光电功能材料课程-1
- 格式:ppt
- 大小:2.63 MB
- 文档页数:31
目录目录 (2)原子力显微镜的基本原理和应用实例 (3)一、基于STM概念上的AFM的发展概述 (3)二、AFM的工作原理和工作模式 (3)(1) AFM的工作原理 (3)(2) AFM的工作模式 (4)(3) AFM中针尖与样品之间的作用力 (5)三、AFM在材料分析领域的应用 (6)(1) 高分子结晶形态观察 (6)(2) 非晶态单链高分子结构观察 (7)四、小结 (8)参考文献 (9)附录: (10)Imaging of Dynamic Viscoelastic Properties of a Phase-Separated Polymer Surface by Forced Oscillation Atomic Force Microscopy (10)原子力显微镜及其应用 (13)原子力显微镜在高分子领域的应用 (18)原子力显微镜的基本原理和应用实例14119X 某人摘要:本文简要介绍了原子力显微镜的发展,阐述了原子力显微镜的工作原理、工作模式及工作中针尖与样品之间的作用力,并对其在高分子结晶形态观察和非晶态单链高分子结构观察这两个领域的应用作了综述。
关键字:原子力显微镜,针尖,高分子结晶,非单链高分子一、基于STM概念上的AFM的发展概述在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向.1933年德国Ruska和Knoll研制了第一台电子显微镜.继后,许多用于表面结构分析的现代仪器问世.如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、场离子显微镜(FIM)、俄歇电子能谱仪(AES)、光电子能谱(ESCA)等,但是多数技术都无法真正地直接观测物体的微观世界.1982年, Gerd Binnig和Heinrich Rohrer在IBM公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scanning tunneling microscope, STM)[1],使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质[2]. STM的工作原理是基于量子理论中的隧道效应.将原子线度的极细探针和被研究的样品的表面作为两个电极,当样品的表面与探针针尖的距离非常近时(一般小于1nm),在外加电场作用下,电子会穿过两个电子之间的势垒流向另一电极,从而产生隧道效应.STM的探针是由针尖与样品之间的隧道电流的变化决定的,因此STM要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构.对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节.为了克服STM的不足之处, Binnig, Quate和Gerber决定用微悬臂作为力信号的传播媒介,把微悬臂放在样品和STM的针尖之间,于1986年推出了原子力显微镜(atomic force microscope, AFM)[3] .AFM是通过探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息.因此,AFM除导电样品外,还能够观测到非导电样品的表面结构,且不需要用导电薄膜覆盖,其应用领域将更为广阔. 它得到的是对应于样品表面总电子密度的形貌,可以补充STM对样品观测得到的信息,且分辨率亦可达原子级水平[4].正如Binnig在研制出AFM之初时所指出的那样:”该仪器能测出小到单个原子间的相互作用力,若在低温条件下,甚至能检测10-18 N的微小作用力”[5].1988年,国外开始对AFM进行改进,研制出了激光检测原子力显微镜(Laser-AFM)[6-8].我国中国科学院化学所白春礼等人在1988年初成功地研制了国内第一台集计算机控制、数据分析和图像处理系统于一体的扫描隧道显微镜(STM).在同年底又研制出我国第一台原子力显微镜(AFM),其性能一下子就达到原子级分辨率.后来又在已有的STM和AFM的基础上[9,10],成功地研制出国内首台全自动Laser-AFM[11],其横向分辨率为0.13nm.以STM和AFM为基础,衍生出了一系列的扫描探针显微镜(scanning probe microscope, SPM),有激光力显微镜(LFM)、磁力显微镜(MFM)、扫描电化学显微镜(SECM)、近光光学显微镜(SNOM)、弹道电子发射显微镜(BEEM)、扫描离子电导显微镜(SICM)等.扫描探针显微镜(SPM)标志着对物质表面在纳米级上成像和分析的一个新技术领域的诞生,必将为纳米技术的发展注入新的活力.二、AFM的工作原理和工作模式(1)AFM的工作原理AFM的工作原理结构示意图见图1.图1 AFM工作原理在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针代替STM中的简单的金属极细探针.当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力),引起微悬臂偏转.扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动,通过光电检测系统(通常利用光学、电容或隧道电流方法)对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化,将信号放大与转换从而得到样品表面原子级的三维立体形貌图像.AFM的核心部件是力的传感器件,包括微悬臂(Cantilever)和固定于其一端的针尖.根据物理学原理,施加到Cantilever末端力的表达式为[12]F=KΔZ式中, ΔZ表示针尖相对于试样间的距离,K为Cantilever的弹性系数.力的变化均可以通过Cantilever被检测.根据力的检测方法,AFM可以分成两类:一类是检测探针的位移;另一类是检测探针的角度变化[3,7].由于后者在Z方向上的位移是通过驱动探针来自动跟踪样品表面形状,因此受到样品的重量及形状大小的限制比前者小.微悬臂和针尖是决定AFM灵敏度的核心.为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM的灵敏度,微悬臂的设计通常要求满足下述条件:1、较低的力学弹性系数,使很小的力就可以产生可观测的位移; 2、较高的力学共振频率;3、高的横向刚性,针尖与样品表面的摩擦不会使它发生弯曲;4、微悬臂长度尽可能短;5、微悬臂带有能够通过光学、电容或隧道电流方法检测其动态位移的镜子或电极;6、针尖尽可能尖锐.AFM仪器的发展,也可以说是微悬臂和针尖不断改进的过程.一般AFM采用微机机械加工技术制作的硅、氧化硅及氮化硅(Si3N4)微悬臂.但近年来,日、美等国相继展开了把压电微悬臂代替普通微悬臂用于AFM的研究,取得了很好的效果.我国在这方面的工作也得到了重视.(2)AFM的工作模式AFM有三种不同的工作模式:接触模式(contact mode)、非接触模式(noncontact mode)和共振模式或轻敲模式(Tapping Mode).1、接触模式接触模式包括恒力模式(constant-force mode)和恒高模式(constant-height mode).在恒力模式中,通过反馈线圈调节微悬臂的偏转程度不变,从而保证样品与针尖之间的作用力恒定,当沿x、y方向扫描时,记录Z方向上扫描器的移动情况来得到样品的表面轮廓形貌图像.这种模式由于可以通过改变样品的上下高度来调节针尖与样品表面之间的距离,这样样品的高度值较准确,适用于物质的表面分析.在恒高模式中,保持样品与针尖的相对高度不变,直接测量出微悬臂的偏转情况,即扫描器在z方向上的移动情况来获得图像.这种模式对样品高度的变化较为敏感,可实现样品的快速扫描,适用于分子、原子的图像的观察.接触模式的特点是探针与样品表面紧密接触并在表面上滑动.针尖与样品之间的相互作用力是两者相接触原子间的排斥力,约为10-8~10-11N.接触模式通常就是靠这种排斥力来获得稳定、高分辨样品表面形貌图像.但由于针尖在样品表面上滑动及样品表面与针尖的粘附力,可能使得针尖受到损害,样品产生变形,故对不易变形的低弹性样品存在缺点.2、非接触模式非接触模式是探针针尖始终不与样品表面接触,在样品表面上方5~20nm距离内扫描.针尖与样品之间的距离是通过保持微悬臂共振频率或振幅恒定来控制的.在这种模式中,样品与针尖之间的相互作用力是吸引力(((范德华力.由于吸引力小于排斥力,故灵敏度比接触模式高,但分辨率比接触模式低.非接触模式不适用于在液体中成像.3、轻敲模式在轻敲模式中,通过调制压电陶瓷驱动器使带针尖的微悬臂以某一高频的共振频率和0.01~1nm的振幅在Z方向上共振,而微悬臂的共振频率可通过氟化橡胶减振器来改变.同时反馈系统通过调整样品与针尖间距来控制微悬臂振幅与相位,记录样品的上下移动情况, 即在Z方向上扫描器的移动情况来获得图像.由于微悬臂的高频振动,使得针尖与样品之间频繁接触的时间相当短,针尖与样品可以接触,也可以不接触,且有足够的振幅来克服样品与针尖之间的粘附力.因此适用于柔软、易脆和粘附性较强的样品,且不对它们产生破坏.这种模式在高分子聚合物的结构研究和生物大分子的结构研究中应用广泛.(3)AFM中针尖与样品之间的作用力AFM检测的是微悬臂的偏移量,而此偏移量取决于样品与探针之间的相互作用力.其相互作用力主要是针尖最后一个原子和样品表面附近最后一个原子之间的作用力.当探针与样品之间的距离d较大(大于5nm)时,它们之间的相互作用力表现为范德华力(V an der Waals forces).可假设针尖是球状的,样品表面是平面的,则范德华力随1/d2变化.如果探针与样品表面相接触或它们之间的间距d小于0.3nm,则探针与样品之间的力表现为排斥力(Pauli exclusion forces).这种排斥力与d13成反比变化,比范德华力随d的变化大得多.探针与样品之间的相互作用力约为10-6~10-9N,在如此小的力作用下,探针可以探测原子,而不损坏样品表面的结构细节.样品与探针的作用力还有其他形式,如当样品与探针在液体介质中相接触时,往往在它们的表面有电荷,从而产生静电力;样品与针尖都有可能发生变形,这样样品与针尖之间有形变力;特定磁性材料的样品和探针可产生磁力作用;对另一些特定样品和探针,可能样品原子与探针原子之间存在相互的化学作用,而产生化学作用力.但在研究样品与探针之间的作用力的大小时,往往假设样品与探针特定的形状(如平面样品、球状探针),可对样品和探针精心设计与预处理,避免或忽略静电力、形变力、磁力、化学作用力等的影响,而只考虑范德华力和排斥力[13].(4)AFM的针尖技术探针是AFM的核心部件.目前,一般的探针式表面形貌测量仪垂直分辨率已达到0.1nm,而STM更高,达到0.01nm,因此足以检测出物质表面的微观形貌.但是,探针针尖曲率半径的大小将直接影响到测量的水平分辨率.Bustamante等人[14]指出,当样品的尺寸大小与探针针尖的曲率半径相当或更小时,会出现“扩宽效应”,即实际观测到的样品宽度偏大.这种误差来源于针尖边壁同样品的相互作用以及微悬臂受力变形[15,16].另外,Li等人[17]发现某些AFM图像的失真在于针尖受到污染.一般的机械触针为金刚石材料,其最小曲率半径约20nm.普通的AFM 探针材料是硅、氧化硅或氮化硅(Si3N4),其最小曲率半径可达10nm.由于可能存在”扩宽效应”,针尖技术的发展在AFM中非常重要.其一是发展制得更尖锐的探针,如用电子沉积法制得的探针,其针尖曲率半径在5~10nm之间[18].其二是对探针进行修饰,从而发展起针尖修饰技术.目前,用于AFM针尖修饰的技术[19]主要有:1、自组单分子膜修饰AFM针尖.这种化学修饰过的AFM针尖可用来定量测定基底与针尖自组膜的尾部基团之间的粘附力和摩擦力[20,21]. 2、生物分子修饰AFM针尖.Florin等人[22]用生物素修饰了AFM针尖,首先测量了单个配体/受体对之间的相互作用力.3、纳米碳管修饰AFM针尖.纳米碳管材料的研究是目前热门课题之一[23].纳米碳管具有非常适合于作为AFM针尖材料的物理、化学性质:良好的外形比例、尖端极小、良好的弹性、碳原子的反应多种多样(易于制功能化AFM针尖)等.Wong等人[24]用单层纳米碳管和多层纳米碳管修饰AFM针尖,它具有很高的空间分辨率,并通过化学反应进行胺基或羧基自组装膜,使针尖具有高度的化学敏感性.这种用纳米碳管修饰的针尖能用于单个配体/受体对之间相互作用、单个酸碱反应基团化学力滴定、化学力成像识别基底处的不同基团等的测量.这些针尖修饰技术在传统探测的物理量(力场、电场、磁场等)的基础上,引入了“化学场”,从而大大地提高和改善了AFM的空间分辨率和物质识别能力.探针针尖的几何物理特性制约着针尖的敏感性及样品图像的空间分辨率.因此针尖技术的发展有赖于对针尖进行能动的、功能化的分子水平的设计.只有设计出更尖锐、更功能化的探针,改善AFM的力调制成像(force modulation imaging)技术和相位成像(phase imaging)技术的成像环境,同时改进被测样品的制备方法,才能真正地提高样品表面形貌图像的质量.三、AFM在材料分析领域的应用AFM可以在真空、超高真空、气体、溶液、电化学环境、常温和低温等环境下工作,可供研究时选择适当的环境,其基底可以是云母、硅、高取向热解石墨、玻璃等。
材料科学中的光电功能材料光电功能材料是一种特殊的材料,即这些材料是同时具有光学和电学特性。
由光电功能材料制成的电子器件可以在光和电场的作用下产生不同的功能,这些器件的作用涉及到了各个方面,例如太阳能电池板、光电放大器、激光器等等许多应用。
这些应用的成功离不开材料科学中的光电功能材料。
本文将会对该领域做一个简单的介绍,其中还将会介绍一些典型的光电功能材料以及其应用。
1、光电功能材料的研究历史20世纪60年代初,光电功能材料的概念被提了出来。
当时,科学家尝试着将一些有机物质溶解于聚合物中,将其制成导电材料,获得了理想的效果。
20世纪70年代,固态电池和诊断用传感器的研究开发需要使用新型的光电器件,为相关科学技术的研究和发展打下了基础。
20世纪80年代初,由于硅基材料的发展出现了瓶颈,各国的材料科学家开始投入到有机无机混合材料和高分子材料的研究中,并自此形成了新型的光电功能材料。
2、光电功能材料的分类一般来讲,光电材料可以分为以下三类:(1)自然光电材料:这类材料可以巧妙地把光电相互作用的机制应用在材料的制备中。
以煤炭为例,喜树碱是一种广泛存在的天然物质,其化学结构中含有各种天然色素和电子供体,能够通过光电转换将太阳能转化成为化学能,实现太阳能的利用。
(2)有机/无机混合材料:这类材料由有机物和无机物共同合成而成,能够合并有机和无机物质的优异性质。
无机物质可以提供优异的光学特性,而有机物质则可以提供电学性质,实现了材料中显著的光电特性。
(3)高分子材料:这类材料通常是指材料中含有大量的高分子,例如塑料。
在晶体结构中同样存在着电子轨道的存在,这类材料因此也可以表现出光电特性。
常见的应用包括为激光器引入新型的材料、光纤等器件。
3、典型的光电功能材料(1)发光材料:作为LED、显示器及照明器件的重要组成部分,发光材料被研究和改良着,其应用市场的繁荣使人们对其制备进行了长期的探究。
其中,发光材料可以分为单晶、微米级发光颗粒、发光塑料等三大类。
《光电材料与器件》课程教学大纲一、课程名称(中英文)中文名称:光电材料与器件英文名称:Optoelectronics Materials and Devices二、课程代码及性质专业选修课程三、学时与学分总学时:32学分:2四、先修课程无五、授课对象材料及材料加工类专业本科生六、课程教学目的(对学生知识、能力、素质培养的贡献和作用)【注:教学目的要突出各项“能力”,且与表1中的某项指标点相对应】本课程是功能材料专业的选修课之一,其教学目的包括:1、掌握激光的产生机制,光纤的传导机制以及熟悉光调制的基本原理。
2、理解光电技术在信息传输,光探测以及光伏等领域的应用原理。
3、能够关注和了解光电材料与技术在日常生活中的应用。
掌握文献检索、资料查询、现代网络搜索工具的使用方法。
能够应用现代工具撰写报告、设计文稿、陈述发言、清晰表达或回应指令。
七、教学重点与难点:课程重点:(1)光电材料的工作原理和应用。
本课程重点介绍针对半导体材料的电学性能和其在激光领域的应用。
(2)在了解半导体材料相关物理理论知识的基础上,重点学习基于半导体的光电器件的种类、应用和影响性能的因素等。
(3)重点学习的章节内容包括:第2章“激光”(6学时)、第3章“波导”(6学时)、第5章“光探测器”(4学时)。
课程难点:(1)通过本课程的学习,充分理解基于半导体材料的激光基本原理,激光器的基本构造以及应用范围。
(2)通过对光电材料及其光电器件的学习,了解影响光电材料与器件性能的因素和改进策略,从而具备设计和改进光电器件响应性能的能力。
八、教学方法与手段:教学方法:(1)课程邀请相关科研工作者做前沿报告,调动学生学习积极性。
(2)课堂讲授和相关多媒体小视频相结合,提高学生听课积极性,视频与课程内容相关,加深记忆和理解概念;(3)通过期末专题报告的形式,让学生讲解生活中与课程相关的知识或技术,台下的学生听众提问,而台上的学生为自己的观点进行辩护,从而产生互动,加深记忆和理解,更主要是能激发学生的兴趣。
光电功能材料
大纲号:04050901-0 学分:3学时:48 执笔人:刘磊审订人:钱芸生
课程性质:学科基础课
一、课程的地位与作用
光电功能材料是电子科学与技术专业的学科基础课。
本课程所介绍的光电功能材料的分类、特点、成分、结构、性能、应用和发展动向,是电子科学技术的基础和必备知识,也是从事微电子技术、光电子技术、半导体物理与器件必不可少的基础课程。
通过本课程的学习,为将来解决有关光电材料领域中出现的有关问题和研制新型光电器件打下良好基础,为从事微电子技术和光电子技术打下基础。
二、课程的教学目标与基本要求
1. 教学目标
通过对光电功能材料的学习,使学生掌握基本的光电功能材料知识,主要包括光电功能材料的分类、特点、成分、结构、性能、应用和发展动向。
2. 基本要求
(1) 了解和掌握功能材料的分类和特点。
(2) 掌握光电功能材料的成分、结构和性能。
(3) 了解光电功能材料的应用和发展动向。
《光电功能材料与器件》课程教学大纲《光电功能材料与器件》课程教学大纲课程代码(五号黑体):MCHM3042(五号宋体)课程性质:专业必修课程授课对象:材料化学、功能材料等专业开课学期:总学时:54学时学分:3学分讲课学时:52学时实验学时:0学时实践学时:2学时主讲教师:杨晓明指定教材:王筱梅,《有机光电材料与器件》,化学工业出版社,2014年参考书目(五号黑体)5-20部左右(五号宋体)刘恩科,《半导体物理学》,电子工业出版社,2007年黄昆半,《导体物理基础》,科学出版社,1999年李晔,《光化学基础与应用》,化学工业出版社,2000年刘亟须,《物理光学基础教程》,北京理工大学出版社,2000年朱建国,《电子与光电子材料》,国防工业出版社,2007年刘云圻,《有机纳米与分子器件》,科学出版社,2010年李文连,《有机光电子器件的原理、结构设计及其应用》,科学出版社,2012年教学目的:(五号黑体)本课程为材料化学专业和功能材料专业的专业必修课。
通过本课程的学习使学生了解和掌握各种光电材料的基本原理、基本性质、制备技术,及光电子材料的现状及发展趋势有。
了解和掌握光电子器件相关理论与器件物理,掌握有机发光二极管、有机太阳能电池、有机场效应晶体管、生物传感器等分子材料器件的基本类型、结构、工作机理、电学特性、电学特性参数表征及其应用,为光电器件的研究、设计及应用奠定理论基础。
第一章物质吸收光谱与颜色(五号黑体)课时:2.5周,共8课时(五号宋体)教学内容第一节光的基本性质光的波粒二象性第二节电子跃迁一、基态与激发态分子的基态与激发态的性质比较二、电子跃迁类型有机分子电子能级跃迁三、跃迁允许与跃迁禁阻电子跃迁允许与跃迁禁阻示意图第三节紫外-可见吸收光谱一、吸收光的条件能量要大于一定值二、朗伯-比耳定律样品对光波的吸光能力与该溶液的浓度和吸收层厚度成正比。
三、紫外-可见吸收光谱在近紫外-可见-近红外光谱区域内,某一样品对不同波长单色光的吸收强度的变化情况,简称吸收光谱。
材料科学中的光电功能材料与器件光电功能材料与器件是材料科学领域的一种新型材料和高科技产品。
它们具有光学、电学、磁学等多重性质,能够将光能和电能相互转换,成为现代光、电、磁信息技术的基础材料。
光电功能材料与器件不仅应用广泛,并且研究领域广泛,涉及到材料制备、性能测试、器件设计等多个方面。
本文将探讨光电功能材料与器件的基本概念、重要性及发展前景。
一、光电功能材料与器件的基本概念1. 光电功能材料光电功能材料是指具有光电、电光、光吸收、光发射等功能的材料。
光电功能材料具有很强的光学、电学、磁学相互作用,可以通过外加电场、磁场等手段,实现光电信号的传输和控制。
典型的光电功能材料包括半导体材料、光敏材料、光学玻璃材料、聚合物材料、磁性材料等。
2. 光电器件光电器件是指基于光电功能材料,通过设计、制备、加工等一系列技术手段,实现光信号和电信号之间的转换,如光电传感器、太阳能电池、光纤通信器件等。
光电器件具有高精度、高灵敏度、高速度、高效率等优点,是光电功能材料应用的重要方向之一。
二、光电功能材料与器件的重要性光电功能材料与器件在现代信息技术和能源技术中具有重要的应用价值,主要有以下几个方面:1. 光电信息技术光电信息技术是指基于光、电、磁现象的信息处理技术。
光电功能材料与器件作为光电信息技术的重要组成部分,可以用于制造光学计算机、光通信、光储存器件等。
比如,基于光电功能材料的光通信器件可以实现高速率、低噪声、长距离数据传输,应用于信息高速公路、智能家居、航空航天等领域。
2. 太阳能转化技术太阳能转化技术是当前能源技术研究的热点之一。
光电功能材料与器件作为太阳能转化技术的重要材料,可以用于制造高效率、低成本、长寿命的太阳能电池。
比如,硅晶太阳能电池是目前应用最广泛的太阳能电池,采用光电功能材料制成的薄膜太阳能电池是目前研究的热点之一。
3. 光化学、生物医学技术光化学、生物医学技术是现代医学科技中的前沿领域之一。
《光电材料》课程教学大纲课程编号:课程名称:光电材料英文名称:Photoelectric Materials课程类型:专业课程课程要求:选修学时/学分:32/2 (讲课学时:32实验学时:0上机学时:0)适用专业:功能材料一、课程性质与任务光电材料是为功能材料专业开设的专业课程之一,本课程在教学内容方面着重介绍光电材料的物理基础,光电效应、光电转换原理及相应光电传感材料的工作原理和应用范围,重点叙述了与光电显示材料、光纤通信材料、光电探测器材料、激光材料等相关的基本理论和制备方法,并介绍常用光电传感器件的结构组成、工作原理和性能特点。
目的是使学生通过这门课程的学习,能够掌握光电材料领域的一些基本理论、概念、制备方法和应用原理,增进对材料科学的进一步认识和了解,开拓学生视野,启迪学生专业设计新思路。
二、课程与其他课程的联系光电材料是新材料领域的一个重要组成部分。
要求学习本课程之前应修完大学物理、材料科学基础、功能材料制备工艺学和功能材料物理基础等课程。
三、课程教学目标1.学习光电材料基本理论知识,了解光电材料的研究进展、未来发展方向及其潜在的应用领域。
(支撑毕业能力要求1, 3, 4, 12)2.掌握光电材料的物理基础以及典型光电材料(如光电显示材料、光电传感材料等)的结构组成、性能特点和应用领域;(支撑毕业能力要求1, 3, 4, 5, 7)3.学习光电材料制备的基本方法和相关工艺理论,具有光电材料器件组成、结构和设计生产实施的工程实验能力,能够对设计和实验结果进行综合分析。
(支撑毕业能力要求3, 4, 5, 7, 12)四、教学内容、基本要求与学时分配五、其他教学环节(课外教学环节、要求、目标)无六、教学方法本课程以课堂教学为主,结合大作业+课堂发表、自学及测验等教学手段和形式完成课程教学任务。
在课堂教学中,通过讲授、提问、讨论、演示等教学方法和手段让学生理解光电材料的基础理论体系、主线,掌握光电材料的基本概念,基本原理和各种光电器件的结构和性能应用,强调光电材料的实际工程应用背景以及先进制备方法和技术在光电材料生产中的应用。