pid控制原理:看完这三个故事你就明白了
- 格式:doc
- 大小:18.16 KB
- 文档页数:11
简述pid控制算法原理PID控制算法原理PID控制算法是一种常用的控制算法,用于实现对于某个系统的精确控制。
PID算法的全称是“比例-积分-微分”算法,它是通过不断地对系统的误差进行计算和调整,来实现对系统控制的目标的。
比例控制比例控制是PID控制算法的第一个步骤。
它通过计算系统当前的误差,来确定需要进行的调整。
比例控制的计算方式是将当前的误差乘以一个比例系数,然后将结果作为控制信号输出给系统。
比例控制的主要作用是对于系统的误差做出快速的反应和调整,但是它无法解决系统的稳定性问题。
积分控制积分控制是PID控制算法的第二个步骤。
它通过对于系统误差的积分来确定需要进行的调整。
积分控制的计算方式是将误差的积分值乘以一个积分系数,然后将结果作为控制信号输出给系统。
积分控制的主要作用是对于系统的稳态误差做出调整,以实现系统的稳定性。
微分控制微分控制是PID控制算法的第三个步骤。
它通过对于系统误差的微分来确定需要进行的调整。
微分控制的计算方式是将误差的微分值乘以一个微分系数,然后将结果作为控制信号输出给系统。
微分控制的主要作用是对于系统的瞬态误差做出调整,以实现系统的快速响应和稳定性。
PID控制将比例控制、积分控制和微分控制三个步骤合并在一起,就形成了PID控制算法。
PID控制算法通过不断地对于系统误差的计算和调整,来实现对于系统的精确控制。
同时,PID控制算法也可以通过对于比例系数、积分系数和微分系数的调整,来实现对于系统控制的精准度和响应速度的优化。
总结PID控制算法是一种常用的控制算法,它可以通过对于系统误差的计算和调整,来实现对于系统的精确控制。
PID控制算法包括比例控制、积分控制和微分控制三个步骤,同时也可以通过对于比例系数、积分系数和微分系数的调整,来实现对于系统控制的精准度和响应速度的优化。
pid调节的原理PID调节的原理。
PID调节是一种常用的控制系统调节方法,它通过比例、积分和微分三个部分的组合来实现对系统的精确控制。
在工业生产和自动化控制领域,PID调节被广泛应用于温度、压力、流量等各种参数的控制。
本文将从PID调节的原理入手,介绍其工作原理和应用。
PID调节的原理可以简单概括为比例控制、积分控制和微分控制三个部分的组合。
比例控制是根据被控对象的偏差大小来调节输出量,偏差越大,输出量的调节越大。
积分控制是根据偏差的累积值来调节输出量,用于消除静差。
微分控制是根据偏差的变化率来调节输出量,用于抑制系统的震荡。
三者的组合可以有效地调节系统的稳定性和动态性能。
在PID调节中,比例控制起到了响应速度的作用,当偏差较大时,输出量的变化较快,能够快速调节系统的偏差。
积分控制则能够消除系统的静差,使系统更加稳定。
而微分控制则可以抑制系统的震荡,提高系统的动态性能。
三者相互配合,可以使系统在设定值附近快速、稳定地运行。
PID调节的原理可以通过数学模型来描述,其数学表达式为:\[ u(t) = K_p e(t) + K_i \int_{0}^{t} e(τ)dτ + K_d \frac{de(t)}{dt} \]其中,u(t)为输出量,e(t)为偏差,Kp、Ki和Kd分别为比例、积分和微分系数。
通过调节这三个系数,可以实现对系统的精确控制。
在实际应用中,PID调节可以通过调节比例系数来改变系统的响应速度,通过调节积分系数来消除系统的静差,通过调节微分系数来抑制系统的震荡。
在不同的系统中,这三个系数的取值会有所不同,需要根据系统的特性进行调试。
总的来说,PID调节通过比例、积分和微分三个部分的组合来实现对系统的精确控制。
比例控制、积分控制和微分控制分别起到了响应速度、消除静差和抑制震荡的作用。
这种调节方法在工业生产和自动化控制领域有着广泛的应用,能够提高系统的稳定性和动态性能。
通过本文的介绍,相信读者对PID调节的原理有了更深入的了解,希望能够在实际应用中加以运用,实现对系统的精确控制。
pid控制的工作原理
PID控制是一种经典的控制方法,它通过对系统的反馈信息进行处理,输出控制信号,从而实现对系统的自动调节。
其工作原理如下:
1. 比例控制:PID控制器首先根据当前的误差值(设定值与实际值之差)乘以比例系数Kp,得到比例控制量。
比例控制作用于增大或减小系统的输出,使得系统趋向于设定值。
2. 积分控制:PID控制器还引入了积分项,它根据误差累积值乘以积分系数Ki,得到积分控制量。
积分控制主要作用于消除系统的静差,通过积分作用使系统更快地达到设定值。
3. 微分控制:PID控制器最后引入了微分项,它根据误差变化率乘以微分系数Kd,得到微分控制量。
微分控制主要作用于抑制系统的震荡,并提高系统的响应速度。
PID控制器的输出信号等于以上三个控制量之和,即PID输出= 比例控制量 + 积分控制量 + 微分控制量。
通过调节比例系数Kp、积分系数Ki和微分系数Kd的数值,可以改变PID控制器的性能,以适应不同的系统需求。
PID控制器的原理是通过不断地调整控制量,使系统的反馈信号与设定值之间的误差最小化,从而达到对系统的精确控制。
它能够快速、准确地稳定系统的输出,并且具有简单、易于实现的特点,因此广泛应用于工业控制、汽车控制、机器人控制等领域。
PID控制原理PID控制原理3個故事:看完您就明白了。
1、:PID的故事小明接到這樣一個任務:有一個水缸點漏水(而且漏水的速度還不一定固定不變),要求水面高度維持在某個位置,一旦發現水面高度低於要求位置,就要往水缸里加水。
小明接到任務後就一直守在水缸旁邊,時間長就覺得無聊,就跑到房裡看小說了,每30分鐘來檢查一次水面高度。
水漏得太快,每次小明來檢查時,水都快漏完了,離要求的高度相差很遠,小明改為每3分鐘來檢查一次,結果每次來水都沒怎麼漏,不需要加水,來得太頻繁做的是無用功。
幾次試驗後,確定每10分鐘來檢查一次。
這個檢查時間就稱為採樣週期開始小明用瓢加水,水龍頭離水缸有十幾米的距離,經常要跑好幾趟才加夠水,於是小明又改為用桶加,一加就是一桶,跑的次數少了,加水的速度也快了,但好幾次將缸給加溢出了,不小心弄濕了幾次鞋,小明又動腦筋,我不用瓢也不用桶,老子用盆,幾次下來,發現剛剛好,不用跑太多次,也不會讓水溢出。
這個加水工具的大小就稱為比例係數小明又發現水雖然不會加過量溢出了,有時會高過要求位置比較多,還是有打濕鞋的危險。
他又想了個辦法,在水缸上裝一個漏斗,每次加水不直接倒進水缸,而是倒進漏斗讓它慢慢加。
這樣溢出的問題解決了,但加水的速度又慢了,有時還趕不上漏水的速度。
於是他試著變換不同大小口徑的漏斗來控制加水的速度,最後終於找到了滿意的漏斗。
漏斗的時間就稱為積分時間小明終於喘了一口,但任務的要求突然嚴了,水位控制的及時性要求大大提高,一旦水位過低,必頇立即將水加到要求位置,而且不能高出太多,否則不給工錢。
小明又為難了!於是他又開努腦筋,終於讓它想到一個辦法,常放一盆備用水在旁邊,一發現水位低了,不經過漏斗就是一盆水下去,這樣及時性是保證了,但水位有時會高多了。
他又在要求水面位置上面一點將水鑿一孔,再接一根管子到下面的備用桶裡這樣多出的水會從上面的孔裡漏出來。
這個水漏出的快慢就稱為微分時間看到幾個問採樣週期的帖子,臨時想了這麼個故事。
[转]PID控制算法原理PID控制算法是⼯业界使⽤极其⼴泛的⼀个负反馈算法,相信这个算法在做系统软件时也有⽤武之处,这⾥摘录了知乎上的⼀篇⽂章,后⾯学习更多后⾃⼰总结⼀篇以下为原⽂:PID控制应该算是应⽤⾮常⼴泛的控制算法了。
⼩到控制⼀个元件的温度,⼤到控制⽆⼈机的飞⾏姿态和飞⾏速度等等,都可以使⽤PID控制。
这⾥我们从原理上来理解PID控制。
PID(proportion integration differentiation)其实就是指⽐例,积分,微分控制。
先把图⽚和公式摆出来,看不懂没关系。
(⼀开始看这个算法,公式能看懂,具体怎么⽤怎么写代码也知道,但是就是不知道原理,不知道为什么要⽤⽐例,微分,积分这3个项才能实现最好的控制,⽤其中两个为什么不⾏,⽤了3个项能好在哪⾥,每⼀个项各有什么作⽤)总的来说,当得到系统的输出后,将输出经过⽐例,积分,微分3种运算⽅式,叠加到输⼊中,从⽽控制系统的⾏为,下⾯⽤⼀个简单的实例来说明。
⽐例控制算法我们先说PID中最简单的⽐例控制,抛开其他两个不谈。
还是⽤⼀个经典的例⼦吧。
假设我有⼀个⽔缸,最终的控制⽬的是要保证⽔缸⾥的⽔位永远的维持在1⽶的⾼度。
假设初始时刻,⽔缸⾥的⽔位是0.2⽶,那么当前时刻的⽔位和⽬标⽔位之间是存在⼀个误差的error,且error 为0.8.这个时候,假设旁边站着⼀个⼈,这个⼈通过往缸⾥加⽔的⽅式来控制⽔位。
如果单纯的⽤⽐例控制算法,就是指加⼊的⽔量u和误差error是成正⽐的。
即u=kp*error假设kp取0.5,那么t=1时(表⽰第1次加⽔,也就是第⼀次对系统施加控制),那么u=0.5*0.8=0.4,所以这⼀次加⼊的⽔量会使⽔位在0.2的基础上上升0.4,达到0.6.接着,t=2时刻(第2次施加控制),当前⽔位是0.6,所以error是0.4。
u=0.5*0.4=0.2,会使⽔位再次上升0.2,达到0.8.如此这么循环下去,就是⽐例控制算法的运⾏⽅法。
pid温度控制原理PID温度控制原理。
PID温度控制是工业自动化控制中常见的一种控制方式,它通过对温度传感器采集到的信号进行处理,调节加热或冷却设备的工作状态,以实现对温度的精确控制。
PID控制器是由比例(P)、积分(I)、微分(D)三个部分组成的控制算法,下面将详细介绍PID温度控制的原理及其应用。
一、比例控制(P)。
比例控制是根据温度偏差的大小来调节控制器输出的控制量,其原理是控制量与偏差成正比例关系。
当温度偏差较大时,比例控制器会输出较大的控制量,从而加快温度的调节速度;当温度接近设定值时,控制量会逐渐减小,以避免温度波动过大。
比例控制能够快速响应温度变化,但无法完全消除稳态误差。
二、积分控制(I)。
积分控制是根据温度偏差的累积量来调节控制器输出的控制量,其原理是控制量与偏差的积分成正比例关系。
积分控制能够消除稳态误差,提高温度控制的精度,但过大的积分时间会导致控制系统的超调和振荡。
三、微分控制(D)。
微分控制是根据温度偏差的变化率来调节控制器输出的控制量,其原理是控制量与偏差的微分成正比例关系。
微分控制能够减小温度控制系统的超调和振荡,提高系统的动态响应速度,但过大的微分时间会导致控制系统的灵敏度降低,甚至出现不稳定的情况。
四、PID控制。
PID控制是将比例、积分和微分控制结合起来的一种综合控制方式,通过调节P、I、D三个参数的取值,可以实现对温度控制系统的动态性能、稳态精度和鲁棒性进行优化。
在实际应用中,需要根据具体的温度控制对象和控制要求来合理选择PID参数,以实现最佳的控制效果。
五、PID控制在温度控制中的应用。
PID控制在工业生产中被广泛应用于温度控制系统,比如热处理炉、注塑机、食品加工设备等。
通过PID控制器对加热或冷却设备进行精确控制,可以确保生产过程中温度的稳定性和精度,提高产品质量和生产效率。
六、总结。
PID温度控制原理是一种常用的控制方式,通过比例、积分和微分三个部分的综合作用,可以实现对温度控制系统的精确调节。
PID控制原理:看完这三个故事,你就明白了一、PID的故事小明接到这样一个任务:有一个水缸点漏水(而且漏水的速度还不一定固定不变),要求水面高度维持在某个位置,一旦发现水面高度低于要求位置,就要往水缸里加水。
小明接到任务后就一直守在水缸旁边,时间长就觉得无聊,就跑到房里看小说了,每30分钟来检查一次水面高度。
水漏得太快,每次小明来检查时,水都快漏完了,离要求的高度相差很远,小明改为每3分钟来检查一次,结果每次来水都没怎么漏,不需要加水,来得太频繁做的是无用功。
几次试验后,确定每10分钟来检查一次。
这个检查时间就称为采样周期。
开始小明用瓢加水,水龙头离水缸有十几米的距离,经常要跑好几趟才加够水,于是小明又改为用桶加,一加就是一桶,跑的次数少了,加水的速度也快了,但好几次将缸给加溢出了,不小心弄湿了几次鞋,小明又动脑筋,我不用瓢也不用桶,老子用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。
这个加水工具的大小就称为比例系数。
小明又发现水虽然不会加过量溢出了,有时会高过要求位置比较多,还是有打湿鞋的危险。
他又想了个办法,在水缸上装一个漏斗,每次加水不直接倒进水缸,而是倒进漏斗让它慢慢加。
这样溢出的问题解决了,但加水的速度又慢了,有时还赶不上漏水的速度。
于是他试着变换不同大小口径的漏斗来控制加水的速度,最后终于找到了满意的漏斗。
漏斗的时间就称为积分时间。
小明终于喘了一口,但任务的要求突然严了,水位控制的及时性要求大大提高,一旦水位过低,必须立即将水加到要求位置,而且不能高出太多,否则不给工钱。
小明又为难了!于是他又开努脑筋,终于让它想到一个办法,常放一盆备用水在旁边,一发现水位低了,不经过漏斗就是一盆水下去,这样及时性是保证了,但水位有时会高多了。
他又在要求水面位置上面一点将水凿一孔,再接一根管子到下面的备用桶里这样多出的水会从上面的孔里漏出来。
这个水漏出的快慢就称为微分时间。
看到几个问采样周期的帖子,临时想了这么个故事。
pid调节器工作原理
PID调节器是一种常用的控制器,用于自动调节系统的输出以
使其接近设定值。
它的工作原理主要包括三个部分:比例、积分和微分。
首先,比例部分根据当前的测量值与设定值之间的差距,计算出一个比例调节量。
比例调节量与差距成正比,即差距越大,比例调节量越大。
这样可以快速地减小差距,但由于比例关系较简单,会使得系统出现超调现象。
接着,积分部分根据过去一段时间内的差距积累计算出一个积分调节量。
积分调节量与差距的积分成正比,即差距积分越大,积分调节量越大。
通过积分部分的作用,可以消除系统的稳态误差,但积分时间过长会导致系统响应速度变慢。
最后,微分部分根据当前的差距变化率计算出一个微分调节量。
微分调节量与差距的微分成正比,即差距变化越快,微分调节量越大。
微分部分可以提高系统的稳定性和响应速度,但过大的微分调节量会引入噪声和振荡。
将比例、积分和微分的调节量相加,即可得到最终的输出信号,用于控制系统的执行器,使系统的输出接近设定值。
PID调节
器根据实际需要,通过调整三个调节参数的数值大小,可以实现不同的控制效果。
总之,PID调节器通过比例、积分和微分三个部分的配合作用,
根据系统的实际情况动态调整输出信号,以实现系统的自动调节和控制。
pid控制原理是什么
PID控制原理是什么。
PID控制器是一种广泛应用于工业控制系统中的控制器,它通过对系统的反馈
信号进行处理,以实现对系统的精确控制。
PID控制器由比例(P)、积分(I)、
微分(D)三个部分组成,通过对这三个部分的合理调节,可以实现对系统的快速
响应、稳定性和鲁棒性。
首先,我们来介绍一下PID控制器的三个部分。
比例部分是根据偏差的大小来
调节控制量的大小,它能够快速地对系统做出反应,但不能消除稳态误差;积分部分是根据偏差的累积值来调节控制量的大小,它能够消除稳态误差,但会导致系统的超调和震荡;微分部分是根据偏差的变化率来调节控制量的大小,它能够提高系统的稳定性,但会增加系统的灵敏度。
PID控制器的工作原理是通过对系统的误差信号进行处理,产生控制量,使系
统的输出信号与期望值尽可能接近。
具体来说,当系统的输出信号与期望值存在偏差时,PID控制器会根据比例、积分和微分三个部分的调节,生成一个合适的控制量,通过作用于执行机构,使系统的输出信号逐渐趋向期望值。
在实际应用中,PID控制器通常需要根据系统的特性进行参数调节,以达到最
佳的控制效果。
比例增益的大小决定了系统的灵敏度和超调量,积分时间常数决定了系统的稳态误差消除能力,微分时间常数决定了系统的抑制震荡能力。
通过合理地调节这些参数,可以使PID控制器在不同的系统中都能够达到理想的控制效果。
总的来说,PID控制原理是基于对系统的反馈信号进行处理,通过比例、积分
和微分三个部分的合理调节,实现对系统的精确控制。
PID控制器在工业控制系统
中有着广泛的应用,能够满足不同系统的控制需求,是一种非常重要的控制方法。
pid算法原理PID(Proportional-Integral-Derivative)算法是一种用于控制系统的经典控制算法。
它通过根据当前误差的偏差量,计算出调节器的输出控制信号。
PID算法通过比例、积分和微分三个部分的组合,可以实现对系统的精确控制。
本文将介绍PID算法的原理及其在控制系统中的应用。
一、PID算法原理PID算法的核心思想是根据系统的误差来调节输出控制信号,使得系统的实际输出与期望输出保持一致。
PID算法通过计算比例项、积分项和微分项的加权和,来得到最终的控制输出。
下面将分别介绍这三个部分的作用和计算公式。
1. 比例项(Proportional)比例项是根据误差的大小直接计算输出控制信号的一部分。
它的作用是使系统对于误差的响应更加敏感。
比例项的计算公式为:output = Kp * error其中,Kp为比例增益,error为当前误差。
2. 积分项(Integral)积分项是用来消除系统稳态误差的。
它通过对误差的累积进行控制,使系统能够快速补偿由于比例项无法完全补偿的长期稳态误差。
积分项的计算公式为:output = Ki * ∫(error dt)其中,Ki为积分增益,error为当前误差,∫(error dt)表示误差的累积量。
3. 微分项(Derivative)微分项是用来预测系统未来的变化趋势的。
它通过计算误差的变化率来调节控制输出,使得系统能够更加灵活地响应变化。
微分项的计算公式为:output = Kd * d(error)/dt其中,Kd为微分增益,d(error)/dt表示误差的变化率。
综合上述三部分,PID算法的最终输出可表示为:output = Kp * error + Ki * ∫(error dt) + Kd * d(error)/dt二、PID算法在控制系统中的应用PID算法广泛应用于各种自动控制系统中,例如温度控制器、电机控制器、液位控制器等。
PID算法的主要优点是简单、稳定、可靠,能够适应不同系统的控制需求。
PID控制原理:看完这三个故事,你就明白了一、PID的故事小明接到这样一个任务:有一个水缸点漏水(而且漏水的速度还不一定固定不变),要求水面高度维持在某个位置,一旦发现水面高度低于要求位置,就要往水缸里加水。
小明接到任务后就一直守在水缸旁边,时间长就觉得无聊,就跑到房里看小说了,每30分钟来检查一次水面高度。
水漏得太快,每次小明来检查时,水都快漏完了,离要求的高度相差很远,小明改为每3分钟来检查一次,结果每次来水都没怎么漏,不需要加水,来得太频繁做的是无用功。
几次试验后,确定每10分钟来检查一次。
这个检查时间就称为采样周期开始小明用瓢加水,水龙头离水缸有十几米的距离,经常要跑好几趟才加够水,于是小明又改为用桶加,一加就是一桶,跑的次数少了,加水的速度也快了,但好几次将缸给加溢出了,不小心弄湿了几次鞋,小明又动脑筋,我不用瓢也不用桶,老子用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。
这个加水工具的大小就称为比例系数小明又发现水虽然不会加过量溢出了,有时会高过要求位置比较多,还是有打湿鞋的危险。
他又想了个办法,在水缸上装一个漏斗,每次加水不直接倒进水缸,而是倒进漏斗让它慢慢加。
这样溢出的问题解决了,但加水的速度又慢了,有时还赶不上漏水的速度。
于是他试着变换不同大小口径的漏斗来控制加水的速度,最后终于找到了满意的漏斗。
漏斗的时间就称为积分时间小明终于喘了一口,但任务的要求突然严了,水位控制的及时性要求大大提高,一旦水位过低,必须立即将水加到要求位置,而且不能高出太多,否则不给工钱。
小明又为难了!于是他又开努脑筋,终于让它想到一个办法,常放一盆备用水在旁边,一发现水位低了,不经过漏斗就是一盆水下去,这样及时性是保证了,但水位有时会高多了。
他又在要求水面位置上面一点将水凿一孔,再接一根管子到下面的备用桶里这样多出的水会从上面的孔里漏出来。
这个水漏出的快慢就称为微分时间看到几个问采样周期的帖子,临时想了这么个故事。
微分的比喻一点牵强,不过能帮助理解就行了,呵呵,入门级的,如能帮助新手理解下PID,于愿足矣。
故事中小明的试验是一步步独立做,但实际加水工具、漏斗口径、溢水孔的大小同时都会影响加水的速度,水位超调量的大小,做了后面的实验后,往往还要修改改前面实验的结果。
二、控制模型:人以PID控制的方式用水壶往水杯里倒印有刻度的半杯水后停下;设定值:水杯的半杯刻度;实际值:水杯的实际水量;输出值:水壶的倒处数量和水杯舀出水量;测量传感器:人的眼睛执行对象:人正执行:倒水反执行:舀水1、P 比例控制,就是人看到水杯里水量没有达到水杯的半杯刻度,就按照一定水量从水壶里王水杯里倒水或者水杯的水量多过刻度,就以一定水量从水杯里舀水出来,这个一个动作可能会造成不到半杯或者多了半杯就停下来。
说明:P比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
2、PI 积分控制,就是按照一定水量往水杯里倒,如果发现杯里的水量没有刻度就一直倒,后来发现水量超过了半杯,就从杯里往外面舀水,然后反复不够就倒水,多了就舀水,直到水量达到刻度。
说明:在积分I控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
3、PID 微分控制,就是人的眼睛看着杯里水量和刻度的距离,当差距很大的时候,就用水壶大水量得倒水,当人看到水量快要接近刻度的时候,就减少水壶的得出水量,慢慢的逼近刻度,直到停留在杯中的刻度。
如果最后能精确停在刻度的位置,就是无静差控制;如果停在刻度附近,就是有静差控制。
说明:在微分控制D中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳,其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例P”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势。
这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例P+积分I+微分D(PID)控制器能改善系统在调节过程中的动态特性。
三、看了《PID的故事》,引发了我这样一个思考:小时候,我学习骑自行车的经历至今都使我记忆犹新。
60年代初,那时候没有现在这样的各种各样的小自行车,都是28'的大杠,什么‘永久’‘飞鸽’牌等等,而且,一般的家庭有个自行车就像现在的家庭拥有一部私家轿车差不多。
借了同学爸爸的一部,在学校操场上就和同学两个人自学了起来,没有教练!可想而知,(因为个子比较矮)摔了不少跟头,车子也伤痕累累,屁股下都磨破了。
也许我不是很聪明?但是我又不认为自己是个笨学生,因为我的每门功课都在95分以上。
为什么学个自行车就这么难呢?此事过后,我就在思考:自己学骑车的过程无疑是比较差的,这样学习肯定是不可取的。
假如今后要我教别人骑自行车,我应该如何在自己痛苦经历的基础上总结?能否以最简单的方法并以最快的速度教会别人?一般教人骑车的都会这样教导:“眼睛往前看,不要看前轮。
腰不要扭!身子要坐正,”等等。
可是学骑车的人这时身临其境,紧张的是无法掌控自己的!不是吗?其实,无论学什么,学习方法很重要,教人学习的方法更重要!一个好的老师往往能影响学生的一生!复杂与简单,往往在一念之间。
于是我总结出了学自行车的十字口诀:“车身往哪倒,龙头往哪拐!”只要一拐,车身就正了。
坐上自行车,脑子里就想着这十个字,简单吧!至于其他要求,如:“眼睛往前看,不要看前轮。
腰不要扭!身子要坐正,等等”,随便你,没有任何规定和要求。
经验告诉我,再不聪明的人不出半小时,保证让你学会骑车上路。
不信你试试!一块上学,一块工作。
为什么有人成功了?而我却离成功还有一段不小的距离?正确的学习方法你掌握住了吗在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。
增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。
增大积分时间I有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。
增大微分时间D有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。
在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤。
PID控制原理:1、比例(P)控制:比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差。
2、积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
3、微分(D)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。