七年级数学下册因式分解多项式的因式分解
- 格式:ppt
- 大小:1.16 MB
- 文档页数:19
多项式的因式分解学习目标:1.理解因式及因式分解的含义2.了解因式分解在解决其它数学问题中的桥梁作用。
3. 理解因式分解是多项式的逆运算。
学习重点、难点因式分解的概念。
学习过程:一、创设问题情境,引入新课导入一:小明用硬纸板剪了个特殊的三角形,三边长分别为a b c ,并且他发现这三边长满足这样一个式子: a b2-2abc+a c2=0 你能根据上述式子判断三角形的形状吗?导入二:1.什么叫单项式、多项式、整式?2.什么叫整式乘法?请举例说明。
3.大家会计算(a+b)(a-b)吗?二、学习新知<一>因式分解的有关概念请同学们带着以下问题阅读教材P55-56例题上面的内容,并完成以下的自学检测题1.自学思考题(1)什么叫因式?(2)什么叫因式分解?(3)什么叫质数或素数?2.自学检测练习<1>下列各式从左到右的变形,哪些是因式分解 ( )(1)4a(a+2b)= 4a2+8ab; (2)6ax-3ax2=3ax(2-x)(3)a2-4=(a+2)(a-2)(4)x2-3x+2=x(x-3)+2<2> (x-5)(x+7)是下面哪个多项式因式分解的结果? ( )A.x2-2 x -35 B. x2 +2 x -35C. x2 +2 x +35 D. x2-2 x+35<3>下列多项式从左到右的变形是因式分解的有 ( )个。
①x2-x = x(x-1) ② a(a-b)=a2-ab; ③(a+3)(a-3)= a2-9④a2-2a+1= a(a-2)+1 ⑤a2-4a+4=(a-2)2;<4>若关于x的二次三项式x2+m x + n的因式分解的结果为(x+3)(x-2),怎样得出m, n的值3.自学点拨( 1)一般地,对于两个多项式f与g,如果有多项式h使得f=gh,那么我们把g叫做f的一个因式,此时,h也是f的一个因式。
(2)一般地,把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解。
七年级下册因式分解公式
我们要对一个多项式进行因式分解,因式分解是一种将多项式化为几个整式的积的形式。
在七年级下册中,我们主要学习了几种因式分解的方法,包括提公因式法、公式法等。
首先,我们要理解什么是因式分解。
因式分解就是将一个多项式化为几个整式的积的形式。
例如:x^2 - 2x + 1 可以因式分解为 (x - 1)^2。
接下来,我们来看看七年级下册中主要学习的因式分解公式有哪些。
1. 平方差公式:a^2 - b^2 = (a + b)(a - b)。
2. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2 和 a^2 - 2ab + b^2 =
(a - b)^2。
3. 提公因式法:如果多项式的每一项都有一个公共的因子,那么我们可以把这个公共因子提取出来,使得剩下的部分更容易进行因式分解。
现在,我们可以使用这些公式来因式分解一些多项式了。
例如,我们可以将多项式 x^2 - 2x + 1 因式分解为 (x - 1)^2。
再比如,我们可以将多项式 4x^2 - 4x 因式分解为 4x(x - 1)。
通过因式分解,我们可以更好地理解和简化多项式,从而更好地解决数学问题。