃纤维增强树脂的显微组织为玻璃纤维+树脂。
5.思考题
(1)合金钢与碳钢比较组织上有什么不同,性能上有什么差别,使用上有什么优越性?
(2)答:合金钢是在碳钢合金中特意加入一些合金元素所获得的钢。
按合金元素质量分数不同可分为
低合金钢(合金元素低于5%)、中合金钢(合金元素5%~1 O%)、高合金钢(合金元素大于10%),还有其他的分类方法。
对于低合金钢由于加入合金元素较少,铁碳相图虽发生了一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有太大区别,低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同。
但因加入了合金元素使C曲线右移(Co除外),所以在相同的冷却速度下,会出现不同的金相组织,合金钢更容易获得马氏体。
(3)合金钢与碳钢比较,在淬透性、力学性能、回火稳定性等方面得到改善,还可提高钢的抗氧化
性、耐蚀、耐热、耐低温、耐磨损等方面的性能。
由于合金钢的强度提高了,在使用时可降低材料的使用量,减轻重量,降低成本。
不同的合金钢可以应用于高温、腐蚀、磨损等场合使用。
(4)为什么大型发电机组中汽轮机转子和小板牙都必须采用合金钢制造?
(5)答:大型发电机组中的汽轮机转子工作环境恶劣,要承受扭转应力、弯曲应力、热应力,还要承
受振动产生的附加应力和冲击载荷等,而且在高温工作,还要考虑材料的抗蠕变性能、抗腐蚀性能,等等。
因此对转子材料要具有良好的综合机械性能、强度高,韧性好。
在钢中加入一些合金元素可以提高材料的性能,满足产品要求。
如加入Cr、Mo、V元素,可以提高钢的淬透性增加钢
的强度,还可以提高钢的热强性,耐高温、抗腐蚀。
所以都要选用合金钢制造才能符合使用要求。
(6)小板牙是低速切削、形状复杂的刃具,要求高硬度、高耐磨性,还要求一定强韧性。
在钢中加
入Cr、W、Mn等元素,使钢的淬透性和耐磨性大大提高,耐热性和韧性也有所改善。
而且加入了合金元素后,淬透性增加,油冷时就可得到马氏体,有利于减小变形,保证尺寸。
所以选用合金钢制造才能符合使用要求。
(7)高速钢(W18Cr4V)的热处理工艺是如何进行的?有何特点?
(8)答:W18Cr4V高速钢的优良的热硬性和高的耐磨性只有经淬火及回火后才能获得。
由于高速钢中
的碳化物类型多、结构复杂,淬火温度对碳化物的溶解有很多影响,较低时,有的碳化物不能溶解,影响硬度和红硬性。
较高时M6C型碳化物转变成稳定的MC型碳化物,沿奥氏体晶界扩展成网状,造成对高速钢性能的破坏,而且还会影响晶粒度及残余奥氏体的含量,影响强度和韧性。
(9)为了获得良好的力学性能和高的红硬性,需选择合理的淬火温度,W18Cr4V高速钢的淬火温
度一般选择在1270~1280℃。
淬火后的组织为马氏体+碳化物+较大量的残余奥氏体,残留奥氏体约有30%。
所以还要进行回火处理,使残余奥氏体转变为回火马氏体。
在550~570℃回火时,钢的硬度、强度、塑性均有提高,析出特殊碳化物,产生二次硬化,达到硬度和强度的最大值。
回火温度一般为560℃,因残余奥氏体量很多,一次回火处理不能消除大量的残余奥氏体,回火不足,影响高速钢的硬度和耐磨性能,所以一般需经三次回火处理。
高速钢经三次回火处理后的组织为回火马氏体+碳化物+少量残余奥氏体(2%~3%)。
这样可以得到理想的热硬性、高的耐磨性和强韧性。
(10)铸造Al-Si合金的成分是如何考虑的?为何要进行变质处理,变质处理与未变质处理的Al-Si合金组
织与性能有何变化?
(11)答:从Al-Si合金的相图可知,Si的质量分数为11.7%为共晶点的成分,在共晶点附近的合金成分,
具有优良的铸造性能,流动性好,产生铸造裂纹的倾向性小,所以简单的铸造Al-Si合金的Si的质量分数一般应为接近共晶点成分,典型的铸造Al-Si合金牌号为ZLl02,Si的质量分数为11%~13%。
(12)Al-Si合金铸造后得到的组织是粗大的针状硅晶体和α固溶体的共晶组织,粗大的硅晶体极脆,严
重地降低了合金的塑性和韧性。
为改善合金的性能需采用变质处理,即在浇注前在合金液体中加入变质剂(常用钠盐混合物),以细化合金组织,提高合金的强度和塑性,由于钠能促进Si的生核,并能吸附在Si的表面阻碍它长大,使合金组织细化,同时使共晶点右移,原合金成分变为亚共晶成分,所以变质后的组织为初生α固溶体+细密的共晶体(α+Si)组成。
共晶体中的Si细小,使合金的强度与塑性显著提高。