二元一次不等式练习题
- 格式:doc
- 大小:19.00 KB
- 文档页数:5
第3节二元一次不等式(组)与简单的线性规划问题选题明细表知识点、方法题号二元一次不等式(组)表示的平面区域1,4,9含参数的线性规划3,5,6,7,10,12目标函数的最值2,8,13,14,15线性规划的实际应用11基础对点练(时间:30分钟)1.不等式组所表示的平面区域是( D )解析:画出直线x=2,在平面上取直线的右侧部分(包含直线本身);再画出直线x-y=0,取直线的右侧部分(包含直线本身),两部分重叠的区域就是不等式组表示的平面区域.故选D.2.(2016·某某卷)若变量x,y满足则x2+y2的最大值是( C )(A)4 (B)9(C)10 (D)12解析: 作出不等式组表示的可行域如图所示,由x2+y2表示可行域内的点(x,y)到原点的距离平方可知,点A(3,-1)满足条件,即x2+y2的最大值为32+(-1)2=10.故选C.3.(2016·某某模拟)已知函数f(x)=log a x(a>1)的图象经过区域则a的取值X 围是( C )(A)(1,] (B)(,+∞)(C)[,+∞) (D)(2,+∞)解析: 作出不等式组表示的可行域,如图中阴影部分所示.联系函数f(x)=log a x(a>1)的图象,能够看出,当图象经过区域的边界点A(3,3)时,a可以取到最小值,而显然只要a大于,函数f(x)=log a x(a>1)的图象必然经过区域内的点.则a的取值X围是[,+∞).故选C.4.(2015·某某校级三模)若A为不等式组表示的平面区域,则a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( D )(A)9(B)3(C)(D)解析: 如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ACD是斜边为3的等腰直角三角形,△OEC是直角边为1的等腰直角三角形,所以区域的面积S=S△ACD-S△OEC=×3×-×1×1=.5.(2014·某某卷)x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为( D )(A)或-1 (B)2或(C)2或1 (D)2或-1解析:线性约束条件对应的可行域如图所示:目标函数z=y-ax化为y=ax+z,当a>0时,要使其取得最大值的最优解不唯一,需动直线y=ax+z与2x-y+2=0平行或重合,此时a=2;同理当a<0时,需动直线y=ax+z与x+y-2=0平行或重合,此时a=-1,故选D.6.(2016·某某章丘期末)若实数x,y满足不等式组且x+y的最大值为9,则实数m等于( C )(A)-2 (B)-1(C)1 (D)2解析: x-my+1=0恒过点(-1,0),旋转直线x-my+1=0可知可行域只可能是△ABC,且x+y的最大值只在点C处取得,联立方程组得C(,)(若m=,则与2x-y-3=0平行,不可能),(x+y)max=+=9,解得m=1.故选C.7.(2016·某某某某名校联考)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( A )(A)(B)(C)1 (D)2解析: 根据约束条件画出可行域,如图,由图可知当直线z=2x+y经过点B时,z最小,由解得所以z min=2×1-2a=1,解得a=.故选A.8.导学号 18702285已知x,y满足则的取值X围是( C )(A)[0,] (B)[2,] (C)[1,] (D)[0,]解析:不等式组表示的平面区域如图中阴影部分所示.因为==1+,表示区域内的点与(4,2)连线的斜率.斜率最小值为0,点(-3,-4)与M(4,2)连线斜率最大为=.所以的取值X围为[1,].故选C.9.若点P(m,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y<3表示的平面区域内,则m=.解析:由题意可得解得m=-3.答案:-310.(2016·某某模拟)若直线y=2x上存在点(x,y)满足约束条件则实数m的取值X围是.解析: 由题意,由可求得交点坐标为(1,2),要使直线y=2x上存在点(x,y)满足约束条件则点(1,2)在可行域内,如图所示,可得m≤1.答案:(-∞,1]11.导学号 18702284某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电、劳力、获得利润及每天资源限额(最大供应量)如下表所示:产品限额资源甲产品(每吨)乙产品(每吨)资源限额(每天)煤(t) 9 4 360电(kW·h) 4 5 200劳力(个) 3 10 300利润(万元) 6 12问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?解:设此工厂应分别生产甲、乙两种产品x吨、y吨,获得利润z万元.依题意可得约束条件利润目标函数z=6x+12y.如图,作出可行域,作直线l:6x+12y=0,把直线l向右上方平移至l1位置,直线经过可行域上的点M时z=6x+12y取最大值.解方程组得M(20,24).所以生产甲种产品20 t,乙种产品24 t,才能使此工厂获得最大利润.能力提升练(时间:15分钟)12.(2016·某某八校联考)已知变量x,y满足约束条件若z=x-2y的最大值与最小值分别为a,b,且方程x2-kx+1=0在区间(b,a)上有两个不同实数解,则实数k的取值X围是( C )(A)(-6,-2) (B)(-3,2)(C)(-,-2)(D)(-,-3)解析: 作出可行域,如图所示,则目标函数z=x-2y在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3,所以a=1,b=-3,从而可知方程x2-kx+1=0在区间(-3,1)上有两个不同实数解.令f(x)=x2-kx+1,则⇒-<k<-2,故选C.13.导学号 18702286如果实数a,b满足条件:则的最大值是.解析: 根据约束条件画出可行域,如图,表示可行域内的点与原点(0,0)连线的斜率,设z的几何意义表示可行域内点P与原点O(0,0)连线的斜率,易知当直线OP过点B(,)时,取最大值,最大值为3,直线OP过点A(1,1)时,取最小值,最小值为1,所以∈[1,3].所以===2-因为∈[1,3].所以的最大值为.答案:14.(2014·某某卷)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值X 围是.解析:可行域如图所示,则A(1,0),B(2,1),C(1,),设z=ax+y,即得1≤a≤.答案:[1,]15.导学号 18702287变量x,y满足(1)假设z1=4x-3y,求z1的最大值;(2)设z2=,求z2的最小值;(3)设z3=x2+y2,求z3的取值X围.解: 作出可行域如图中阴影部分,联立易得A(1,),B(1,1),C(5,2).(1)z1=4x-3y⇔y=x-,易知平移y=x至过点C时,z1最大,且最大值为4×5-3×2=14.(2)z2=表示可行域内的点与原点连线的斜率大小,显然直线OC斜率最小.故z2的最小值为.(3)z3=x2+y2表示可行域内的点到原点距离的平方,而2=OB2<OA2<OC2=29.故z3∈[2,29].好题天天练1.(2015·某某卷)设实数x,y满足则xy的最大值为( A )(A)(B)(C)12 (D)16解题关键:判断xy取得最大值的点,并分类讨论确定最大值.解析: 先画出可行域,再将xy转化为矩形面积S,求S的最大值.表示的可行域如图中阴影部分所示.令S=xy,不妨设在点M(x0,y0)处S取得最大值,且由图象知点M(x0,y0)只可能在线段AD,AB,BC上.①当M(x0,y0)在线段AD上时,x0∈[-2,0],此时S=xy≤0;②当M(x0,y0)在线段AB上时,x0∈[0,2],S=xy=x·=x(7-)=-+7x=-(x-7)2+,当x0=2时,wordS max=-(2-7)2+=-+=12;③当M(x0,y 0)在线段BC上时,x 0∈[2,4],S=xy=x·(10-2x)=-2x2+10x=-2(x-)2+,当x0=时,S max =.综上所述,xy的最大值为.2.导学号 18702288设实数x,y满足则z=-的取值X围是.解析: 由于表示可行域内的点(x,y)与原点(0,0)的连线的斜率,如图,求出可行域的顶点坐标A(3,1),B(1,2),C(4,2),则k OA=,k OB=2,k OC=,可见∈[,2],令=t,则z=t-在[,2]上单调递增,所以z∈[-,].答案:[-,]11 / 11。
1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
二次函数与二元一次方程组、不等式专项练习60题(有答案)1.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:(1)4a+2b+c >0;(2)方程ax 2+bx+c=0两根之和小于零;(3)y 随x 的增大而增大;(4)一次函数y=x+bc 的图象 一定不过第二象限,其中错误的个数是( )A . 4个B . 3个C . 2个D . 1个2.如图是二次函数y=ax 2+bx+c 的图象,图象上有两点分别为A (2.18,﹣0.51)、B (2.68,0.54),则方程ax 2+bx+c=0的一个解只可能是( )A . 2.18B . 2.68C . ﹣0.51D . 2.453.方程x 2+3x ﹣1=0的根可看作是函数y=x+3的图象与函数y=的图象交点的横坐标,那么用此方法可推断出方程 x 3﹣x ﹣1=0的实数根x 0所在的范围是( )A . ﹣1<x 0<0B . 0<x 0<1C . 1<x 0<2D . 2<x 0<34.根据二次函数y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)得到一些对应值,列表如下:判断一元二次方程ax 2+bx+c=0的一个解x 1的范围是( )A . 2.1<x 1<2.2B . 2.2<x 1<2.3C . 2.3<x 1<2.4D . 2.4<x 1<2.55.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:则下列判断中正确的是( )A . 抛物线开口向上B . 抛物线与y 轴交于负半轴C . 当x=3时,y <0D .方程ax 2+bx+c=0有两个相等实数根6.二次函数y=ax 2+bx+c (a ≠0)中,自变量x 与函数y 的对应值如下表: x 2.2 2.3 2.4 2.5y ﹣0.76 ﹣0.11 0.56 1.25 x…﹣2﹣11234…若,则一元二次方程ax 2+bx+c=0的两个根x 1,x 2的取值范围是( )A .﹣1<x1<0,2<x2<3B .﹣2<x1<﹣1,1<x2<2C . 0<x1<1,1<x2<2D .﹣2<x1<﹣1,3<x2<47.根据抛物线y=x 2+3x ﹣1与x 轴的交点的坐标,可以求出下列方程中哪个方程的近似解( )A . x 2﹣1=﹣3xB . x 2+3x+1=0C . 3x 2+x ﹣1=0D . x 2﹣3x+1=08.已知二次函数y=x 2+2x ﹣10,小明利用计算器列出了下表:那么方程x 2+2x ﹣10=0的一个近似根是( ) A . ﹣4.1 B . ﹣4.2 C . ﹣4.3 D . ﹣ 4.49.根据关于x 的一元二次方程x 2+px+q=0,可列表如下:则方程x 2+px+q=0的正数解满足( )A . 解的整数部分是0,十分位是5B . 解的整数部分是0,十分位是8C .解的整数部分是1,十分位是1D . 解的整数部分是1,十分位是210.根据下列表格中的二次函数y=ax 2+bx+c (a ≠0,a 、b 、c 为常数)的自变量x 与函数y 的对应值,判断ax 2+bx+c=0 的一个解x 的取值范围为( )A . 1.40<x <1.43B . 1.43<x <1.44C . 1.44<x <1.45D . 1.45<x <1.4611.已知二次函数y=ax 2+bx+c (a ≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.3和x 2=( )A . ﹣1.3B . ﹣2.3C . ﹣0.3D . ﹣3.312.如图,已知二次函数y=ax 2+bx+c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx+c=0的两个根分别是x 1=1.6,x 2=( )A . ﹣1.6B . 3.2C . 4.4D . 以上都不对y…m ﹣2mm ﹣2… x ﹣4.1 ﹣4.2 ﹣4.3 ﹣4.4 x 2+2x ﹣10 ﹣1.39 ﹣0.76﹣0.11 0.56 x 0 0.5 1 1.1 1.2 1.3 x 2+px+q﹣15 ﹣8.75 ﹣2 ﹣0.59 0.84 2.29 x 1.43 1.44 1.45 1.46y=ax 2+bx+c﹣0.095 ﹣0.046 0.003 0.05213.二次函数y=x2﹣6x+n的部分图象如图所示,若关于x的一元二次方程x2﹣6x+n=0的一个解为x1=1,则另一个解x2=_________.14.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.15.抛物线y=x2﹣4x+m与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_________.17.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是_________.18.开口向下的抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),则m=_________.19.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=_________.20.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是_________.21.对于二次函数y=x 2+2x ﹣5,当x=1.4时,y=﹣0.24<0,当x=1.45时,y=0.0025>0;所以方程x 2+2x ﹣5=0的一个正根的近似值是 _________ .(精确到0.1).22.根据下列表格中y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)的一个解x 的范围是 _________ . x 6.17 6.18 6.196.20y=ax 2+bx+c﹣0.03 ﹣0.01 0.02 0.0423.抛物线y=2x 2﹣4x+m 的图象的部分如图所示,则关于x 的一元二次方程2x 2﹣4x+m=0的解是 _________ .24.二次函数y=ax 2+bx+c 的部分对应值如下表:①抛物线的顶点坐标为(1,﹣9); ②与y 轴的交点坐标为(0,﹣8);③与x 轴的交点坐标为(﹣2,0)和(2,0);④当x=﹣1时,对应的函数值y 为﹣5.以上结论正确的是 _________ .25.二次函数y=ax 2+bx+c 的自变量x 与函数值y 的部分对应值如下表:x … ﹣1 0 1 2 3 …y … ﹣1 ﹣ ﹣2﹣…根据表格中的信息,完成下列各题 (1)当x=3时,y= _________ ;(2)当x= _________ 时,y 有最 _________ 值为 _________ ; (3)若点A (x 1,y 1)、B (x 2,y 2)是该二次函数图象上的两点,且﹣1<x 1<0,1<x 2<2,试比较两函数值的大 小:y 1 _______ y 2(4)若自变量x 的取值范围是0≤x ≤5,则函数值y 的取值范围是 _________ .26.阅读材料,解答问题.例 用图象法解一元二次不等式:.x 2﹣2x ﹣3>0解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3.∴由此得抛物线y=x 2﹣2x ﹣3的大致图象如图所示. 观察函数图象可知:当x <﹣1或x >3时,y >0. ∴x 2﹣2x ﹣3>0的解集是:x <﹣1或x >3.(1)观察图象,直接写出一元二次不等式:x 2﹣2x ﹣3>0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x 2﹣1>0.x … ﹣3 ﹣20 1 3 5 … y … 7 0 ﹣8 ﹣9 ﹣5 7…27.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图象有什么关系?试把方程的根在图象上表示出来.28.画出函数y=﹣2x2+8x﹣6的图象,根据图象回答:(1)方程﹣2x2+8x﹣6=0的解是什么;(2)当x取何值时,y>0;(3)当x取何值时,y<0.29.已知二次函数y=﹣x2+2x+m的部分图象如图所示,你能确定关于x的一元二次方程﹣x2+2x+m=0的解?30.小明在复习数学知识时,针对“求一元二次方程的解”整理了以下几种方法,请你将有关内容补充完整:例题:求一元二次方程x2﹣x﹣1=0的两个解.(1)解法一:选择合适的一种方法(公式法、配方法、分解因式法).(2)解法二:利用二次函数图象与两坐标轴的交点求解.如图,把方程x2﹣x﹣1=0的解看成是二次函数y=_________的图象与x轴交点的横坐标即x1,x2就是方程的解.(3)解法三:利用两个函数图象的交点求解①把方程x2﹣x﹣1=0的解看成是二次函数y=_________的图象与一个一次函数y=_________的图象交点的横坐标②画出这两个函数的图象,用x1,x2在x轴上标出方程的解.31.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>532.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中,正确的是( )A . a bc <0B . a +c <bC . b >2aD . 4a >2b ﹣c33.现定义某种运算a ⊕b=a (a >b ),若(x+2)⊕x 2=x+2,那么x 的取值范围是( )A . ﹣1<x <2B . x >2或x <﹣1C . x >2D . x<﹣134.如图,一次函数y 1=kx+n (k ≠0)与二次函数y 2=ax 2+bx+c (a ≠0)的图象相交于A (﹣1,5)、B (9,2)两点,则关于x 的不等式kx+n ≥ax 2+bx+c 的解集为( )A . ﹣1≤x ≤9B . ﹣1≤x <9C . ﹣1<x ≤9D . x ≤﹣1或x ≥935.如图所示的抛物线是二次函数y=ax 2﹣3x+a 2﹣1的图象,那么下列结论错误的是( )36.已知:二次函数y=x 2﹣4x ﹣a ,下列说法中错误的个数是( )①若图象与x 轴有交点,则a ≤4;②若该抛物线的顶点在直线y=2x 上,则a 的值为﹣8;③当a=3时,不等式x 2﹣4x+a >0的解集是(3,0);④若将图象向上平移1个单位,再向左平移3个单位后过点x ,则a=﹣1;⑤若抛物线与x 轴有两个交点,横坐标分别为x1、x 2,则当x 取x 1+x 2时的函数值与x 取0时的函数值相等. A . 1 B . 2 C . 3 D . 437.二次函数y=ax 2的图象如图所示,则不等式ax >a 的解集是( )A . x >1B . x <1C . x >﹣1D . x <﹣138.如图,函数y=x 2﹣2x+m (m 为常数)的图象如图,如果x=a 时,y <0;那么x=a ﹣2时,函数值( )A . 当y <0时,x >0B . 当﹣3<x <0时,y >0C . 当x <时,y 随x 的增大而增大D .上述抛物线可由抛物线y=﹣x 2平移得到A.y<0 B.0<y<m C.y=m D.y>m39.已知:二次函数y=x2﹣4x+a,下列说法中错误的个数是()①当x<1时,y随x的增大而减小②若图象与x轴有交点,则a≤4③当a=3时,不等式x2﹣4x+a>0的解集是1<x<3④若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3.A.1B.2C.3D.440.如图,二次函数y1=ax2+bx+c与一次函数y2=kx+n的图象相交于A(0,4),B(4,1)两点,下列三个结论:①不等式y1>y2的解集是0<x<4②不等式y1<y2的解集是x<0或x>4③方程ax2+bx+c=kx+n的解是x1=0,x2=4其中正确的个数是()A.0个B.1个C.2个D.3个41.二次函数y=x2﹣2x﹣3的图象如图所示.当y<0时,自变量x的取值范围是_________.42. 如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解集是_________.43.已知二次函数y=x2﹣6x+5.(1)请写出该函数的对称轴,顶点坐标;(2)函数图象与x轴交点坐标为_________,与y轴的交点坐标为_________;(3)当_________时y>0,_________时y随x的增大而增大;(4)写出不等式x2﹣6x+5<0的解集._________44.如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b_________0(填“>”、“<”、“=”);(2)当x满足_________时,ax2+bx+c>0;(3)当x满足_________时,ax2+bx+c的值随x增大而减小.45.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根.x1=_________,x2=_________;(2)写出不等式ax2+bx+c>0的解集._________;(3)写出y随x的增大而减小的自变量x的取值范围._________;(4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围._________.46.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________.(请写出所有正确说法的序号)47.如图是函数y=x2+bx﹣1的图象,根据图象提供的信息,确定使﹣1≤y≤2的自变量x的取值范围是_________.48.已知抛物线y=x2﹣x﹣6,则不等式x2﹣x﹣6<0的解集为_________.49.已知二次函数y=x2﹣2x﹣3的函数值y<0,则x的取值范围为_________.50.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)不等式ax2+bx+c>0的解集为_________.(2)若y随x的增大而减小,则自变量x的取值范围是_________.(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围是_________.51.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+c>x+m 的解集为_________.52.函数y=x2﹣2x﹣2的图象如图所示,观察图象,使y≥l成立的x的取值范围是_________.53.已知函数y1=x2与y2=﹣x+3的图象大致如图,若y1≤y2,则自变量x的取值范围是_________.54.已知二次函数y=4x2﹣4x﹣3的图象如图所示,,则函数值y_________0.55.函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是_________.56.已知抛物线y=﹣x2﹣3x﹣(1)写出抛物线的开口方向、对称轴和顶点坐标;(2)求抛物线与x轴、y轴的交点坐标;(3)画出草图;(4)观察草图,指出x为何值时,y>0,y=0,y<0.57.如图是二次函数y=x2﹣2x﹣3的图象.(1)求该抛物线的顶点坐标、与x轴的交点坐标(2)观察图象直接指出x在什么范围内时,y>0?58.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)求不等式x2+bx+c>x+m的解集.(直接写出答案)59.如图,二次函数的图象与x轴交于A、B 两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,﹣3),一次函数y2=mx+n的图象过点A、C.(1)求二次函数的解析式;(2)求二次函数的图象与x轴的另一个交点A的坐标;(3)根据图象写出y2<y1时,x的取值范围.60.已知抛物线y1=x2+(m+1)x+m﹣4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=﹣1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(﹣2m,﹣3m),根据图象回答:当x取什么值时,y1≥y2.参考答案:1.解:∵当x=2时,y=4a+2b+c,对应的y值即纵坐标为正,即4a+2b+c>0;故(1)正确;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根;并且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零;故(2)错误;∵函数的增减性需要找到其对称轴才知具体情况;不能在整个自变量取值范围内说y随x的增大而增大;故(3)错误;∵由图象可知:c<0,b<0,∴bc>0,∴一次函数y=x+bc的图象一定经过第二象限,故(4)错误;∴错误的个数为3个,故选B.2.解:∵图象上有两点分别为A(2.18,﹣0.51)、B(2.68,0.54),∴当x=2.18时,y=﹣0.51;x=2.68时,y=0.54,∴当y=0时,2.18<x<2.68,只有选项D符合,故选D.3.解:方程x3﹣x﹣1=0,∴x2﹣1=,∴它的根可视为y=x2﹣1和y=的交点的横坐标,当x=1时,x2﹣1=0,=1,交点在x=1的右边,当x=2时,x2﹣1=3,=,交点在x=2的左边,又∵交点在第一象限.∴1<x0<2,故选C.4. :根据表格可知,ax2+bx+c=0时,对应的x的值在2.3~2.4之间.故选C.5.解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故:A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故:B错误;∵x=3时,y=﹣5<0,故:C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,故:D.方程有两个相等实数根错误;故选:C.6.解:∵,∴﹣1<m﹣2<﹣,<m﹣<1,∴函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0.由表中数据可知:y=0在y=m﹣2与y=m﹣之间,故对应的x的值在﹣1与0之间,即﹣1<x1<0,y=0在y=m﹣2与y=m﹣之间,故对应的x的值在2与3之间,即2<x2<3.故选:A.7.解:∵抛物线y=x2+3x﹣1与x轴的交点的横坐标就是方程x2+3x﹣1=0的根,∴可以求出方程x2+3x﹣1=0的根,方程x2﹣1=﹣3x与方程x2+3x﹣1=0等价,∴可以求出方程x2﹣1=﹣3x的根.故选A.8.解:根据表格得,当﹣4.4<x<﹣4.3时,﹣0.11<y<0.56,即﹣0.11<x2+2x﹣10<0.56,∵0距﹣0.11近一些,∴方程x2+2x﹣10=0的一个近似根是﹣4.3,故选C.9. 解:根据表中函数的增减性,可以确定函数值是0时,x应该是大于1.1而小于1.2.所以解的整数部分是1,十分位是1.故选C.10.解:由表可以看出,当x取1.44与1.45之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为1.44<x<1.45.故选C11.解:方法一:∵二次函数y=ax2+bx+c的顶点坐标(﹣1,﹣3.2)∴﹣=﹣1则﹣=﹣2∵x1x2是一元二次方程ax2+bx+c=0的两根∴x1+x2=﹣又∵x1=1.3∴x1+x2=1.3+x2=﹣2解得x2=﹣3.3.方法二:根据对称轴为;x=﹣1,关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3,则=﹣1,即=﹣1,解得:x2=﹣3.3,故选D12.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.13.解:由图可知,对称轴为x=﹣==3,根据二次函数的图象的对称性,=3,解得x2=5.故答案为:514.解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:在﹣2<b<2范围内的任何一个数.15.解:把点(1,0)代入抛物线y=x2﹣4x+m中,得m=3,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3,∴抛物线与x轴的另一个交点的坐标是(3,0).故答案为:(3,0).16.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故填空答案:x1=﹣1或x2=3.17. 解:把点(1,0)代入抛物线y=x2﹣4x+中,得m=6,所以,原方程为y=x2﹣4x+3,令y=0,解方程x2﹣4x+3=0,得x1=1,x2=3 ∴抛物线与x轴的另一个交点的坐标是(3,0)18.解:由于抛物线y=(m2﹣2)x2+2mx+1的对称轴经过点(﹣1,3),∴对称轴为直线x=﹣1,x==﹣1,解得m1=﹣1,m2=2.由于抛物线的开口向下,所以当m=2时,m2﹣2=2>0,不合题意,应舍去,∴m=﹣1.19.解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.20. 解:依题意得二次函数y=ax2+bx+c的部分图象的对称轴为x=3,而对称轴左侧图象与x轴交点与原点的距离,约为1.6,∴x1=1.6;又∵对称轴为x=3,则=3,∴x2=2×3﹣1.6=4.4.21. 解:∵二次函数y=x2+2x﹣5中a=1>0,∴抛物线开口方向向上,∵对称轴x=﹣=﹣1,∴x>﹣1时y随x的增大而增大,∵当x=1.4时,y=﹣0.24<0,当x=1.45时,y=0.0025>0,∴方程x2+2x﹣5=0的一个正根:1.4<x<1.45,∴近似值是1.4.答案1.4.22.解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故答案为:6.18<x<6.19.23.解:观察图象可知,抛物线y=2x2﹣4x+m与x轴的一个交点为(﹣1,0),对称轴为x=1,∴抛物线与x轴的另一交点坐标为(3,0),∴一元二次方程2x2﹣4x+m=0的解为x1=﹣1,x2=3.故本题答案为:x1=﹣1,x2=3.24.解:根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,﹣9);②与y轴的交点坐标为(0,﹣8);③与x轴的交点坐标为(﹣2,0)和(4,0);④当x=﹣1时,对应的函数值y为﹣5.故答案为:①②④.25.解:(1)由表得,解得,∴二次函数的解析式为y=x2﹣x﹣,当x=3时,y==﹣1;(2)将y=x2﹣x﹣配方得,y=(x﹣1)2﹣2,∵a=>0,∴函数有最小值,当x=1时,最小值为﹣2;(3)令y=0,则x=±2+1,抛物线与x轴的两个交点坐标为(2+1,0)(﹣2+1,0)∵﹣1<x1<0,1<x2<2,∴x1到1的距离大于x2到1的距离,∴y1>y2(4)∵抛物线的顶点为(1,﹣2),∴当x=5时,y最大,即y=2;当x=1时,y最小,即y=﹣2,∴函数值y的取值范围是﹣2≤y≤2;故答案为﹣1;1、小、﹣2;>;﹣2≤y≤2.26.解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.27.解:一元二次方程x2+7x+9=1的根是二次函数y=x2+7x+9图象中y=1时,所对应的x的值;当y=1时,x2+7x+9=1,∴作出二次函数y=x2+7x+9的图象如图,由图中可以看出,当y=1时,x≈﹣5.6或﹣1.4,∴一元二次方程x2+7x+9=1的根为x1≈﹣5.6,x2≈﹣1.4.28.解:函数y=﹣2x2+8x﹣6的图象如图.由图象可知:(1)方程﹣2x2+8x﹣6=0的解x1=1,x2=3.(2)当1<x<3时,y>0.(3)当x<1或x>3时,y<0.29.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(3,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣32+2×3+m=0解得,m=3 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+3=0,②解②,得x1=3,x2=﹣130.解:(1)由原方程,得:=0,即=;解得x1=,x2=.(2)设二次函数方程为y=ax2+bx+c(a,b,c均为实数,且a≠0).由图象得知,该函数过点(0,﹣1),所以该点满足方程y=ax2+bx+c,∴把(0,﹣1)代入方程y=ax2+bx+c,得c=﹣1,①二次函数方程为y=ax2+bx+c与x轴交点的横坐标就是方程x2﹣x﹣1=0的解;∴x1•x2==﹣1,即c=﹣a;②x1+x2==1;③由①②③,得:;∴二次函数方程为y=x2﹣x﹣1.(3)31.解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.32.解:A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.故选C.33. 解:由定义运算得:x+2>x2,即解不等式x2﹣x﹣2<0,设y=x2﹣x﹣2,函数图象开口向上,图象与x轴交点是(﹣1,0),(2,0),由图象可知,当﹣1<x<2时,y<0,即x的取值范围﹣1<x<2.故选A.34.解:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为﹣1,9,当y1≥y2时,x的取值范围正好在两交点之内,即﹣1≤x≤9.故选A.35.解:由图象可知,抛物线经过原点(0,0),所以a2﹣1=0,解得a=±1,∵图象开口向下,a<0,∴a=﹣1.∴y=﹣x2﹣3x,∴二次函数与图象的交点为:(﹣3,0),(0,0),∴当y<0时,x<﹣3或x>0,故A选项错误;当﹣3<x<0时,y>0,故B选项正确;当x<时,y随x的增大而增大故C选项正确;上述抛物线可由抛物线y=﹣x2平移得到,故D选项正确;故选:A.36.解:①∵图象与x轴有交点,则△=16﹣4×1×(﹣a)≥0,解得a≥﹣4;故本选项错误;②∵二次函数y=x2﹣4x﹣a的顶点坐标为(2,﹣a﹣4),代入y=2x得,﹣a﹣4=2×2,a=﹣8,故本选项正确;③表达错误,解集不能表示为(3,0),故本选项错误;④表达错误,点不能用x表示,故本选项错误;⑤由根与系数的关系,x1+x2=4,当x=4时,y=16﹣16﹣a=﹣a,当x=0时,y=﹣a,故本选项正确.故选C.37.解:由图象可知a<0,∴不等式ax>a的解集为x<1.故选B.38.解:x=a代入函数y=x2﹣2x+m中得:y=a2﹣2a+m=a(a﹣2)+m,∵x=a时,y<0,∴a(a﹣2)+m<0,由图象可知:m>0,∴a(a﹣2)<0,又∵x=a时,y<0,∴a>0则a﹣2<0,由图象可知:x=0时,y=m,又∵x<1时y随x的增大而减小,∴x=a﹣2时,y>m.故选:D.39.解:二次函数为y=x2﹣4x+a,对称轴为x=2,图象开口向上.则:A、当x<1时,y随x的增大而减小,故说法正确;B、若图象与x轴有交点,即△=16﹣4a≥0,则a≤4,故说法正确;C、当a=3时,不等式x2﹣4x+3<0的解集是x<0或x>3,故说法错误;D、原式可化为y=(x﹣2)2﹣4+a,将图象向上平移1个单位,再向左平移3个单位后所得函数解析式是y=(x+1)2﹣3+a,函数过点(1,﹣2),代入解析式得到:a=﹣3.故说法正确.故选A.40.①通过图象可知,在点A和B之间y1的图象在y2的上面,也就是y1>y2,且解集是0<x<4,此选项正确;②通过图象可知,在点A的左边和在B的右边,y1的图象在y2的下面,也就是y1<y2,且解集是x<0或x>4,此选项正确;③两函数图象的交点就是y1=y2的解,且解是x1=0,x2=4,此选项正确.故选D.41.解:∵二次函数y=x2﹣2x﹣3的图象如图所示.∴图象与x轴交在(﹣1,0),(3,0),∴当y<0时,即图象在x轴下方的部分,此时x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3.42.解:∵抛物线与x轴的一个交点(3,0)而对称轴x=1∴抛物线与x轴的另一交点(﹣1,0)当y=ax2+bx+c>0时,图象在x轴上方此时x<﹣1或x>3故填空答案:x<﹣1或x>3.43.解:(1)根据二次函数的性质可知对称轴为x=﹣=﹣=3顶点坐标为x=﹣=3,y===﹣4,故对称轴为x=3,顶点坐标为(3,﹣4);(2)令y=0,即x2﹣6x+5=0解得x1=1,x2=5故函数图象与x轴交点为(1,0),(5,0)∴c=0,故图象与y轴交点为(0,5);(3)由图象可知当x<1或x>5时,y>0当x>3时,y随x的增大而增大(4)由图象可知,x2﹣6x+5<0的解集为1<x<5.44.解:(1)根据图象得二次函数y=ax2+bx+c(a≠0)的图象,a>0,∵对称轴经过x轴的负半轴,即可得出a,b同号,∴b>0,故答案为:b>0;(2)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),而ax2+bx+c>0,即y>0,∴x<﹣4或x>2;故答案为:x<﹣4或x>2;(3)根据图象得二次函数y=ax2+bx+c(a≠0)的图象与x轴交点坐标为(2,0)、(﹣4,0),∴抛物线的对称轴为x=﹣1,∴当x<﹣1时,y随x的增大而减小.故答案为:x<﹣1.45.解:(1)∵二次函数y=ax2+bx+c的图象与x轴的交点为(1,0),(3,0)∴方程ax2+bx+c=0的两个根x1=1,x2=3;(2)由二次函数y=ax2+bx+c的图象可知:1<x<3时,二次函数y=ax2+bx+c的值大于0∴不等式ax2+bx+c>0的解集为1<x<3;(3)由图象可知:二次函数y=ax2+bx+c的对称轴为x=2∴y随x的增大而减小的自变量x的取值范围为x>2;(4)由图象可知:二次函数y=ax2+bx+c的顶点坐标为(2,2),当直线y=k,在(0,2)的下边时,一定与抛物线有两个不同的交点,因而当k<2时,方程ax2+bx+c=k有两个不相等的实数根.46.解:∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0,∴ac<0,∴①错误;由图象可知:﹣=1,∴2a+b=0,∴②正确;当x=1时,y=a+b+c>0,∴③错误;由图象可知:当x>1时,函数y随x的增大而减小,∴④错误;根据图象,当﹣1<x<3时,y>0,∴⑤正确;正确的说法有②⑤.47.解:∵y=x2+bx﹣1经过(3,2)点,∴b=﹣2,∵﹣1≤y≤2,∴﹣1≤x2﹣2x﹣1≤2,解得2≤x≤3或﹣1≤x≤0.48. 解:∵x2﹣x﹣6=0∴x1=﹣2,x2=3∴抛物线y=x2﹣x﹣6与x轴的交点坐标为(﹣2,0),(3,0)而抛物线y=x2﹣x﹣6开口向上当y<0时,图象在x轴的下方,此时﹣2<x<3故填空答案:﹣2<x<3.49. 解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.故填空答案:﹣1<x<3.50.解:(1)依题意因为ax2+bx+c>0,得出x的取值范围为:1<x<3;(2)如图可知,当y随x的增大而减小,自变量x的取值范围为:x>2;(3)由顶点(2,2)设方程为a(x﹣2)2+2=0,∵二次函数与x轴的2个交点为(1,0),(3,0),∴a=﹣2,∴抛物线方程为y=﹣2(x﹣2)2+2,y=﹣2(x﹣2)2+2﹣k实际上是原曲线下移k个单位,由图形知,当k<2时,曲线与x轴有两个交点.故k<2.故答案为:(1)1<x<3;(2)x>2;(3)k<2.51.解:∵直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),∴根据图象可知,不等式x2+bx+c>x+m 的解集为x<1或x>3;故答案为:x<1或x>3.52.解:直线y=1上方的函数图象所对应的自变量的取值为x≤﹣1或x≥3,故答案为x≤﹣1或x≥3.53.解:根据图象知,当y1≤y2时,自变量x的取值范围是﹣2≤x≤.故答案为﹣2≤x≤.54.解:由图可知,﹣<x<时,函数图象在x轴的下方,所以y<0.故答案为:<.55.解:当y=1时,x2﹣2x﹣2=1,解得(x+1)(x﹣3)=0,x1=﹣1,x2=3.由图可知,x≤﹣1或x≥3时y≥1.故答案为x≤﹣1或x≥3.56.解:(1)∵y=﹣x2﹣3x﹣=﹣(x2+6x+5)=﹣(x2+6x+9﹣4)=﹣(x+3)2+2,∴开口向下,对称轴为x=﹣3,顶点坐标为(﹣3,2);(2)∵令x=0,得:y=﹣,∴抛物线与y轴的交点坐标为:(0,﹣);令y=0,得到﹣x2﹣3x﹣=0,解得:x=﹣1或x=﹣5,故抛物线与x轴的交点坐标为:(﹣1,0)和(﹣5,0);(3)草图为:(4)根据草图知:当x=﹣1或x=﹣5时,y=0,当﹣5<x<﹣1时y>0,当x<﹣5或x>﹣1时y<0.57.解:(1)∵y=x2﹣2x﹣3=(x﹣1)2﹣4=(x+1)(x﹣3),∴抛物线的顶点坐标为(1,﹣4),对称轴为直线x=1,与x轴交点为(﹣1,0),(3,0);(2)由图象可知,当x>3或x<﹣1时,y>0.58.解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)由(1)知,该抛物线的解析式为:y=x2﹣3x+2,∴y=(x﹣)2﹣,∴抛物线的对称轴是:x=;顶点坐标是(,﹣);(3)x2﹣3x+2>x﹣1,解得:x<1或x>3.59.解:(1)由二次函数的图象经过B(1,0)、C (0,﹣3)两点,得,解这个方程组,得,∴抛物线的解析式为;(2)令y1=0,得x2+2x﹣3=0,解这个方程,得x1=﹣3,x2=1,∴此二次函数的图象与x轴的另一个交点A的坐标为(﹣3,0);(3)当x<﹣3或x>0,y2<y1.60.解:(1)由题意,有,解得m=1.(2)∵m=1,∴y1=x2+2x﹣3,∴y1=(x+1)2﹣4,列表为:x …﹣3 ﹣2 ﹣1 0 1 …y=x2+2x﹣3 …0 ﹣3 ﹣4 ﹣3 0 …描点并连线为:(3)∵m=1∴P(﹣2,﹣3),∴可以画出直线的图象.∴由图象得x≤﹣2或x≥1时,y1≥y2.。
二元一次方程组⑴1、下列方程:①xy+3x-y=5②3x+2=x-y ③y=5x ④x+y 1=3⑤xy=2⑥x 2-y 2=1⑦x+y+z=1中,二元一次方程有 (填序号).2、已知x a+b -3y a-1=2是关于x 、y 的二元一次方程,则a= ,b= . 3、已知x 、y 的值:①⎩⎨⎧==22x y ②⎩⎨⎧==23y x ③⎩⎨⎧-==21x y ④⎩⎨⎧-=-=23y x ,其中是二元一次方程2x-y=4的解是 (填序号).4、已知⎩⎨⎧==12x y 是方程3x+ay=4的一个解,则a= .5、方程5x-2y=1,当x= -2时,y= ;当y= -3时,x= .6、若方程x-ky=6的一个解是⎩⎨⎧==32y x ,则k 的值是 .7、若⎩⎨⎧-=-=121m y mx ,则x 与y 的关系是8、把下列方程化成用含x 的式子表示y 的形式:(1)x+3y=4 (2)3x-5y=29、判断⎩⎨⎧==13y x 是否是方程组⎩⎨⎧=-=+43252y x y x 的解?为什么?1、在下列二元一次方程中,有无数个正整数的解的是( )A 、x+3y=2008B 、x-y=3C 、2x+4y=7D 、x+2y=12、方程x-my=y+3是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠1C 、m ≠-1D 、m ≠33、下列方程组中不是二元一次方程组的是( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧=-=+21y x y xC 、⎩⎨⎧==+15xy y xD 、⎩⎨⎧=-=12y x x y 4、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧-==12y xD 、⎩⎨⎧==21y x 5、在方程3x+4y=6中,如果2y=3,那么x= .6、某人只带了面值2元和5元的两种货币,他要买一件27元的商品,则他在不需要找钱的情况下可以有几种付款方式.7、解方程组(1)⎩⎨⎧=+=-74823y x y x (2)⎩⎨⎧=+-=-33225y x y x1、已知方程12(x+1)=7(y-1),写出用x 表示y 的式子得 ,当x=2时,y= .2、将x=23-y-1代入方程4x-9y=8中,可得到一元一次方程的解是 . 3、若方程3x+y=51的一个解中的两个数互为相反数,则这个解是 . 4、用代入法解方程组⎩⎨⎧=-=+1472x y x y 由②得y= ③,把③代入①, 得 ,解得x= ,再把求得的x 值代入③得,y= ;所以方程组的解为 .5、已知⎩⎨⎧==32x y 是方程组⎩⎨⎧=-=-7253ny x y mx 的解,则2m+3n= .6、解方程组(1)⎩⎨⎧=--=52332b a b a (2)⎩⎨⎧=+=-15255s 3t s t7、已知关于x 、y 的方程mx+ny=8的两个解分别为⎩⎨⎧-==13y x 和⎩⎨⎧=-=21y x ,求m 、n 的值.二元一次方程组⑷1、若(2x-3y+5)2+︱x+y-2︱=0,则x= ,y= .2、已知3x 3m+5n+9+9y 4m-2n+3=5是二元一次方程,则n m 的值是 . 3、如果x+y=-4,x-y=8,那么多项式x 2-y 2的值是 .4、已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x 则2a-3b= . 5、已知⎩⎨⎧=-=+32423t y t x ,则x 与y 之间的关系式是 .6、解方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x7、已知(3x-2y+1)2与︱4x-3y-3︱互为相反数,求x-y 的值.1、某电视机厂第一季度和第二季度共生产液晶电视机144000台,已知第一季度的产量是第二季度的80%,设第一季度的产量为x 台,第二季度的产量为y 台,则列出方程组是 .2、一艘轮船顺水航行104km,需要2h ;逆水航行3h 的路程为96km ;则轮船在静水中航2h 的路程是多少千米.可采取间接设的方法.设轮船在静水中航行的速度为xkm/h ,水流速度为ykm/h ,则列出方程组为 .3、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?4、甲乙二人从相距20千米的两地同时出发,若同向而行甲5小时可追上乙;若相向而行35小时相遇,求甲乙二人的速度各是多少.5、已知甲、乙两种商品的原价和为200元.因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价和比原单价和提高了5%.求甲、乙两种商品的原单价各是多少元.1、要把一张面值为10元的人民币换成零钱,现在只有面值1元和5元的人民币,数量足够多,那么不同的换法共有种.2、某校运动员进行分组训练,若每组5人,则余2人;若每组6人,则缺少3人;设运动员人数共有x人,组数为y人,则列出方程组为 .3、某文具商店星期一共售出毛笔和签字笔200支,其中毛笔的数量是签字笔数量的3倍多8支,设售出毛笔x支,售出签字笔y支,则列出方程组为 .4、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?5、已知一艘轮船载重量是500吨,容积是1000立方米.现有甲乙两种货物等待装运,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度的利用船的载重量和体积?6、用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用多少张铁皮制作盒身,用多少张铁皮制作盒底,正好全部配套.1、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.2、一张方桌是由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条.现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张?3、加工某种产品需要经过两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人加工这种产品,问应怎样安排人力,才能使每天第一道工序、第二道工序所完成的产品件数相等?不等式⑴1、用不等式表示:(1) x 是负数;___________ (2) x 是非负数;____________(3) x 的一半小于-1;__________ (4) x 与4的和大于0.5;_________(5)a 与1的和是正数;__________ (6)x 的21与y 的31的差是非负数;__________ 2、当实数a <0时,6+a 6-a (填“<”或“>”).3、不等式2x ﹣1>3的解集为 .4、不等式2x+9≥3(x+2)的正整数解是 .5、下列各式中,是一元一次不等式的是( ).A.5+4>8 B.12-x C.x 2+3≤5D.x y 3-≥06、下列命题中正确的是( ).A.若m ≠n,则|m|≠|n| B.若a+b=0,则ab >0C.若ab <0,且a <b,则|a|<|b| D.互为倒数的两数之积必为正.7、无论x 取什么数,下列不等式总成立的是( ).A.x+5>0; B.x+5<0; C.-(x+5)2<0; D. (x-5)2≥0.8、若,a a -则a 必为( ).A 、负整数 B、 正整数 C、负数 D、正数9、下列说法,错误的是( ).A.33- x 的解集是1- x B.-10是102- x 的解C.2 x 的整数解有无数多个 D.2 x 的负整数解只有有限多个 10、下列按要求列出的不等式中正确的是 ( ).A.a 不是负数,则a>0B.b 是不大于0的数,则b<0C.m 不小于-1,则m>-1D.a+b 是负数,则a+b<011、不等式2-x<1的解集是( ).A.x>1B.x>-1C.x<1D.x<-1不等式⑵1、不等式6(x +1)-3x >3x +3的解集为( ).A .x >1B .无解C .x >-1D .任意数2、不等式4x -7≥5(x -1)的解集是( ).A .x ≥ 2B .x ≥-2C .x ≤-2D .x ≤23、若不等式(m -2)x >n 的解集为x <1,则m ,n 满足的条件是( ).A .m=n -2且m >2B .m=n -2且m <2C .n=m -2且m >2D .n=m -2且m <24、当k _____时,3k 与k 的差小于1. 5、不等式0823≤--x 的解集是____________. 6、解下列不等式,并把它们得解集在数轴上表示出来.(1) 7x+5>8x+6 (2)2x-1>5x+5(3)3(x +2)-1>8-2(x -1) (4)2[x -3(x -1)]≥5x不等式⑶1、若∣x -2∣=2-x ,则x 应满足( ).A .x ≥ 2B .x >2C .x <2D .x ≤22、如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ).A .9 ≤m <12B .9 <m ≤12C .m <12D .m ≥ 93、不等式3x -k ≤0的正整数解是1,2,那么k 的取值范围是___________.4、不等式3x -2≥4(x -1)的所有非负整数解的和等于___________.5、关于x 的不等式3x -2a ≤-2的解集是x ≤1,则a 的值是_________.6、若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.7、解不等式,并在数轴表示不等式的解集.(1))4(410--x ≤1)-x (2 (2)145261≥--+y y(3)612131-≥--+x x x (4)12162312----+x x x >不等式⑷1、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )..13.31.22.22 A m B m C m D m-<≤-≤<-≤<-<≤2、满足-1<x≤2的数在数轴上表示为().3、不等式45111x-<的正整数解为( ).A.1个B.3个C.4个D.5个4、已知不等式组2113xx m-⎧>⎪⎨⎪>⎩的解集为2x>,则m满足条件为( )..2.2.2.2 A m B m C m D m><=≤5、(1)不等式组21xx>-⎧⎨>⎩的解集是(2)不等式组12xx<⎧⎨>-⎩的解集是;6、解下列不等式组:(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(2)()2 1.55261x xx x≤+⎧⎪⎨->-⎪⎩不等式⑸7、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个正确,要求学生把正确答案选出,每道题选对的4分,不选或错选倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对多少道题?8、某商店要选购甲、乙两种零件,若购进甲种零件10件,乙种12件,共需要2100元,若购进甲种零件5件,乙种零件8件,共需要1250元.(1)求甲、乙两种零件每件分别为多少元?(2)若每件甲种零件的销售价格为108元,每件乙种销售价格为140元,根据市场需求,商店决定,购进甲种零件的数量比购进乙种的数量3倍多2件,这样零件的全部售出后,要是总获利超过976元,至少应购进乙种零件多少件?1、用不等式表示图中的解集,其中正确的是 ( )A. x≥-2B. x >-2C. x <-2D. x≤-22、不等式2-x>1的解集是____________3、方程2x +3y =10中,当3x -6=0时,y =_________4、若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围.5、某商店欲购进A,B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元,若购进A 种商品6件和B 种商品8件共需440元;(1)求A,B 两种商品每件的进价分别为多少元?(2)若该商品每销售1件A 种商品可获利8元,每销售1件B 种商品可获利6元,且商店将购进A,B 共50件的商品全部售出后,要获得的利润超过348元,问A 种商品至少购进多少件?1、下列方程中的二元一次方程组的是()A.32141x yy z-=⎧⎨=+⎩B.3232ab a=⎧⎨-=⎩C.13124yxxy⎧+=⎪⎪⎨⎪+=⎪⎩D.13mnm n=-⎧⎨+=⎩2、不等式4(x-2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3、庐城出租车的收费标准:起步价4元(即行使距离不超过3千米都须付4元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人乘出租车从甲地到乙地共付车费18元,那么甲地到乙地路程是( )A.9.5千米B.10千米C.至多10千米D.至少9千米4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为.5、某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?6、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?。
方程与不等式之二元一次方程组技巧及练习题一、选择题1.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A .530020015030x y x y +=⎧⎨+=⎩ B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩ 【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案. 详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.2.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料,下卷收集了一些算术难题,“鸡兔同笼”便是其中一题.下卷中还有一题,记载为:“今有甲乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八.问甲、乙二人持钱各几何?”意思是:“甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的23,那么乙也共有钱48文.问甲、乙二人原来各有多少钱?”设甲原有钱x 文,乙原有钱y 文,可得方程组( ) A .14822483x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .14822483y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .14822483x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .14822483y x x y ⎧-=⎪⎪⎨⎪-=⎪⎩【答案】A【解析】【分析】 根据题意,通过题目的等量关系,结合题目所设未知量列式即可得解.【详解】设甲原有x 文钱,乙原有y 文钱,根据题意,得:14822483x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,准确设出未知量根据等量关系列式求解是解决本题的关键.3.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=10【答案】A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.4.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k是()A .-3B .-2C .-1D .1【答案】A【解析】【分析】 根据“x 的值比y 的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y 的值,进而得出x 的值,把x ,y 的值代入方程组中第二方程中求出k 的值即可.【详解】∵x 的值比y 的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A.【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.5.已知方程组32422x y x y -=⎧⎨-=⎩,则()2x y --=( ) A .14 B .12 C .2 D .4【答案】A【解析】32422x y x y =①=②-⎧⎨-⎩, ①-②得:x-y=2,则原式=-22=14. 故选A.6.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1B .2C .3D .4【答案】A【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1,故选:A.7.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( ) A .42a b =⎧⎨=⎩ B .24a b =⎧⎨=⎩ C .24a b =-⎧⎨=-⎩ D .42a b =-⎧⎨=-⎩【答案】A【解析】【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可.【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩, ∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩, 故选:A .【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.8.小李去买套装6色水笔和笔记本,若购买4袋笔和6本笔记本,他身上的钱还差22元,若改 成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种 物品(两种都买)的方案有( )A .3种B .4种C .5种D .6种 【答案】C【解析】【分析】设1袋笔的价格为x 元,1本笔记本的价格为y 元,根据“若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元”,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论,再设可购买a 袋笔和b 本笔记本,根据总价=单价×数量可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设1袋笔的价格为x 元,1本笔记本的价格为y 元,依题意,得:4x+6y-22=x+2y+34,∴3x+4y=56,即y=14-34x . ∵x ,y 均为正整数,∴411xy⎧⎨⎩==,88xy⎧⎨⎩==,125xy⎧⎨⎩==,162xy⎧⎨⎩==.设可购买a袋笔和b本笔记本.①当x=4,y=11时,4x+6y-22=60,∴4a+11b=60,即a=15-114b,∵a,b均为正整数,∴44ab⎧⎨⎩==;②当x=8,y=8时,4x+6y-22=58,∴8a+8b=58,即a+b=294,∵a,b均为正整数,∴方程无解;③当x=12,y=5时,4x+6y-22=56,∴12a+5b=56,即b=56125a-,∵a,b均为正整数,∴34 ab==⎧⎨⎩;④当x=16,y=2时,4x+6y-22=54,∴16a+2b=54,即b=27-8a,∵a,b均为正整数,∴119ab⎧⎨⎩==,211ab⎧⎨⎩==,33ab⎧⎨⎩==.综上所述,共有5种购进方案.故选:C.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.已知关于x的方程x-2m=7和x-5=3m是同解方程,则m值为()A.1 B.-1 C.2 D.-2【答案】C【解析】【分析】根据同解方程,可得方程组,根据解方程组,可得答案.【详解】解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =,由②得:3+5x m =,∴7+23+5m m =,解得:2m =,故选C.【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.10.关于x 、y 的方程组222x y mx y m+=⎧⎨+=+⎩的解为整数,则满足这个条件的整数m 的个数有( )A .4个B .3个C .2个D .无数个 【答案】A【解析】【分析】先解二元一次方程组x 、y ,然后利用解为整数解题即可【详解】 解方程组222x y mx y m +=⎧⎨+=+⎩得到242m x m y m ⎧=⎪⎪-⎨⎪=⎪-⎩因为方程组的解为整数,所以m 可以为0、1、3、4,所以满足条件的m 的整数有4个,选A【点睛】本题主要考查二元一次方程组的解,解出x 、y 再利用解为整数求解是本题关键11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.若2334a b x y +与634a b x y -的和是单项式,则a b +=( ) A .3-B .0C .3D .6【答案】C【解析】【分析】 根据同类项的定义可得方程组263a b a b +=⎧⎨-=⎩,解方程组即可求得a 、b 的值,即可求得a+b 的值.【详解】 ∵2334a b x y +与643a b x y -是同类项, ∴263a b a b +=⎧⎨-=⎩, 解得30a b =⎧⎨=⎩, ∴a+b=3.故选C.【点睛】本题考查了同类项的定义及二元一次方程组的解法,根据同类项的定义得到方程组263a b a b +=⎧⎨-=⎩是解决问题的关键.13.|21|0a b -+=,则2019()b a -等于( )A .1-B .1C .20195D .20195- 【答案】A【解析】【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值.【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①② 由②,得21b a =+③,将③代入①,得2150a a +++=,解得2a =-,把2a =-代入③中,得3b =-,所以20192019()(1)1b a -=-=-. 故选A.【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.14.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩ 【答案】A【解析】【分析】 设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组.【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A .本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y =-8C.5x+4y=-3 D .3x-4y=-8【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2B .m >-3C .-3<m <2D .m <3或m >2 【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =-⎧⎨=+⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =+⎧⎨+=⎩D .7385y x y x =+⎧⎨=+⎩【答案】A【解析】【分析】 根据关键语句“若每组7人,余3人”可得方程7y+3=x ;“若每组8人,则缺5人.”可得方程8y-5=x ,联立两个方程可得方程组.【详解】设运动员人数为x 人,组数为y 组,由题意得:7385y x y x =-⎧⎨=+⎩. 故选A .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 【答案】B【解析】【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米, ∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.20.由方程组53x m y m-=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-【答案】C【解析】【分析】 先解方程组求得5x m =+、3y m =-,再将其相减即可得解.【详解】解:∵53x m y m -=⎧⎨+=⎩①② 由①得,5x m =+由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=.故选:C【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.。
初中数学二元一次不等式(组)精选试题一.选择题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)若关于x的一元一次不等式组的解集是x>3.则m的取值范围是()A.m>4 B.m≥4C.m<4 D.m≤4【分析】先求出每个不等式的解集.再根据不等式组的解集和已知得出关于m的不等式.再求出解集即可.【解答】解:.∵解不等式①得:x>3.解不等式②得:x>m﹣1.又∵关于x的一元一次不等式组的解集是x>3.∴m﹣1≤3.解得:m≤4.故选:D.【点评】本题考查了解一元一次不等式组.能根据不等式的解集和已知得出关于m的不等式是解此题的关键.2. (2018·湖北襄阳·3分)不等式组的解集为()A.x>B.x>1 C.<x<1 D.空集【分析】首先解每个不等式.两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解不等式2x>1﹣x.得:x>.解不等式x+2<4x﹣1.得:x>1.则不等式组的解集为x>1.故选:B.【点评】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(2018•江苏宿迁•3分)若a<b.则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【答案】D【分析】根据不等式的性质逐项进行判断即可得答案.【详解】A.∵a<b.∴ a-1<b-1.正确.故A不符合题意;B.∵a<b.∴ 2a<2b.正确.故B不符合题意;C.∵a<b.∴ .正确.故C不符合题意;D.当a<b<0时.a2>b2.故D选项错误.符合题意.故选D.【点睛】本题考查了不等式的基本性质.熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数.不等号方向不变;不等式性质2:不等式两边同时乘以(或除以)同一个正数.不等号方向不变;不等式性质3:不等式两边同时乘以(或除以)同一个负数.不等号方向改变.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.一.选择题5.(2018•山东聊城市•3分)已知不等式≤<.其解集在数轴上表示正确的是()A. B.C. D.【分析】把已知双向不等式变形为不等式组.求出各不等式的解集.找出解集的方法部分即可.【解答】解:根据题意得:.由①得:x≥2.由②得:x<5.∴2≤x<5.表示在数轴上.如图所示.故选:A.【点评】此题考查了解一元一次不等式组.以及在数轴上表示不等式的解集.熟练掌握运算法则是解本题的关键.6.(2018•山东东营市•3分)在平面直角坐标系中.若点P(m﹣2.m+1)在第二象限.则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1【分析】根据第二象限内点的横坐标是负数.纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2.m+1)在第二象限.∴.解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式.记住各象限内点的坐标的符号是解决的关键.四个象限的符号特点分别是:第一象限(+.+);第二象限(﹣.+);第三象限(﹣.﹣);第四象限(+.﹣).7. (2018•嘉兴•3分)不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【答案】A【考点】解一元一次不等式【解析】【解答】解:因为1-x≥2.3≥x.所以不等式的解为x≤3.故答案为A。
方程与不等式之二元一次方程组真题汇编含解析一、选择题1.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.2.二元一次方程3420x y +=的正整数解有( ) A .1组 B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=, ∵原方程无解, ∴60a +=, 解得6a =-. 故选B. 【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.4.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得 2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2 ∴c=-2,a=4,b=5 ∴a+b+c=7. 故答案为:A. 【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.5.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x个班,分配到的入场券有y张,列出方程组为()A.1051215x yx y+=⎧⎨-=⎩B.1051215x yx y-=⎧⎨+=⎩C.1051215x yx y=-⎧⎨+=⎩D.1051215x yx y-=⎧⎨=+⎩【答案】A【解析】【分析】假设初一班级共有x个班,分配到的入场券有y张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组.【详解】设初一班级共有x个班,分配到的入场券有y张,则1051215x yx y+=⎧⎨-=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.6.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k是()A.-3 B.-2 C.-1 D.1【答案】A【解析】【分析】根据“x的值比y的相反数大2”得出“x=-y+2”,再代入到方程组的第一个方程得到y的值,进而得出x的值,把x,y的值代入方程组中第二方程中求出k的值即可.【详解】∵x的值比y的相反数大2,∴x=-y+2,把x=-y+2代入4x+5y=10得,-4y+8+5y=10,解得,y=2,∴x=0,把x=0,y=2代入kx-(k-1)y=8,得k=-3.故选A. 【点睛】此主要考查了与二元一次方程组的解有关的问题,解题的关键是列出等式“x=-y+2”.7.已知2,1.x y =⎧⎨=⎩是方程25+=x ay 的解,则a 的值为( ) A .1 B .2C .3D .4【答案】A 【解析】 将21x y =⎧⎨=⎩代入方程2x+ay=5,得:4+a=5, 解得:a=1, 故选:A.8.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x byc e x fyd ⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩,∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.10.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,0x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩【答案】C 【解析】 【分析】利用代入法解方程组即可得到答案.【详解】23322x y x y +=⎧⎨-=-⎩①②, 由②得:x=2y-2③,将③代入①得:2(2y-2)+3y=3, 解得y=1,将y=1代入③,得x=0,∴原方程组的解是01x y =⎧⎨=⎩,故选:C. 【点睛】此题考查二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( )A .-1B .0C .1D .2【答案】A 【解析】 【分析】观察方程组,利用第一个方程减去第二个方程即可求解. 【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得, x-y=-1. 故选A. 【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.已知a ,b 满足方程组2226a b a b -=⎧⎨+=⎩ ,则3a +b 的值是( )A .﹣8B .8C .4D .﹣4【答案】B 【解析】 【分析】方程组中的两个方程相加,即可得出答案. 【详解】解:2226a b a b -=⎧⎨+=⎩①②,①+②,得:3a+b=8, 故选B . 【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.13.二元一次方程3x+y =7的正整数解有( )组. A .0 B .1C .2D .无数【答案】C 【解析】 【分析】分别令x=1、2进行计算即可得 【详解】 解:方程3x+y=7, 变形得:y=7-3x ,当x=1时,y=4;当x=2时,y=1, 则方程的正整数解有二组 故本题答案应为:C 【点睛】本题考查了二元一次方程的解,给出一个未知数的值求出另一个未知数的值即可.14.甲、乙两人在同一个地方练习跑步,如果让乙先跑10米,甲跑5秒钟就追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )A .5105442x y x y +=⎧⎨-=⎩B .5510424x y x y =+⎧⎨-=⎩C .()5510 42x y x y y -=⎧⎨-=⎩ D .()()51042x y x y x ⎧-=⎪⎨-=⎪⎩【答案】C 【解析】解:设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩.故选C .点睛:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆, 根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.16.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗. A .6 B .8C .10D .12【答案】B 【解析】 【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解. 【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得:11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗 故选B . 【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.17.如果21x y =-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m 的值是( )A .-2B .2C .-1D .1【答案】C 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】 把21x y =-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1, 故选:C .18.关于x ,y 的方程组2647x ay x y -=⎧⎨+=⎩的解是整数,则整数a 的个数为()A .4个B .3个C .2个D .1个【答案】C 【解析】 【分析】先解方程组求出x y 、的值,根据y 和a 都是整数求出121a +=-或125a +=或121a +=或125a +=-,求出a 的值,再代入x 求出x ,再逐个判断即可; 【详解】2647x ay x y -=⎧⎨+=⎩①② 2⨯①-②得:()215a y --=解得:521y a =--把521y a =--代入②得:54721x a -=+ 解得:7624a x a+=+ Q 方程组的解为整数∴ ,x y 均为整数∴ 121a +=-或125a +=或121a +=或125a +=-解得:1,2,0,3a =--,当1a =-时,12x =,不是整数,舍去; 当2a =时,2x =,是整数,符合;当0a =时,3x =,是整数,符合; 当3a =-时,32x =,不是整数,舍去; 故选:C. 【点睛】本题主要考查二元一次方程组的含参问题,准确的解出方程组并且列出整数解的情况是求解本题的关键.19.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A .B .C .D .【答案】A 【解析】 【分析】设甲需带钱x ,乙带钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得. 【详解】解:设甲需带钱x ,乙带钱y ,根据题意,得:故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.20.若215(3)()x mx x x n +-=++,则m 的值为() A .-2 B .2C .-5D .5【答案】A 【解析】【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解.【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++ ∴3315m n n =+⎧⎨=-⎩①② 由②得,5n =-把5n =-代入①得,2m =-∴m 的值为2-.故选:A【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.。
□x +5y =13 ①4x -□y =-2 ② 三、填空:28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________;30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______; 32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x y x y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x y x y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题: 47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解; 48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;50、要使下列三个方程组成的方程组有解,求常数a 的值。
初中数学方程与不等式之二元一次方程组技巧及练习题附答案一、选择题1.如图, 10 块同样的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的选项是()x2y 75x 2 y 75A .3xB .3yyx2x y 752x y 75C .3xD .3yyx【答案】 B 【分析】 【剖析】依据图示可得:矩形的宽能够表示为 x+2y ,宽又是 75 厘米,故 x+2y=75,矩的长能够表示为 2x ,或 x+3y ,故 2x=3y+x ,整理得 x=3y ,联立两个方程即可.【详解】x 2 y 75 依据图示可得,x 3 y应选 B .【点睛】本题主要考察了由实质问题抽象出二元一次方程组,重点是看懂图示,分别表示出长方形的长和宽.2.已知甲、乙两数之和是42,甲数的3 倍等于乙数的4 倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组()42 y xx y 4242x y x y 4211A .3yB .C .D .4y4x 4x3yxy3x34【答案】 D【分析】【剖析】依据题干关系分别列出二元一次方程,再组合行成二元一次方程组即可 .【详解】解:由甲、乙两数之和是42 可得, xy42 ;由甲数的3 倍等于乙数的4 倍可得,3x4 y ,故由题意得方程组为:x y42,3x 4 y应选择 D.【点睛】本题考察了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.x=23.是方程 mx-3y=2 的一个解,则m 为 ( )y=7232319A.8B.2C.-2D.-2【答案】 B【分析】【剖析】把 x 与 y 的值代入方程计算即可求出m 的值.【详解】解:把x=2代入方程得: 2m-21=2,y=7解得: m= 23,2应选: B.【点睛】本题考察了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.二元一次方程2x+y= 5 的正整数解有()A.一组B.2 组C.3 组D.无数组【答案】B【分析】【剖析】因为要求二元一次方程的正整数解,可分别把x=1、 2、 3 分别代入方程,求出对应的值,进而确立二元一次方程的正整数解.【详解】解:当 x=1,则 2+y=5,解得 y=3,当 x=2,则 4+y=5,解得 y=1,当x=3,则 6+y=5,解得 y=-1,因此原二元一次方程的正整数解为,.应选 B.【点睛】本题考察认识二元一次方程:二元一次方程有无数组解;经常要确立二元一次方程的特别解.x5y a1的解 x 与y的差为3,则a的值为()5.若方程组y a33xA. 0B. 7C. 7D.8【答案】 B【分析】【剖析】3a7x先利用加减消元法解方程组获得8,再依据已知条件列出对于参数 a 的方程,a3y8而后解一元一次方程即可得解.【详解】x 5y a1①解:∵3x y a3②② -①×3得,ya38 3a7① +②×5得,x83a7x∴方程组的解为:8a3 y8x5y a1∵方程组y a 的解 x 与y的差为3,即 x y 33x33a7a33∴88∴ a7.应选: B【点睛】本题考察认识含参数的二元一次方程组、列一元一次方程并解一元一次方程,能获得对于参数 a 的方程是解决问题的重点.6.重庆育才中学 2019 年“见字如面读陶分享会”盛大举行,初一年级获得了必定数目的入场券,假如每个班 10 张,则多出 15 张,假如每个班 12 张,则差 5 张券,假定初一年级共有 x 个班,分派到的入场券有y张,列出方程组为()A .C .10x 5 y 12x 15 y10x y 512x 15 yB .D .10 x 5 y12 x 15 y 10x 5 y 12x 15 y【答案】 A 【分析】 【剖析】假定初一班级共有 x 个班,分派到的入场券有 y 张,依据 “假如每个班 10 张,则多出 5 张券;假如每个班 12 张,则差 15 张券 ”列出方程组.【详解】设初一班级共有 x 个班,分派到的入场券有 y 张,10x 5 y 则15 .12x y应选: A .【点睛】本题考察由实质问题抽象出二元一次方程组,解题的重点是明确题意,列出相应的方程组.7.用白铁皮做罐头盒,每张铁皮可制盒身 10 个或制盒底 40 个,一个盒身与两个盒底配成一套罐头盒,现有 120 张白铁皮,设用 x 张制盒身, y 张制盒底,得方程组 ()x y 120 x y 120 x y 120 x y 120 A .10 xB .40xC .20xD .40x40y10 y40y20y【答案】 C 【分析】【剖析】第一依据题意能够得出以下两个等量关系: ① 制作盒身的白铁皮张数 +制作盒底的白铁皮的张数 =120,② 盒身的个数 ×2=盒底的个数,据此进一步列出方程组即可.【详解】∵一共有 120 张白铁皮,此中 x 张制作盒身, y 张制作盒底,∴ x y 120 ,又∵每张铁皮可制盒身10 个或制盒底 40 个,一个盒身与两个盒底配成一套罐头盒,∴ 40 y 20x ,x y 120 ∴可列方程组为:,40 y 20x应选: C.【点睛】本题主要考察了二元一次方程组的实质应用,依据题意正确找出相应的等量关系是解题关键.8.某人购置甲种树苗12 棵,乙种树苗15 棵,共付款450 元,已知甲种树苗比乙种树苗每棵廉价 3 元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组()12x15y450 A.y3B.x12x15y450 C.3x D.y 【答案】 B【分析】【剖析】12x 15y450 y x312x 15y450 x 3 y依据“购置甲种树苗 12棵,乙种树苗15 棵,共付款450 元”可列方程 12x+15y=450;由“甲种树苗比乙种树苗每棵廉价3元”可列方程 y﹣ x=3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组12x15 y450y x3,应选: B.【点睛】本题主要考察了由实质问题抽象出二元一次方程组,解题重点是要读懂题目的意思,依据题目给出的条件,找出适合的等量关系,列出方程组.9.二元一次方程3x4y 20 的正整数解有()A.1 组B.2 组C.3 组D.4 组【答案】 A【分析】【剖析】经过将方程变形,获得以x 的代数式,利用倍数逻辑关系,列举法可得.【详解】∵由 3x 4 y 20 可得, 4y 203x, y 35x ,x, y是正整数.4∴依据题意, x 是4的倍数,则 x0, y 5 (不符题意); x 4, y 2 是方程的解,x8, y 1 (不符题意).故答案是 A.【点睛】本题既考察正整数的观点又考察代数式的变形,理解二元一次方程解的观点是本题的重点.10.已知对于x、y的二元一次方程组3x 5 y6,给出以下结论:①当 k 5 时,此3x ky10方程组无解;② 若此方程组的解也是方程6x15 y16 的解,则k10 ;③不论整数 k何值,此方程组必定无整数解(x 、y均为整数),此中正确的选项是()A.①②B.①③C.②③D.①②③【答案】 D【分析】【剖析】①将 k53x 5 y6代入方程组可得3x 5 y,解方程组即可作出判断;10将 k10 代入方程组可得3x5y6②3x10y求得方程组的解后,再将解代入106x15y 16即可作出判断;3x5 y6x 2203k 15,依据 k 为整数即可作出判断.③ 解ky10得3x y4k 5【详解】解:①当 k 5 时,对于x、 y 的二元一次方程组为:3x 5 y63x 5 y ,此时方程组无解,10故本说法正确;23x 5 y6x 3,将其②当k 10时,对于 x 、y的二元一次方程组为:10 y 10,解得3x4y5代入 6x15 y16 ,能使其左右两边相等,故本说法正确;x 203x 5 y62得3k 15,因为 k 为整数而x、 y 不可以都为整数,故本说法③ 解ky103x4y5k正确.应选: D【点睛】本题考察了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中双方程同时建立的未知数的值.x3y 4a、 b 的值是11.假如方程组的解与方程组的解同样,则ax by 5bx ay2( )a 1 a 1 a 1 a 1A .2B .2C .2D .2bbbb【答案】 A【分析】【剖析】x 3 3a 4b 5 把代入方程中其他两个方程得3b 4a,解方程组可得.y42【详解】解:因为两个方程组的解同样,因此这个同样的解是x 3,y 4x 3 把y 4代入方程中其他两个方程得3a 4b 5 3b 4a 2a 1解得b 2应选 A . 【点睛】本题查核知识点:解二元一次方程组.解题重点点:娴熟解二元一次方程组.12. 甲、乙两人在同一个地方练习跑步,假如让乙先跑10 米,甲跑5 秒钟就追上乙;如果甲让乙先跑2 秒钟,那么甲跑4 秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )5x 10 5 y5x 5 y 105x5y 105 x y 10A .4 x 4 y 2B .4x 2 4 yC .4 x y 2yD .4 x y2x【答案】 C【分析】解:设甲、乙每秒分别跑x 米, y 米,由题意知:5x 5y 10.应选 C .4 xy2 y点睛:依据实质问题中的条件列方程组时,要注意抓住题目中的一些重点性词语,找出等量关系,列出方程组.13.已知对于 x,y 的二元一次方程组3x2y3m25 ,则 m 的2x3y m的解适合方程 x 2 y值为()A.1B. 2C. 3D. 4【答案】 C【分析】【剖析】整理方程为 3x+7y=2,与x2yx35 构成新的方程组,求解得,代入原方程组中随意一y1个方程即可求出 m.【详解】解:将 m=2x+3y 代入3x2y3m 2 中得,3x+7y=2,∵x,y 的二元一次方程组3x2y3m22 y 5 , 2x 3y m的解适合方程 xx 2 y5x3∴联立方程组7 y ,解得:y,3x21∴ m 2x 3y =3,应选 C.【点睛】本题考察解二元一次方程组的方法,属于简单题 ,娴熟掌握加减消元和代入消元的方法是解题重点 .14.某文具店一本练习本和一支水笔的单价共计为 3 元,小妮在该店买了20 本练习本和10 支水笔,共花了36 元.假如设练习本每本为x 元,水笔每支为y 元,那么依据题意,以下方程组中,正确的选项是()x y 3x y 3y x 3x y 3A.20x 10y36B.20x 10 y36C.20x 10y36D.10x 20 y 36【答案】 B【分析】剖析:依据等量关系“一本练习本和一支水笔的单价共计为 3 元”,“20本练习本的总价+10支水笔的总价 =36”,列方程组求解即可.详解:设练习本每本为x 元,水笔每支为y 元,依据单价的等量关系可得方程为x+y=3,依据总价 36 获得的方程为20x+10y=36,x y=3因此可列方程为:,20x10 y=36应选: B.点睛:本题主要考察了由实质问题抽象出二元一次方程组,获得单价和总价的2 个等量关系是解决本题的重点.2x 3 y 3()15. 用加减消元法解方程组2 y 11 ,以下变形正确的选项是3x4x 6 y 3 6 x 3 y 9 4x 6 y 6 6x 9 y 3 A .B .2 y22C .6 y33D .4y 119x 6 y 116 x 9x 6x 【答案】 C【分析】【剖析】运用加减法解方程组时,要知足方程组中某一个未知数的系数相等或互为相反数,把原方 程变形要依据等式的性质,本题中方程 ①×2, ②×3,便可把 y 的系数变为互为相反数.【详解】2x 3 y 3 解: {2 y 113x ①×2得, 4x+6y=6 ③,②×3得, 9x-6y=33 ④ ,4x 6y 6 构成方程组得: {.9x 6 y33应选 C .【点睛】本题考察二元一次方程组的解法有加减法和代入法两种,一般采用加减法解二元一次方程组较简单.运用加减法解方程组时,要知足方程组中某一个未知数的系数相等或互为相反数.16 .《九章算术》中记录: “ 今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十 .问甲乙持钱各几何? ”其粗心是:今有甲、乙两人各带了若干钱 .假如甲获得乙 全部钱的一半,那么甲共有钱;假如乙获得甲全部钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为 ,乙带钱为 ,依据题意,可列方程组为()A .B .C .D .【答案】 A【分析】【剖析】设甲需带钱 x ,乙带钱 y ,依据题意可得,甲的钱+乙的钱的一半 =50,乙的钱 +甲全部钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,依据题意,得:应选: A.【点睛】本题考察了由实质问题抽象出二元一次方程组,解答本题的重点是读懂题意,设出未知数,找出适合的等量关系,列出方程组.17.某校运动员分组训练,若每组7 人,余为 x 人,组数为y 组,则列方程组为()3 人;若每组8 人,则缺 5 人;设运动员人数7 y x 37 y x 37y x 3D.7 y x 3A.B.C.8y x 58y 5 x8y 5 x8 y x 5【答案】 A【分析】【剖析】依据重点语句“若每组 7 人,余 3 人”可得方程 7y+3=x;“若每组 8人,则缺 5 人.”可得方程 8y-5=x,联立两个方程可得方程组.【详解】设运动员人数为 x 人,组数为 y 组,7 y x3由题意得:.8 y x5应选 A.【点睛】本题主要考察了由实质问题抽象出二元一次方程组,重点是正确理解题意,抓住重点语句,列出方程.18.利用两块同样的长方体木块丈量一张桌子的高度,第一按图①方式搁置,再互换两木块的地点,按图② 方式搁置丈量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【答案】 C【分析】【剖析】设长方体木块的长是xcm,宽是 ycm,由题意得x y 5 ,再代入求出桌子的高度即可.【详解】设长方体木块的长是xcm,宽是 ycm,由题意得80 x y 70 y x可得 x y5则桌子的高度是80 x y 80 5 75cm故答案为: C.【点睛】本题考察了二元一次方程的实质应用,掌握解二元一次方程的方法是解题的重点.19.图①的等臂天平呈均衡状态,此中左边秤盘有一袋石头,右边秤盘有一袋石头和 2 个各 10 克的砝码.将左边袋中一颗石头移至右边秤盘,并拿走右边秤盘的 1 个砝码后,天平仍呈均衡状态,如图② 所示.则被挪动石头的重量为()A.5 克B.10 克C.15 克D.20 克【答案】 A【分析】【剖析】【详解】解:设左天平的一袋石头重 x 克,右天平的一袋石头重 y 克,被挪动的石头重 z 克,由题意,得:x y20x z y z10解得 z=5答:被挪动石头的重量为 5 克.应选 A.【点睛】本题考察了列三元一次方程组解实质问题的运用,三元一次方程组的解法的运用,解答时理解图象天昭雪应的意义找到等量关系是重点.x m5 20.由方程组3,可获得 x 与y的关系式是()y mA.x y2B.x y 2C.x y 8D.x y8【答案】 C【分析】【剖析】先解方程组求得 x m5、y m 3 ,再将其相减即可得解.【详解】x m5①解:∵y 3m②由①得, x m5由② 得, y m3∴ x y m 5m 3 m 5 m 38 .应选: C【点睛】本题考察认识含参数的二元一次方程组、以及代数求值的知识点,娴熟掌握有关知识点是解决本题的重点.。
方程与不等式之二元一次方程组经典测试题附答案一、选择题1.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C 【解析】 【分析】 【详解】 解:解方程组34{3x y a x y a +=--=,得12{1x ay a=+=-,∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确; ②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确; ③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1, ∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确, ④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C . 【点睛】本题考查二元一次方程组的解;解一元一次不等式组.2.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ). A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【答案】C 【解析】 【分析】根据羊价不变即可列出方程组. 【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C. 【点睛】本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.3.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( )A .1204016x y y x +=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x +=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组120 40210x yy x+=⎧⎨=⨯⎩.故选:C.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A.329557230x yx y+=⎧⎨+=⎩B.239557230x yx y+=⎧⎨+=⎩C.329575230x yx y+=⎧⎨+=⎩D.239575230x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可.详解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:2395 57230x yx y+=⎧⎨+=⎩,故选B.点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组.6.某家具生产厂生产某种配套桌椅(一张桌子,两把椅子),已知每块板材可制作桌子1张或椅子4把,现计划用120块这种板材生产一批桌椅(不考虑板材的损耗,恰好配套),设用x块板材做椅子,用y块板材做桌子,则下列方程组正确的是()A.12024x yx y+=⎧⎨=⎩B.12024x yx y+=⎧⎨⨯=⎩C.12042x yx y+=⎧⎨=⎩D.12024x yx y+=⎧⎨=⨯⎩【答案】C【解析】【分析】根据“用120块这种板材生产一批桌椅”,即可列出一个二元一次方程,根据“每块板材可做桌子1张或椅子4把,使得恰好配套,一张桌子两把椅子”,列出另一个二元一次方程,即可得到答案.解:设用x 块板材做椅子,用y 块板材做桌子, ∵用120块这种板材生产一批桌椅, ∴x+y=120 ①,生产了y 张桌子,4x 把椅子, ∵使得恰好配套,1张桌子2把椅子, ∴4x=2y ②, ①和②联立得:12042x y x y +=⎧⎨=⎩, 故选:C. 【点睛】本题考查了由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.7.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( )A .4243y x x y+=⎧⎨=⎩B .4243x y x y+=⎧⎨=⎩C .421134x y x y -=⎧⎪⎨=⎪⎩D .4234x y x y+=⎧⎨=⎩【答案】D 【解析】 【分析】按照题干关系分别列出二元一次方程,再组合行成二元一次方程组即可. 【详解】解:由甲、乙两数之和是42可得,42x y +=;由甲数的3倍等于乙数的4倍可得,34x y =,故由题意得方程组为:4234x y x y +=⎧⎨=⎩, 故选择D. 【点睛】本题考查了二元一次方程组的应用,理清题干关系,分别列出两个二元一次方程即可.8.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【解析】 【分析】二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解. 【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解. 故选B . 【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.如图,将长方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大18°.设∠BAE和∠BAD的度数分别为x,y,那么x,y所适合的一个方程组是()A.1890y xy x-=⎧⎨+=⎩B.18290y xy x-=⎧⎨+=⎩C.182y xy x-=⎧⎨=⎩D.18290x yy x-=⎧⎨+=⎩【答案】B【解析】【分析】首先根据题意可得等量关系:①∠BAD-∠BAE大18°;②∠BAD+2∠BAE=90°,根据等量关系列出方程组即可.【详解】解:设∠BAE和∠BAD的度数分别为x°和y°,依题意可列方程组:18290 y xy x-=⎧⎨+=⎩故选:B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.11.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是()A.12B.14C.13D.16【答案】A【解析】【分析】设小长方形的长为x,宽为y,根据题意列出方程组,解方程组求出x,y的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y,根据题意有2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= , 故选:A . 【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.12.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x+=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x -=⎧⎨=⎩D .2753x y x y +=⎧⎨=⎩【答案】B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】 根据图示可得,2753x y x y +=⎧⎨=⎩故选B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.13.甲、乙两人在同一个地方练习跑步,如果让乙先跑10米,甲跑5秒钟就追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,若设甲、乙每秒钟分别跑x 、y 米,则列出方程组应是( )A .5105442x yx y +=⎧⎨-=⎩B .5510424x y x y =+⎧⎨-=⎩C .()5510 42x y x y y -=⎧⎨-=⎩ D .()()51042x y x y x ⎧-=⎪⎨-=⎪⎩【答案】C 【解析】解:设甲、乙每秒分别跑x 米,y 米,由题意知:()551042x y x y y -=⎧⎨-=⎩.故选C .点睛:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.已知关于x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m.【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m+=-⎧⎨+=⎩ 的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩, ∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.15.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可.∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.16.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.17.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A .106cmB .110cmC .114cmD .116cm【答案】A 【解析】通过观察图形,可知题中有两个等量关系:单独一个纸杯的高度加上3个纸杯叠放在一起高出单独一个纸杯的高度等于9,单独一个纸杯的高度加上8个纸杯叠放在一起高出单独一个纸杯的高度等于14.根据这两个等量关系,可列出方程组,再求解. 【详解】解:设每两个纸杯叠放在一起比单独的一个纸杯增高xcm ,单独一个纸杯的高度为ycm ,则29714x y x y +=⎧⎨+=⎩,解得17x y =⎧⎨=⎩则99x +y =99×1+7=106即把100个纸杯整齐的叠放在一起时的高度约是106cm . 故选:A . 【点睛】本题以实物图形为题目主干,图形形象直观,直接反映了物体的数量关系,这是近年来比较流行的一种命题形式,主要考查信息的收集、处理能力.本题易错点是误把9cm 当作3个纸杯的高度,把14cm 当作8个纸杯的高度.18.方程组2x y x y 3+=⎧+=⎨⎩的解为{x 2y ==,则被遮盖的两个数分别为( )A .2,1B .5,1C .2,3D .2,4【答案】B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .19.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩【答案】A 【解析】 【分析】根据“用绳索去量竿,绳索比竿长5尺”可知5x y =+,然后进一步利用“如果将绳索对半折后再去量竿,就比竿短5尺”可知152x y =-,由此即可得出相应的方程组,从而得出答案.【详解】由题意得:绳索长x 尺,竿长y 尺,∵绳索比竿长5尺,∴5x y =+,又∵将绳索对半折后再去量竿,就比竿短5尺,∴152x y =-, ∴可列方程组为:5152x y x y =+⎧⎪⎨=-⎪⎩, 故选:A.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出正确的等量关系是解题关键.20.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( ) A .12154503x y x y +=⎧⎨-=⎩ B .12154503x y y x +=⎧⎨-=⎩C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩ 【答案】B【解析】【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y =450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y ﹣x =3,据此可得.【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组12154503x y y x +=⎧⎨-=⎩ , 故选:B .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.。
二元一次不等式练习题
不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。
以下是二元一次不等式练习题,欢迎阅读。
一、选择题
1.下列方程组中是二元一次方程组的是( ).
A.xy=1x+y=2
B.5x-2y=31x+y=3
C.2x+z=03x-y=15
D.x=5x2+y3=7
2.二元一次方程3x+2y=11( ).
A.任何一对有理数都是它的解
B.只有一个解
C.只有两个解
D.有无数个解
3.方程组x+y=3,x-y=-1的解是( ).
A.x=1,y=2
B.x=1,y=-2
C.x=2,y=1
D.x=0,y=-1
4.由方程组x+m=4,y-3=m可得出x与y之间的关系是( ).
A.x+y=1
B.x+y=-1
C.x+y=7
D.x+y=-7
5.方程组2x+y=■,x+y=3的解为x=2,y=■,则被遮盖的两个数分别为( ).
A.1,2
B.5,1
C.2,3
D.2,4
6.已知关于x,y的方程组x+2y=m,x-y=4m的解为3x+2y=14的一个解,那么m的值为( ).
A.1
B.-1
C.2
D.-2
7.六年前,A的.年龄是B的年龄的3倍,现在A的年龄是B的年龄的2倍,A 现在的年龄是( ).
A.12岁
B.18岁
C.24岁
D.30岁
8.,宽为50 cm的矩形由10个全等的小长方形拼成,其中一个小长方形的面积为( ).
A.400 cm2
B.500 cm2
C.600 cm2
D.4 000 cm2
9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品
各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( ).
A.x+y=3012x+16y=400
B.x+y=3016x+12y=400
C.12x+16y=30x+y=400
D.16x+12y=30x+y=400
10.(四川凉山州中考)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇.相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/时和y千米/时,则下列方程组正确的是( ).
A.x+y=702.5x+2.5y=420
B.x-y=702.5x+2.5y=420
C.x+y=702.5x-
2.5y=420D.2.5x+2.5y=4202.5x-2.5y=70
二、填空题
11.在等式y=kx+b中,当x=1时,y=1;当x=2时,y=4,则k=__________,
b=__________.
12.方程4x+5y=24的非负整数解为__________.
13.方程组4x+3y=1,(k-1)x+ky=3的解中x与y值相等,则k=________.
14.若|x-2y+1|+| x+y-5|=0,则x=______,y=______.
15.方程组2x+3y=a,4x-3y=a-4的解x与y的和是2,则a=______.
16.已知x=m,y=n和x=n,y=m是方程2x-3y=1的解,则代数式2m-63n-5的值为______.
17.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.则买5束鲜花和5个礼盒的总价为________元.
三、解答题
18.解下列方程组:
(1)4x-3y=11,2x+y=13.①②
(2)3x-y=-7,y+4z=3,2x-2z=-5.①②③
19.某纸品加工厂为了制作甲、乙两种无盖的长方体小盒,利用边角余料裁出正方形和长方形两种硬纸片,长方形的宽和正方形的边长相等,现将150张正方形硬纸片和300张长方形硬纸片全部用来制作这两种小盒,可以制作甲、乙两种小盒各多少个?
20.(浙江铜仁中考)为了抓住梵净山文化艺术节的商机,某商店决定购进A,B 两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.求购进A,B两种纪念品每件各需多少元?
21.洗衣机的洗衣缸内可容纳洗衣水和衣服共20千克,已知放入的衣服重5千克,所需洗衣粉的浓度为0.4%,已放了两勺洗衣粉(每勺洗衣粉约重0.02千克),问还需要加多少洗衣粉,添多少水?
参考答案
1.D 点拨:A项中最高次数为 2次,B项中有分式,C项中有3个未知数.
2.D 点拨:给一个x的值就有一个y的值与之相对应.
3.A 点拨:本题可用加减法求出方程组的解.
4.C 点拨:通过代入消去未知数m即可,或两个方程相加,也可消去m,得x 与y的关系.
5.B 点拨:把x=2代入x+y=3中,求出y=1,再把x=2,y=1代入方程组中,得2x+y=5.
6.C 点拨:先解关于x,y的方程组得x=3m,y=-m,再将其代入3x+2y=14中,得9m-2m=14.从而求出m=2.
7.C 点拨:设A现在的年龄为x岁,B现在的年龄为y岁,
依题意得x-6=3(y-6),x=2y.解得x=24,y=12.
8.A 点拨:设长为x cm,宽为y cm,则x+y=50,5y=50,得x=40,y=10.
从而一个小长方形的面积为400 cm2.
9.B 点拨:题目中的两个等量关系式为:①甲、乙两种奖品共30件;②甲、乙两种奖品共花了400元.
10.D 点拨:列方程时,可根据关系式:路程=速度×时间.
11.3 -2
12.x=6,y=0或x=1,y=4 点拨:将原方程变形为x=6-54y.
由题意可知,x,y为非负整数,所以y必须是4的倍数,讨论取值.
13.11 点拨:x与y值相等,则可消去一个未知数,得4x+3x=1.从而可得
x=y=17,再代入第二个方程求k的值.
14.3 2 点拨:任何数的绝对值都大于或等于0,几个大于或等于0的数和为0,则每个数必为0.
∴x-2y+1=0,x+y-5=0.可解得x=3,y=2.
15.5 点拨:解关于x,y的二元一次方程组2x+3y=a,4x-3y=a-4得x=a-23,y=a+49,由x与y的和是2得关于a的一元一次方程a-23+a+49=2,解得a=5.
16.1 点拨:将x=m,y=n和x=n,y=m分别代入方程2x-3y=1,
得方程组2m-3n=1,2n-3m=1,解得m=-1,n=-1.
17.440 点拨:设鲜花每束x元,礼盒每个y元,知x+2y=143,2x+y=121,解得x=33,y=55,
所以5束鲜花和5个礼盒共5(x+y)=5×(33+55)=5×88=440(元).
18.解:(1)①+②×3,得10x=50,
解得x=5.
把x=5代入②,
得2×5+y=13,解得y=3.
于是,得方程组的解为x=5,y=3.
(2)①+②得3x+4z=-4.④
④+ ③× 2得x=-2.
把x=-2代入①得y=1.
把x=-2 代入③得z=12.
所以x=-2,y=1,z=12.
19.解:设可制成x个甲种小盒,y个乙种小盒,根据题意,得x+2y=150,4x+3y=300,
解这个方程组,得x=30,y=60.
答:可制成30个甲种小盒,60个乙种小盒.
20.解:设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b 元,
根据题意得方程组,得8a+3b=950,5a+6b=800,
解方程组,得a=100,b=50.
答:购进A纪念品每件 100元,购进B纪念品每件50元.
21.解:设还需要加x千克水,添y千克洗衣粉,根据题意得,
x+y+5+0.02×2=20,0.02×2+y=(20-5)×0.4%,
解这个方程组得x=14.94,y=0.02.
答:还需要加0.02千克洗衣粉,添14.94千克水.
书山有路勤为径,对于数学的学习来说更是这样,希望同学们能够多进行二元一次方程组练习题的练习,坚持下来一定能够有所收获和进步。