小学五年级奥数尾数与余数练习题(举一反三)
- 格式:doc
- 大小:66.00 KB
- 文档页数:3
尾数与余数练习一1、317除以一个两位数后余数是2,符和条件的两位数有哪些?2、写出除349后余4的全部两位数。
3、写出除1095后余3的全部三位数。
练习二1、61×61×61×…×61(2011个61)积的尾数是几?2、(31×36)×(31×36)×…×(31×36)(50个31×36)积的尾数是几?3、9×9×9×…×9(91个9)积的个位数是几?练习三1、555…555(2001个5)÷13,当商是整数时,余数是几?2、下列各小题中,当商是整数时,余数各是多少?(1)、666…6(50个6)÷4(2)、888…8(80个8)÷7(3)、444…4(1000个4)÷74(4)、111…1(1000个1)÷53、把化成小数,那么小数点后面第100位上的数字是多少?练习四1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。
在这一串数中,第1991个数被3除,所得的余数是多少?2、一列数1,2,4,7,11,16,22,29,…。
这一列数的规律是第二个数比第一个数多1;第三个数比第二个数多2;第四个数比第三个数多3,以次类推,这列数左起第1996个数被5除余数是几?3.有一串数:5,8,13,21,34,55,89,…。
其中,从第三个数起,每个数恰好是前两个数的和。
在这串数中,第1000个数被3除后所得的余数是多少?练习五1、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?2、甲数除以9余7,乙数除以9余6,丙数除以9余5,那么(甲+乙+丙)÷9还有余数吗?3、。
五年级奥数第6周尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
例题1 写出除213后余3的全部两位数。
分析因为213=210+3,把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21,5×7=35,2×3×5=30,2×3×7=42,一共有7个两位数。
练习一1,写出除109后余4的全部两位数。
2,178除以一个两位数后余数是3,适合条件的两位数有哪些?3,写出除1290后余3的全部三位数。
例题2 (1)125×125×125×……×125[100个25]积的尾数是几?(2)(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?分析(1)因为个位5乘5,积的个位仍然是5,所以不管多少个125相乘,个位还是5;(2)每个括号里21乘26积的个位是6,我们只要分析100个6相乘,积的尾数是几就行了。
因为个位6乘6,积的个位仍然是6,所以不管多少个(21×26)连乘,积的个位还是6。
练习二1,21×21×21×……×21[50个21]积的尾数是几?2,1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?3,(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?例题3 (1)4×4×4×…×4[50个4]积的个位数是几?(2)9×9×9×…×9[51个9]积的个位数是几?分析(1)我们先列举前几个4的积,看看个位数在怎样变化,1个4个位就是4;4×4的个位是6;4×4×4的个位是4;4×4×4×4的个位是6……由此可见,积的尾数以“4,6”两个数字在不断重复出现。
五年级举一反三_第6讲_尾数和余数尾数和余数一、知识要点自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
二、精讲精练【例题1】写出除213后余3的全部两位数。
分析:因为213=210+3.把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数。
举一反三1:1.317除以一个两位数后余数是2,符合条件的两位数有哪些?2.写出除349后余4的全部两位数。
3.写出除1095后余3的全部三位数。
【例题2】(1)9×9×9×……×9[99个9]积的尾数是几?(2)0.4×0.4×0.4×……×0.4×9×9×9×……×9[100个0.4和50个9]积的尾数是几?分析:(1)一个9的个位是9,两个9的个位是1,三个9的个位是9,一次类推,个位按9,1不断重复,那么,99÷2=49....1,共有49个循环,余1,则最后的个位数字是,9;(2)小数乘法运算,开始不考虑小数点,所以在此也不考虑小数点。
一个4的积,个位数字是4,两个4的积,个位是6,三个4的积,个位是4,以此类推,个位按4,6重复出现,那么共有100÷2=50个循环,最后一个尾数是6。
50个9相乘,最后一个是1。
前后两部分相乘,尾数应是6×1=56,也就是6.举一反三2:1.61×61×61×……×61[2011个61]积的尾数是几?2.9×9×9×…×9[91个9]积的个位数是几?3.(31×36)×(31×36)×……×(31×36)[50个(31×36)]积的尾数是几?【例题3】已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。
五年级举一反三奥数题及答案B版五年级的奥数题目通常包含一些基础的数学概念和逻辑推理,以下是一些典型的五年级奥数题目及其答案:1. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。
求第10项的值。
答案:数列的前几项为1,2,3,6,9,21,45,110,253,610。
第10项的值为610。
2. 题目:有5个盒子,每个盒子里分别装有1,2,3,4,5个球。
现在要从这些盒子里取出6个球,使得取出的球的总数为10。
问有多少种不同的取法?答案:可以有以下取法:(1, 2, 3, 4),(1, 2, 3, 5),(1, 2, 4, 5),(1, 3, 4, 5),(2, 3, 4, 5)。
共有5种不同的取法。
3. 题目:一个正方形的边长增加10%,它的面积增加了多少百分比?答案:假设原正方形边长为x,则面积为x^2。
增加10%后,新的边长为1.1x,面积为(1.1x)^2 = 1.21x^2。
面积增加了(1.21x^2 -x^2) / x^2 = 0.21,即增加了21%。
4. 题目:一个班级有40名学生,其中25名学生参加了数学竞赛,20名学生参加了英语竞赛。
如果至少有5名学生同时参加了数学和英语竞赛,那么只参加数学竞赛的学生有多少人?答案:设同时参加数学和英语竞赛的学生人数为x,则只参加数学竞赛的学生人数为25 - x,只参加英语竞赛的学生人数为20 - x。
根据题意,25 + 20 - x ≥ 40 + 5,解得x ≤ 5。
因此,只参加数学竞赛的学生人数至少为25 - 5 = 20人。
5. 题目:一个数字,去掉它的最高位数字后,剩下的数字是原数字的1/4。
这个数字是多少?答案:设原数字为abcd(a为最高位数字),则根据题意有abcd = 4(bcd) + a。
由于a是最高位数字,所以a只能是1或2。
如果a=1,则bcd = 1/4abcd,这是不可能的。
如果a=2,则bcd = 2(bcd) + 2,解得bcd = 2。
第一周平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数例1 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?分析与解答:(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。
1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习一1,一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2,甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。
求四人的平均体重是多少千克?3,甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?例2 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。
求这个班男生有多少人?分析:女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。
全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。
【经典】小学奥数举一反三(五年级)全图文百度文库一、拓展提优试题1.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.2.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…3.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物?4.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.5.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.6.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.7.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.8.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.9.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.10.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.11.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四=平方米.边形EFGH12.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.13.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.14.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.15.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分=.(甲和乙)的面积差是5.04,则S△ABC【参考答案】一、拓展提优试题1.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.2.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.3.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)=[2×1+11+4×3﹣10]÷3=[2+11+12﹣10]÷3=15÷3=5(人)2×4+(5﹣2)×3+11=8+3×3+11=8+9+11=28(件)答:一共有28件礼物.4.解:(6+2)×[(5×6)÷2]=8×15,=120(个).答:小松鼠一共储藏了120个松果.故答案为:120.5.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.6.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.7.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.8.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.9.解:最大的三位偶数是998,要满足A 最小且A <B <C <D <E ,则E 最大是998,D 最大是996,C 最大是994,B 最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A 最小是326.故答案为:326.10.解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.11.解:根据分析,如下图所示:长方形S 长方形ABCD =S 长方形XYZR +△AEF +△EFR +△FBG +△FGX +△HCG +△HGY +△DHE +△HEZ=S 长方形XYZR +2×(a +b +c +d )⇒60=4+2×(a +b +c +d )⇒a +b +c +d =28四边形S 四边形EFGH =△EFR +△FGX +△HGY +△HEZ +S 长方形XYZR=a +b +c +d +S 长方形XYZR=28+4=32(平方米).故答案是:32.12.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240. 如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可. 大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201613.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.14.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:1415.解:根据分析,S △BDC =S △EBC ⇒S △DOB =S △EOC ,∴S 甲﹣S 乙=(S 甲+S △DOB )﹣(S 乙+S △EOC )=5.04,又∵S △BDC :S △DEC =BC :DE =2:1即:S △BDC =2S △DEC∴S 四边形DECB =3S △DEC ;S △ADE =S △DEC∴S △ABC =S 四边形DECB +S △ADE =4S △DEC ,设S△DEC =X,则S△BDC=2X,故有2X﹣X=5.04,∴X=5.04,S△ABC =4S△DEC=4X=4×5.04=20.16故答案是:20.16。
分类数图形、尾数和余数分类数图形专题简析:我们在数数的时候,遵循不重复、不遗漏的原则,不能使数出的结果准确但是在数图形的个数的时候,往往就不容易了。
分类数图形的方法能够帮助我们找到图形的规律,从而有秩序、有条理并且正确地数出图形的个数。
例题1下面图形中有多少个正方形?分析:图中的正方形的个数可以分类数,如由一个小正方形组成的有3=18个,2X2的正方形有5X 2=10个,3X 3的正方形有4X仁4个。
共有18+10 + 4=32个正方形。
练习一3,下图中共有多少个正方形,多少个三角形?6X因此图中1,下图中共有多少个正方形?例题2下图中共有多少个三角形?分析为了保证不漏数又不重复,我们可以分类来数三角形,然后再把数出的各类三角形的个数相加。
(1)图中共有6个小三角形;(2)由两个小三角形组合的三角形有3个;(3)由三个小三角形组合的三角形有4个;(4)由六个小三角形组合的三角形有1个。
所以共有6+3+4+仁14个三角形。
练习二1, 下面图中共有多少个三角形?3,数一数,图中共有多少个三角形?例题3数出下图中所有三角形的个数。
分析和三角形AFG —样形状的三角形有5个;和三角形ABF—样形状的三角形有10个;和三角形ABG-样形状的三角形有5个;和三角形ABE一样形的三角形有5个;和三角形AMD H样形状的三角形有5个,共35个三角形。
练习三数出下面图形中分别有多少个三角形例题4如下图,平面上有12个点,可任意取其中四个点围成一个正方形, 这样的正方形有多少个?分析把相邻的两点连接起来可以得到下面图形,从图中可以看出:(1)最小的正方形有6个;(2)由4个小正方形组合而成的正方形有2个;(3)中间还可围成2个正方形。
所以共有6+2+ 2=10个。
练习四1, 下图中共有8个点,连接任意四点围成一个长方形,一共能围成多少个长方形?•••・•••・2, 下图中共有6个点,连接其中的三点围成一个三角形,一共能围成多少个三角形?3, 下图中共有9个点,连接其中的四个点围成一个梯形,一共能围成多少个梯形?例题5数一数,下图中共有多少个三角形?1, 单一的小三角形有16个;2, 两个小三角形组合的有10个;3, 四个小三角形组合的有8个;4,八个小三角形组合的有2个。
五年级小学奥数举一反三题库练习二1.两组学生进行跳绳比赛,平均每人跳 152 下。
甲组有 6 人,平均每人跳第一周平均数练习一1.一次考试,甲、乙、丙三人平均分 91 分,乙、丙、丁三人平均分89 分,甲、丁二人平均分95 分。
问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重 120 千克,甲、丙、丁三人共重 126 千克,丙、丁二人的平均体重是 40 千克。
求四人的平均体重是多少千克?3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18 棵,甲、丙两组平均每组植树17 棵,乙、丙两组平均每组植树19 棵。
三个小组各植树多少棵?140 下,乙组平均每人跳160 下。
乙组有多少人?2.有两块棉田,平均每亩产量是92.5 千克,已知一块地是 5 亩,平均每亩产量是 101.5 千克;另一块田平均每亩产量是 85 千克。
这块田是多少亩?3.把甲级和乙级糖混在一起,平均每千克卖 7 元,乙知甲级糖有 4 千克,平均每千克 8 元;乙级糖有 2 千克,平均每千克多少元?练习三1.一个技术工人带四个 4 通工人完成一项工作,每个普通工人各得到200 元,这位技术工人的收入比他们 5 人的平均收入还多80 元,问这位技术工人得到多少元 ?2. 小宇与 5 位同学一起参加数学3. 小明前五次的数学测验的平均竞赛,那 5 位同学的成绩分别为 79 分,成绩是 88 分,为了使平均成绩达到82 分,90 分,85 分,84 分,小宇的成92.5 分,小明要连续考多少次满分?绩比 6 人的平均成绩高 5 分,求小宇的学习成绩 ?练习五3. 两组工人加工零件,第一组有30 人,平均每人加工 60 个零件。
第二 1. 甲乙丙三个数的平均数是82,组有 25 人,平均每人比两组工人加工甲乙两数的平均数是 86,乙丙两数的的平均数多 6 个,两组工人平均每人加平均数是 77,求乙数是多少?甲、丙工多少个零件 ? 两个数的平均数是多少 ?2. 小华的前几次数学测验的平均成绩是 80 分,这一次得了 100 分,正练习四好把前几次的平均成绩提高到85 分,1. 小明前几次数学测试的平均成这次是他第几次测验?绩为 84 分,这次要考 100 分才能把数 3. 五个数排一排,平均数是9,如学平均成绩提高到 86 分,问他是第几果前四个数的平均数是 7,后四个数平次数学测验 ? 均数是 10,那么第一个数和第五个数2.老师带着几位同学在做花,老师的平均数是多少?做了 21 朵,同学平均每人做了 5 朵,如果师生合起来算,正好平均每人做了7朵,求多少个同学在做花?第二周等差数列练习一1.求等差数列 1,4,7,10,13,的第 20 项和第 80 项。
尾数与余数
练习一
1、317除以一个两位数后余数是2,符和条件的两位数有哪些?
2、写出除349后余4的全部两位数。
3、写出除1095后余3的全部三位数。
练习二
1、61×61×61×…×61(2011个61)积的尾数是几?
2、(31×36)×(31×36)×…×(31×36)(50个31×36)积的尾数是几?
3、9×9×9×…×9(91个9)积的个位数是几?
练习三
1、555…555(2001个5)÷13,当商是整数时,余数是几?
2、下列各小题中,当商是整数时,余数各是多少?
(1)、666…6(50个6)÷4
(2)、888…8(80个8)÷7
(3)、444…4(1000个4)÷74
(4)、111…1(1000个1)÷5
3、把化成小数,那么小数点后面第100位上的数字是多少?
练习四
1、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是
前两个数的和。
在这一串数中,第1991个数被3除,所得的余数是多少?
2、一列数1,2,4,7,11,16,22,29,…。
这一列数的规律是第二个数比第一个数多1;第
三个数比第二个数多2;第四个数比第三个数多3,以次类推,这列数左起第1996个数被5除余数是几?
3.有一串数:5,8,13,21,34,55,89,…。
其中,从第三个数起,每个数恰好是前两个数的和。
在这串数中,第1000个数被3除后所得的余数是多少?
练习五
1、甲数除以5余3,乙数除以5余2,甲数比乙数大,那么甲、乙两数的和除以5余数是
几?甲、乙两数的差除以5余数是几?甲、乙两数的积除以5余数是几?
2、甲数除以9余7,乙数除以9余6,丙数除以9余5,那么(甲+乙+丙)÷9还有余数
吗?
3、。