汽车起重机液压系统
- 格式:pdf
- 大小:407.27 KB
- 文档页数:2
汽车起重机支腿液压系统设计1. 引言汽车起重机是一种用于搬运重物的机械设备,其设计和工作原理需要考虑到平安性、稳定性和效率。
其中,支腿液压系统是汽车起重机的关键部件之一,负责支撑和稳定整个机身。
本文将介绍汽车起重机支腿液压系统的设计原理和关键要素。
2. 液压系统设计原理液压系统将液体作为传递动力和控制信号的介质,通过液压泵、液压缸、阀门和管道等组件实现力的传递和控制。
在汽车起重机支腿液压系统中,液压泵负责将液体压力增加,通过阀门和管道输送到液压缸中,从而控制支腿的伸缩和稳定。
3. 系统设计要素3.1 支腿液压缸设计支腿液压缸是支腿液压系统的核心组件,其设计应考虑以下要素:•承受重力和起重机载荷的能力;•具有足够的力量和行程以实现支腿的伸缩;•耐久性和可靠性,确保长时间使用不出现故障。
3.2 液压泵选择液压泵的选择应考虑以下要素:•承受系统所需的最大工作压力;•提供足够的流量以保证液压缸的伸缩速度;•节能性和可靠性。
3.3 液压系统控制阀设计液压系统的控制阀用于调节液压流量和压力,确保支腿液压缸的平安运行。
设计时应考虑以下要素:•阀门的额定流量和压力范围;•控制阀的灵敏度和可调性;•阀门的耐久性和可靠性。
3.4 管道和连接件设计管道和连接件是液压系统中的关键部件,其设计应考虑以下要素:•材料的选择和强度,以保证系统的可靠性和耐久性;•导向和密封性,以确保液压流动的顺畅和不泄漏。
4. 平安考虑在汽车起重机支腿液压系统设计中,平安是重要的考虑因素。
以下是平安设计的一些建议:•设计液压系统时应考虑额定工作压力的平安系数,以防止系统超负荷运行。
•使用高质量的液压组件和材料,以确保系统的可靠性。
•对系统进行适当的维护保养,包括定期更换液压油和检查系统连接件的紧固情况。
5. 结论汽车起重机支腿液压系统设计是确保起重机平安和稳定运行的关键。
通过合理选择液压缸、液压泵、控制阀以及管道和连接件等组件,可以实现支腿液压系统的高效工作。
汽车起重机支腿液压系统设计引言汽车起重机是一种能够进行货物起升、搬运的重型机械设备。
为了确保其安全运行和稳定性,起重机上配备了支腿系统,用于支撑整个机身,使机身保持平衡和稳定。
支腿液压系统是起重机支腿的重要组成部分,本文将介绍汽车起重机支腿液压系统的设计。
液压系统工作原理液压系统采用液体的流动来传递信号和能量,主要由液压泵、液压缸、液压阀和液压油箱等组成。
在汽车起重机支腿液压系统中,液压泵通过驱动液压油流动,产生压力,将能量传递给液压缸,从而实现支腿的伸缩和支撑。
液压系统设计要点1.液压泵选择为了满足起重机支腿液压系统的工作需求,需要选择合适的液压泵。
液压泵的选择应根据液压系统的工作流量和工作压力来确定。
工作流量与液压缸的活塞面积和速度相关,工作压力与液压系统的负荷和阻力相关。
2.液压缸设计液压缸是起重机支腿液压系统的核心部件,主要用于驱动支腿的伸缩和支撑。
液压缸的设计应考虑到起重机的用途和工作条件。
液压缸的活塞直径和行程决定了液压缸的工作力和位移,需要根据起重机的负荷和高度来选择合适的液压缸。
3.液压阀选择液压阀是液压系统中的控制元件,主要用于调节液压系统的压力和流量,实现液压缸的伸缩和支撑等功能。
液压阀的选择应根据液压系统的需求来确定,常见的液压阀有溢流阀、比例阀和换向阀等。
4.液压油选用液压油是液压系统中的工作介质,负责传递能量和冷却液压系统。
液压油的选用应考虑到起重机的工作环境和温度,一般应选择具有良好的抗氧化性、抗磨性和粘温性的液压油。
5.液压系统的安全措施为了确保起重机支腿液压系统的安全运行,需要在设计中考虑相应的安全措施。
例如,在液压系统中加装过载保护装置,当超负荷时能够自动停止液压泵的运行,避免对起重机和人员的伤害。
此外,还需要在液压系统中设置液压缸行程限位开关,防止液压缸过度伸缩或缩回,影响起重机的工作效果和安全性。
总结汽车起重机支腿液压系统是重要的功能性系统,能够实现起重机的支撑和平衡。
汽车起重机液压系统设计汽车起重机液压系统设计是指根据起重机的工作原理和要求,设计出满足其运行需求的液压系统。
液压系统是一种通过液体传递压力和控制动作的力传递系统,常用于重型机械设备中。
以下是一种1200字以上的汽车起重机液压系统设计方案:1.系统结构设计汽车起重机液压系统主要包括液压冷却系统、液压动力系统和液压控制系统。
液压冷却系统用于降低液压油温度,确保液压系统的正常工作;液压动力系统主要由液压泵、液压缸和阀门组件等组成,提供液压能量以实现起重机的动作;液压控制系统用于控制液压动力系统的工作状态,实现起重机的精确操作。
2.液压冷却系统设计液压冷却系统采用水冷方式,通过水冷却器降低液压油温度,确保液压系统的稳定工作。
水冷却系统设计应考虑流量、温度和压力等参数,选定适合起重机需求的水冷却器。
同时,还应设置液压油温度传感器和冷却水温度传感器,实时监测液压油和冷却水的温度,并通过控制系统对冷却水流量和泵的运行状态进行控制。
3.液压动力系统设计液压动力系统主要由液压泵、液压缸和阀门组件等组成。
液压泵通过驱动发动机输出液压能量,提供动力给液压缸实现起重机的运行。
液压泵选型时考虑起重机的额定载荷、工作速度和工作环境等因素,选用流量和压力适合的液压泵。
液压缸根据起重机的使用要求和结构设计,选用适当尺寸和压力等级的液压缸。
液压阀门组件包括方向阀、流量阀和压力阀等,通过控制液压动力的通断、流量和压力,实现起重机的精确控制。
4.液压控制系统设计液压控制系统用于控制液压动力系统的工作状态,实现起重机的精确操作。
液压控制系统应包括液压控制阀、传感器和控制器等。
液压控制阀根据起重机的动作要求和功能设计,选用相应数量和类型的液压控制阀,如二位四通阀、比例阀和伺服阀等。
传感器主要包括液压油压力传感器和液压油位传感器,通过监测液压系统中的压力和油位等参数,实时反馈给控制器进行处理。
控制器根据传感器的反馈信号,通过控制液压阀来实现起重机的精确操作,包括起重、下降、伸缩等动作。
摘要QY40型汽车起重机液压系统的设计是该型起重机设计过程中最关键的一步。
本文根据液压系统的技术指标对该系统进行整体方案设计,对其功能和工作原理进行分析,初步确定了系统各回路的基本结构及主要元件,按照所给机构性能参数和液压性能参数进行元件的选择计算,通过对系统性能的验算和发热校核,以满足该起重机所要达到的要求。
本文还针对当前汽车起重机所采用的一项先进技术——电液比例控制技术,从原理、控制部件、回路控制、控制措施以及对汽车起重机的影响等进行专题研究。
由此对电液比例控制技术在汽车起重机中的运用给以充分的肯定,对汽车起重机的发展前景有了很大的希望。
关键字: 汽车起重机; 液压系统; 高效节能; 性能参数; 电液比例ABSTRACTModel QY40 automobile crane hydraulic pressure systematic design this type hoist the most key one of the design process.This text analyses , demand to carry on the scheme to work out on this performance systematic in hydraulic pressure.Prove to its function and operation principleHave confirmed the basic structure of system every return circuit and main component tentatively According to giving the organization performance parameters and choice of carrying on the component of performance parameter of hydraulic pressure to calculate Through to the checking computations and generating heat to check of systematic function, in order to respond to the request that this hoist should reachThis text, still to an advanced technology that the automobile crane adopts at present —Control technology of proportion of the electric liquid .Carry on the case study from principle , controlling part , return circuit controlling , control measure and impact on automobile crane ,etc. Therefore give the abundant affirmation to the application of the proportion of the electric liquid in the automobile crane of control technology The development prospect has very great hopes.key words:Crane truck; Hydraulic pressure system; Energy-efficient; Performance parameter; Proportion of the electric liquid目录摘要 (2)ABSTRACT………………………………………………………………错误!未定义书签。
汽车起重机液压系统课程设计一、前言汽车起重机液压系统是起重机的核心部件之一,其质量和性能直接影响到起重机的使用效果和安全性。
为了使学生更好地掌握汽车起重机液压系统的设计原理、操作方法和维护技巧,本课程设计旨在通过理论学习、实验操作和综合实践等多种方式,全面提高学生对汽车起重机液压系统的认识和掌握。
二、课程设计内容1. 汽车起重机液压系统基础知识(1)液压传动的基本概念及优点;(2)液压元件的分类及特点;(3)液压系统的组成及工作原理。
2. 汽车起重机液压系统设计原理(1)汽车起重机液压系统结构分析;(2)汽车起重机液压系统工作原理分析;(3)汽车起重机液压系统参数计算。
3. 汽车起重机液压系统实验操作(1)汽车起重机液压系统元件拆装实验;(2)汽车起重机液压系统调试实验;(3)汽车起重机液压系统故障排除实验。
4. 汽车起重机液压系统综合实践(1)汽车起重机液压系统维修案例分析;(2)汽车起重机液压系统检修方案编制;(3)汽车起重机液压系统故障诊断与解决。
三、课程设计实施步骤1. 确定课程设计目标和任务,并制定详细的计划和时间表;2. 进行理论学习,包括汽车起重机液压系统基础知识和设计原理等内容,并进行相关的实验操作;3. 开展综合实践,包括汽车起重机液压系统维修案例分析、检修方案编制和故障诊断与解决等内容;4. 对学生进行考核评估,包括理论考试、实验操作评估和综合实践考核等环节。
四、课程设计要求和评价标准1. 了解汽车起重机液压系统的基本概念、组成结构及工作原理,掌握其参数计算方法;2. 能够熟练操作汽车起重机液压系统元件的拆装、调试及故障排除工作;3. 具备分析汽车起重机液压系统维修案例、编制检修方案及诊断故障的能力;4. 学生对汽车起重机液压系统的认识和掌握程度达到优秀水平。
五、总结通过本课程设计,学生可以全面深入地了解汽车起重机液压系统的设计原理、操作方法和维护技巧,提高其对汽车起重机液压系统的认识和掌握程度,为今后从事相关工作打下坚实的基础。
汽车起重机的液压系统设计1.液压系统的基本组成液压泵负责将液压油从油箱中吸出,通过压力油路输送至执行元件,实现起重机的各种功能。
液压泵的选择应根据起重机的动力需求和工作压力来确定。
执行元件主要包括液压缸和液压马达,用于转化液压能为机械能。
液压缸负责推动伸缩臂的伸缩和旋转平台的旋转,液压马达则用于提供旋转力矩。
控制元件主要包括液控阀、压力阀、流量阀等,用于控制液压系统的流量、压力和方向。
液控阀用于控制执行元件的运动方向,压力阀用于控制系统的工作压力,流量阀用于调节系统的流量。
2.系统设计考虑的主要因素(1)起重机的工作负荷和工作范围:根据起重机的工作负荷确定液压系统的工作压力和流量,根据起重机的工作范围确定液压缸和液压马达的尺寸。
(2)系统的平稳性和安全性:起重机的运行要求平稳性高,液压系统设计应考虑减少振动和冲击的因素,采用减压阀和缓冲装置等来保证系统的稳定性。
同时,系统设计应考虑到安全性,通过设置安全装置来保护起重机在紧急情况下的安全运行。
(3)系统的能效:液压系统的工作效率对于起重机的能耗和功率需求有着重要影响。
设计时应合理选择液压泵和马达的类型和规格,以提高系统的能效。
(4)系统的维护和保养:液压系统的维护和保养是确保系统长期稳定运行的关键。
设计时应考虑到易于维护和保养的因素,如设备的布局合理化、易于更换和维修的部件等。
3.系统设计步骤(1)确定起重机的工作要求和技术指标,包括工作负荷、工作范围、速度等。
(2)根据需求计算液压系统的工作压力、流量和功率等参数。
(3)选择适合的液压泵、液压缸和液压马达等执行元件,并计算其尺寸。
(4)选择合适的液控阀、压力阀、流量阀等控制元件,并设计其控制电路。
(5)设计液压系统的油路,包括油箱容积、油管路的布置和连接方式等。
(6)制定液压系统的维护保养计划,包括定期更换液压油、清洗油路、检查和更换部件等。
总之,汽车起重机的液压系统设计需要全面考虑起重机的工作要求和技术指标,并根据液压原理和技术规范来选择和设计各个组成部分,以实现系统的高效、平稳和安全运行。
汽车起重机液压系统工作原理首先,液压泵是液压系统的动力源,通过转动传动装置和输入端的动力源(如发动机)相连,将机械能转变为液体能量。
液压泵将液体从液压油箱抽取出来,通过液压管路输送到液压缸。
液压缸是起重机液压系统的执行机构,在液压系统中起到将液压能量转换为机械能量的作用。
液压缸一般由活塞、活塞杆和缸体组成。
当液体从液压泵进入液压缸的一侧时,液压缸的另一侧将存储在其中的液体排出。
液体在液压缸中的压力会使活塞向外移动,驱动起重机移动或提升物体。
液压阀是起重机液压系统的控制装置,用于控制液体的流动和液压系统的工作。
液压阀根据液体的压力和流量,来控制液体进出液压缸的速度、方向和压力。
例如,当需要控制起重机提升速度时,液压阀会调整液压泵输送的液体流量;当需要控制起重机移动方向时,液压阀会控制液压缸的液体进出口。
液压油箱是液压系统的储液装置,用于储存液体并对其进行冷却。
液压油箱是一个密封的容器,内部装有液压油,用于向液压泵提供液体。
液压油箱还设有油温传感器和油液过滤器,用于监测和调节液压油的温度和质量,保证液压系统的正常运行。
在汽车起重机液压系统的工作过程中,液压泵抽取液体从液压油箱进入液压缸,使活塞移动,从而实现吊运物体的目的。
液体的压力和流量通过液压阀控制,可以根据需求进行调节。
当液体进入液压缸的一侧时,另一侧的液体被排出液压缸,并返回液压油箱循环使用。
总结起来,汽车起重机液压系统的工作原理是利用液压泵将机械能转换成液体能量,通过液压阀控制液体的压力和流量,驱动液压缸实现起重机的移动和吊运物体的功能。
液压油箱用于储存液体并对其进行冷却,确保液压系统的正常运行。
这种工作原理使得起重机具有稳定、高效、精确的起重能力,广泛应用于各个领域。
一:汽车起重机的工况分析根据起重机试验规范,以及很多操作者的实际经验,可确定表的三种工况,作为轻型汽车起重机的典型工况。
设计液压系统时要求各系统的动作能够满足这些工况要求。
二:汽车起重机对液压系统的要求根据汽车起重机的典型工作状况对系统的要求主要反映在对以下几个液压回路的要求上。
1. 起升回路(1)能方便的实现合分流方式转换,保证工作的高效安全。
(2)要求卷扬机构微动性好,起、制动平稳,重物停在空中任意位置能可靠制动,即二次下滑问题,以及二次下降时的重物或空钩下滑问题,即二次下降问题。
2. 回转回路(1)具有独立工作能力。
(2)回转制动应兼有常闭制动和常开制动(可以自由滑转对中),两种情况。
3. 变幅回路(1)带平衡阀并设有二次液控单向阀锁住保护装置。
(2)要求起落臂平稳,微动性好,变幅在任意允许幅值位置能可靠锁死。
(3)要求在有载荷情况下能微动。
(4)平衡阀应备有下腔压力传感器接口,作为力矩限制器检测星号源。
4. 伸缩回路本机伸缩机构采用三节臂(含有两个液压缸),由于本机为轻型起重机为了使本机运用广泛,实现各节臂顺序伸缩。
各节臂能按顺序伸缩,但不能实现同步伸缩。
5. 控制回路(1)为了使操纵方便总体要求操纵手柄限制为两个。
(2)操纵元件必须具有45°方向操纵两个机构联动能力。
6. 支腿回路(1)要求垂直支腿不泄漏,具有很强的自锁能力(不软腿)。
(2)要求前后组支腿可以进行单独调整。
(3)要求支腿能够承载最大起重时的压力,并且有足够的防倾翻力矩。
(4)起重机行走时不产生掉腿现象。
三:汽车起重机液压系统的工作原理总成1支腿收放回路由于汽车轮胎支撑能力有限,且为弹性变形体,作业时很不安全,故在起重作业前必须放下前、后支腿,用支腿承重使汽车轮胎架空。
在行驶时又必须将支腿收起,轮胎着地。
为此,在汽车的前、后两端各设置两条支腿,每条支腿均配置有液压缸。
如图前支腿两个液压缸同时用一个三位四通手动换向阀7 控制其收、放动作,而后支腿两个液压缸则用另一个三位四通手动换向阀11 控制其收、放动作。
汽车起重机液压系统工作原理及性能概述液压起重机系统主要由液压泵、液压缸、控制阀、油箱、油管路等组成。
系统通过泵将液体从油箱中抽取并提供给液压缸,通过控制阀调节液体的流动方向和流量,进而实现起重机各种动作,比如起升、变幅、回转和伸缩等。
起重机液压系统相比其他传动系统具有几个优点:一是可靠性高,液压元件工作稳定可靠,容易维护;二是传动效率高,液体传递压力时能量损失较小;三是运动平稳,液体的压力传递和控制较为快速灵活;四是适应性广,液压系统可以根据不同的工况和工作要求调节工作流量和压力。
液压泵是液压系统的动力源,它产生流体的流动和压力。
液压泵通常采用齿轮泵、柱塞泵或液压马达等,能够将外界输送来的动力源转化为液压系统所需要的流体流动,从而提供力量进行起重机的工作。
液压缸是液压系统中的执行元件,它将液压能转化为机械能。
液压系统中的液压缸主要有升降液压缸、伸缩液压缸和变幅液压缸等,它们通过液压系统的工作产生不同的驱动力和动作。
控制阀是液压系统的控制元件,它根据起重机的工作需求控制液体的流动和压力。
控制阀通常有单向阀、调速阀、电磁阀、换向阀等不同类型,通过连通或切断液压系统的通道,控制液体的流向和流量,从而实现起重机的各种动作。
液压油箱是液压系统中贮存液压油的容器,同时也起到散热、过滤和减压的作用。
液压系统会产生大量的热量,液压油箱通过尺寸适当和散热装置来散热,防止液压油的温度过高。
同时,液压油箱还配有滤油器和回油管路,通过过滤和回收使用的液压油,保持液压油的净化程度和流动性能。
液压油管路是液压系统的血管系统,它将液压泵的输出压力传递到液压缸和控制阀。
液压油管路通常采用高强度和耐磨损的钢管制作,通过液压油管和接头连接,实现液体的传递和控制。
总之,汽车起重机液压系统是利用液体传递压力实现起重机各种动作的重要组成部分。
它的工作原理和性能直接影响到起重机的运行效果和安全性。
一个稳定和有效的液压系统需要具备压力稳定、流量合理、密封可靠、反应灵敏等特点,并需要定期维护和检查,以确保液压系统的可靠性和稳定性。
图是Q2-8 型汽车起重机外形简图。
它由汽车1 , 回转机构2 , 前、后支腿3 , 吊臂变幅
液压缸4 , 吊臂伸缩液压缸5 , 起升机构6 和基本臂7 组成。
它能以较高速度行走, 机动性好;又能用于起重。
它在起重时, 动作顺序为: 放下后支腿→放下前支腿→调整吊臂长度→调整吊臂起落角度→起吊→回转→落下载重→收起前支腿→收起后支腿→ 起吊作业结束。
最大起重力80kN ( 幅度3m) , 最大起重高度11 .5m。
汽车起重机的工作特点是各执行元件动作简单、位置精度不高, 但动作互不影响。
它作为起重用, 常工作在有冲击、振动, 温度变化大和环境差的条件下, 所以要求液压系统工作压力为中、高压, 安全性要好。
Q2-8 型汽车起重机液压系统如所示。
它主要由支腿收放、回转机构、吊臂伸缩、吊臂变幅和起升机构5 个局部油路组成。
液压泵由汽车发动机通过装在汽车底盘变速箱上的取力箱驱动。
液压泵、滤油器11、安全阀3、开关10、多路换向阀1 和支腿液压缸都装在回转机构以下(下车部分)。
其他液压元件和油箱都装在回转机构以上(上车部分) , 兼作配重。
上车和下车油路通过中心回转接头9 连通。
阀组1 和2 都是M 型中位机能的串联多路换向阀。
系统所有执行元件都不工作时, 液压泵输出的压力油经各换向阀中位回油箱卸载。
系统有1个以上执行元件工作时, 液压泵输出的压力油依次流经前支腿、后支腿、回转机构、伸缩缸、变幅缸和起升机构回路的执行元件或换向阀中位(该回路不工作时) 回油箱。
此时, 液压泵不卸载, 操作者可操作一个换向阀, 使单个执行元件动作; 也可同时操作几个换向阀, 使几个执行元件在不满载的条件下同时动作。
1 .支腿收放
在起重作业时, 必须放下支腿, 使汽车轮胎架空, 以免受重负载。
在汽车行驶时, 必须收起支腿。
汽车后轮的前、后各备有一对支腿, 每个支腿靠一个液压缸驱动收放, 靠一对液控单向阀(也叫双向液压锁) 保压维持其收放位置, 防止起重作业过程中由于液压缸上腔泄漏而发生“软腿”现象; 也防止汽车行走过程中由于液压缸下腔泄漏而造成支腿自行下落。
放支腿过程:先将多路换向阀 1 的阀 B 换至左位, 压力油进入后支腿的两液压缸上腔, 下腔回油, 后支腿放下, 再将阀B 换回中位, 液压锁锁住后支腿;将阀A 换至左位, 前支腿的两液压缸下行, 前支腿放下, 再将阀A 换回中位, 液压锁锁住前支腿。
收支腿过程: 先将阀A 换到右位, 前支腿的两液压缸下腔进压力油, 上腔回油, 等两前支腿收回后, 再将阀 A 换回中位, 前支腿被锁住。
用同样的办法, 将阀B 先换至右位, 等后支腿收回后, 再将阀B 换回中位, 后支腿被锁住。
2 .回转机构转位
在回转机构中, 用一个双向液压马达通过机械传动装置驱动转盘。
将换向阀C换至左位
或右位, 液压马达便带动转盘低速向左、右旋转。
由于液压马达转速低, 转盘转到合适的位置时, 将换向阀C换回中位, 液压马达能制动锁住, 不必另外设置马达制动回路。
3 .吊臂伸缩
吊臂由基本臂和伸缩臂组成, 伸缩臂套在基本臂内。
吊臂的伸缩由一伸缩液压缸实现, 液压回路也是采用平衡阀的平衡回路。
操作换向阀D, 吊臂可进行伸出、回缩或停止动作。
在吊臂停止回缩时, 平衡阀可防止吊臂因自重而下降。
4 .吊臂变幅
用一液压缸改变起重臂的角度(称为变幅) , 其液压回路也是平衡阀控制的平衡回路。
操作换向阀E, 重臂可作增幅、减幅或停止动作。