〖数学10套合集〗湖北省荆门市中考数学仿真第二次备考试题
- 格式:doc
- 大小:2.29 MB
- 文档页数:98
荆门市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损)星期一二三四五盈亏+220-30+215-25+225则这个周共盈利()A . 715元B . 630元C . 635元D . 605元2. (2分)据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要美元基建投资.数据用科学记数法表示应为()A .B .C .D .3. (2分) (2019七下·北京期中) 下列各式中,正确是().A .B .C .D .4. (2分)(2020·旌阳模拟) 2019年第七届世界军人运动会(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中国武汉举行,这是中国第一次承办综合性国际军事赛事,也是继北京奥运会后,中国举办的规模最大的国际体育盛会.某射击运动员在一次训练中射击了10次,成绩如图所示.下列结论中错误的有()个①众数是8;②中位数是8;③平均数是8;④方差是1.6.A . 1B . 2C . 3D . 45. (2分) (2019七下·巴彦淖尔市期末) 下列不等式变形正确的是()A . 由,得B . 由,得C . 由,得D . 由,得6. (2分)小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是()A . 7岁B . 8岁C . 9岁D . 10岁7. (2分)一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A .B .C .D .8. (2分)如图,已知:AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1+∠2=()A . 92°B . 90°C . 87°D . 以上都不对。9. (2分) (2017九上·岑溪期中) 已知反比例函数y= 的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A .B .C .D .10. (2分) (2018八上·柳州期中) 如图,△ABC中,AB = AC ,D是BC中点,下列结论中不正确的是()A . ∠B = ∠CB . AD⊥BCC . AB = 2BDD . AD平分∠BAC二、填空题 (共6题;共6分)11. (1分) (2015七上·海棠期中) 计算﹣3a+5a=________.12. (1分) (2017九上·临颍期中) 如图,将△AOB绕点O顺时针旋转36°得△COD,AB与其对应边CD相交所构成的锐角的度数是________.13. (1分) (2016八上·道真期末) 已知:a+b= ,ab=1,化简(a﹣2)(b﹣2)的结果是________.14. (1分) (2019八下·岱岳期末) 如图,在菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=________.15. (1分)(2020·孝感模拟) 如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x 轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为________.16. (1分)(2019·德州模拟) 如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为1,则平行四边形ABCD的面积为________.三、解答题 (共7题;共75分)17. (10分)(2019·顺义模拟) 如图,在半圆弧中,直径AB=6cm,点M是AB上一点,MB=2cm,P为AB上一动点,PC⊥AB交于点C,连接AC和CM,设A、P两点间的距离为xcm,A、C两点间的距离为y1cm,C、M两点间的距离为y2cm.小东根据学习函数的经验,分别对函数y1、y2随自变量x的变化而变化的规律进行了探究:下面是小东的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1 , y2与x的几组对应值;x/cm0123456y1/cm0 2.45 3.46 4.90 5.486y2/cm4 3.74 3.46 3.16 2.83 2.452(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1 , y2的图象;(3)结合函数图象,解决问题:①当AC>CM时,线段AP的取值范围是________;②当△AMC是等腰三角形时,线段AP的长约为________.18. (10分)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1) 2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.19. (10分)(2018·建邺模拟) Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.20. (10分)(2020·南宁模拟) 如图,是的内接三角形,的角平分线交于点,交于点,过点作直线 .(1)判断直线与的位置关系,并说明理由;(2)若在上取一点使,求证:是的平分线;(3)在(2)的条件下,若,,求的长.21. (10分)(2017·百色) 已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.22. (15分) (2016八下·高安期中) 如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.23. (10分)(2017·杭州模拟) 已知二次函数y=(t+1)x2+2(t+2)x+ 在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;(3)把二次函数的图象与x轴两个交点之间的部分记为图象G,把图象G向左平移n(n>0)个单位后得到的图象记为M,请结合图象回答:当(2)中得到的直线与图象M有公共点时,求n的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共75分)17-1、17-2、17-3、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
湖北省荆门市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·颍泉模拟) 2019年1月9日从相关部门获悉,2018年安徽省粮食总产801.5亿斤,总产量位居全国第4位,比去年上升1位,其中数据801.5亿用科学记数法表示为()A . 8.015×108B . 8.015×109C . 8.015×1010D . 801.5×1092. (2分)(2012·温州) 我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A .B .C .D .3. (2分)下列事件中,属于随机事件的是()A . 袋中只有5个黄球,摸出一个球是白球B . 从分别写有2,4,6的三张卡片中随机抽出一张,卡片上的数字能被2整除C . 用长度分别是2cm,3cm,6cm的细木条首尾相连组成一个三角形D . 任意买一张电影票,座位号是偶数4. (2分)将抛物线先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为()A .B .C .D .5. (2分)若x<0,则等于()A . -xB . 0C . 2xD . -2x6. (2分)等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A . 80°、80°、20°B . 80°、50°、50°C . 80°、80°、20°或80°、50°、50°D . 以上答案都不对7. (2分)若式子在实数范围内有意义,则x的取值范围是()A . x≥2B . x≤2C . x>2D . x<28. (2分)(2017·广东) 如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y= (k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()A . (﹣1,﹣2)B . (﹣2,﹣1)C . (﹣1,﹣1)D . (﹣2,﹣2)9. (2分) (2017八下·仙游期中) 下列说法中错误的是()A . 两条对角线互相平分的四边形是平行四边形B . 两条对角线相等的四边形是矩形C . 两条对角线互相垂直的矩形是正方形D . 两条对角线相等的菱形是正方形10. (2分)(2017·丹东模拟) 如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)11. (1分)(2016·余姚模拟) 数据1,2,3,4,5的标准差是________.12. (1分) (2020七上·苏州期末) 将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=________°.13. (1分)如图,已知点、在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为,则的值等于________.14. (1分)(2017·衡阳模拟) 把半径为4cm的半圆围成一个圆锥,则圆锥的底面圆半径为________.15. (1分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是________ .16. (1分) (2017九下·绍兴期中) 如图,点A,D是函数y= (k>0,x>0)图象上两点(点A在点D 的左侧),直线AD分别交x,y轴于点E,F.AB⊥x轴于点B,CD⊥x轴于点C,连结AO,BD.若BC=OB+CE,S△AOF+S△CDE=1,则S△ABD=________.三、解答题 (共9题;共92分)17. (5分)解方程:.18. (15分)(2019·仁寿模拟) (本小题满分9分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若,求的值.19. (10分) (2016七下·谯城期末) 解方程(1) 3(2x﹣1)2﹣27=0(2)﹣1= .20. (10分)(2017·独山模拟) 在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?21. (5分)(2017·抚顺模拟) 如图,小明在大楼45米高(即PH=45米)的窗户P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:.点P、H、B、C、A 在同一个平面上.点H、B、C在同一条直线上且PH⊥HC,求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732.22. (15分) (2017八下·桂林期末) 甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲, y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.23. (10分) (2017八上·上城期中) 如图,已知平分,于,于,且.(1)求证:≌ .(2)若,,,求的长.24. (7分)(2020九下·信阳月考)(1)问题发现:如图1,在Rt△ABC中,∠A=90°,AB=k•AC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为________.(2)类比探究:如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD,请问(1)中BD,EC的数量关系还成立吗?说明理由(3)拓展延伸:如图3,在(2)的条件下,将△AED绕点A继续旋转,旋转角为a(a>90°).直线BD,CE交于F点,若AC=1,AB=,则当∠ACE=15°时,BF•CF的值为________.25. (15分) (2016九上·黑龙江期中) 如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=mx2﹣6mx+5m 与x轴交于A、B两点,与y轴交于点C, = .(1)求m的值;(2)如图2,连接BC,点P为点B右侧的抛物线上一点,连接PA并延长交y轴于点D,过点P作PF⊥x轴于F,交线段CB的延长线于点E,连接DE,求证:DE∥AB;(3)在(2)的条件下,点G在线段PE上,连接DG,若EG=2PG,∠DPE=2∠GDE时,求点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共92分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
湖北省荆门市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·阜新) -2的绝对值是()A . 2B . -2C . ±2D .2. (2分)下列各式能用平方差公式计算的是()A . (﹣3+x)(3﹣x)B . (﹣a﹣b)(﹣b+a)C . (﹣3x+2)(2﹣3x)D . (3x+2)(2x﹣3)3. (2分)如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A . =B . =C . =D . =4. (2分)(2019·慈溪模拟) 在“创新活力之城,美丽幸福慈溪”行动引领下,2018年慈溪GDP达到1737亿元,其中1737亿用科学技术法表示为()A . 1.737×1011元B . 1.737×1010元C . 1.737×1012元D . 1.737×109元5. (2分)在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的表达式为()A .B .C .D .6. (2分) (2019七下·大通期中) 一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A . 25°B . 35°C . 45°D . 65°7. (2分)若函数的图象过点(3,-7),那么它一定还经过点().A . (3,7)B . (-3,-7)C . (-3,7)D . (2,-7)8. (2分)下列说法正确的是()A . “购买1张彩票就中奖”是不可能事件B . “掷一次骰子,向上一面的点数是6”是随机事件C . 了解我国青年人喜欢的电视节目应作全面调查D . 甲、乙两组数据,若S甲2>S乙2 ,则乙组数据波动大9. (2分) (2017八下·宣城期末) 如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA= ,且∠ABC=90°,则四边形ABCD的面积是()A . 2B . +C . 1+D .10. (2分) (2019九上·郑州期中) 如图1,在等边△ABC中,动点P从点A出发,沿三角形的边由A→C→B 作匀速运动,设点P运动的路程为x,△ABP的面积为y,把y看作x的函数,函数的图象如图2所示,则△ABC的面积为()A . 9B .C . 4D . 3二、填空题 (共8题;共10分)11. (1分)(2017·泸州模拟) 分解因式:ab2﹣a3=________.12. (1分)若函数有意义,则自变量x的取值范围是________。
湖北省荆门市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·巴州期末) 4a-a的计算结果是()A . 3B . 3aC . 4D . 4a2. (2分)(2019·嘉祥模拟) 在禁毒知识考试中,全班同学的成绩统计如下表:得分(分)60708090100人数(人)7221083则得分的众数和中位数分别为()A . 70分,70分B . 80分,80分C . 70分,80分D . 80分,70分3. (2分) (2019七上·平遥月考) 下列图形中能折叠成棱柱的是()A .B .C .D .4. (2分) (2018九上·上杭期中) 我县九州村某梨园2016年产量为1000吨,2018年产量为1440吨,求该梨园梨产量的年平均增长率,设该梨园梨产量的年平均增长量为x ,则根据题意可列方程为A . 1440(1-x)2= 1000B . 1440(1+x)2= 1000C . 1000(1-x)2= 1440D . 1000(1+x)2= 14405. (2分)(2016·兰州) 一元二次方程x2+2x+1=0的根的情况()A . 有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根6. (2分)反比例函数y=,y=-,y=的共同点是()A . 图象位于同样的象限B . 自变量取值范围是全体实数C . 图象关于直角坐标系的原点成中心对称D . y随x的增大而增大7. (2分)(2019·柳江模拟) 如图,AB是⊙O的直径,C是⊙O上一点(A,B除外),∠AOD=136°,则∠C 的度数是()A . 44°B . 22°C . 46°D . 36°8. (2分) (2019九上·相山月考) 已知二次函数的y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数),其中正确结论的个数有()A . 2B . 3C . 4D . 5二、填空题 (共8题;共9分)9. (1分)(2017·保定模拟) 分解因式:2a3﹣2a=________.10. (1分) (2018七上·澧县期中) 已知有理数 m、n 在数轴上的位置如图所示,则 m ________n.(填“>”“<”“=”)11. (1分) (2018九上·建昌期末) 一个不透明的袋里,有3个红球,2个白球,5个球除颜色外均相同,从中任意摸出一个球是红球的概率是________.12. (1分) (2016九上·景德镇期中) 已知,则的值为________.13. (1分) (2019七上·郑州月考) 如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.14. (2分)(2020·迁安模拟) 下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程。
湖北省荆门市重点达标名校2024届中考数学仿真试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若3x >﹣3y ,则下列不等式中一定成立的是 ( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<2.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球3.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧BC 的长是( )A .2πB .3πC .4πD .6π 4.对于一组统计数据1,1,6,5,1.下列说法错误的是( )A .众数是1B .平均数是4C .方差是1.6D .中位数是65.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,36.下列各组数中,互为相反数的是( )A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|7.一次函数y kx k =-与反比例函数(0)k y k x=≠在同一个坐标系中的图象可能是( )A.B. C. D.8.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.9.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.2210.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.16二、填空题(共7小题,每小题3分,满分21分)11.计算(x4)2的结果等于_____.12.函数123y xx=--中自变量x的取值范围是___________.13.如图,已知一次函数y=ax+b和反比例函数kyx=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为__________14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.15.若a m=5,a n=6,则a m+n=________.16.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.17.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.三、解答题(共7小题,满分69分)18.(10分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC 与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.19.(5分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD .如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC 、AC 分别交于点 E 、F .如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E .20.(8分)如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点. 求这个二次函数的解析式;设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC∆的面积.21.(10分)如图,⊙O 直径AB 和弦CD 相交于点E ,AE =2,EB =6,∠DEB =30°,求弦CD 长.22.(10分)如图,AB 是⊙O 的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F .(1)求证:CF 是⊙O 的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)23.(12分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.24.(14分)计算:4cos30°+|312|﹣(12)﹣1+(π﹣2018)0参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.2、A【解题分析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.3、B【解题分析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.4、D【解题分析】根据中位数、众数、方差等的概念计算即可得解.【题目详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D.考点:1.众数;2.平均数;1.方差;4.中位数.5、A【解题分析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6、A【解题分析】根据相反数的定义,对每个选项进行判断即可.【题目详解】解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;B、(﹣1)2=1,故错误;C、2与12互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.【题目点拨】本题考查了相反数的定义,解题的关键是掌握相反数的定义.7、B【解题分析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=kx的图象在二、四象限,∴D不符合题意.故选B.8、D【解题分析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组9、B【解题分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【题目详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【题目点拨】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.10、D【解题分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【题目详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(共7小题,每小题3分,满分21分)11、x1【解题分析】分析:直接利用幂的乘方运算法则计算得出答案.详解:(x4)2=x4×2=x1.故答案为x1.点睛:本题主要考查了幂的乘方运算,正确掌握运算法则是解题的关键.12、x≤2【解题分析】试题解析:根据题意得:20 {x30x-≥-≠解得:2x≤.13、﹣2<x<0或x>1【解题分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【题目详解】观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<kx的解集是﹣2<x<0或x>1.【题目点拨】本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.14、22°【解题分析】由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.【题目详解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为22°【题目点拨】本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.15、1.【解题分析】根据同底数幂乘法性质a m·a n=a m+n,即可解题.【题目详解】解:a m+n= a m·a n=5×6=1.【题目点拨】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.16、1【解题分析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.17、1.【解题分析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可. 详解:∵竹竿的高度竹竿的影长= 1.52.5∴旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1. 故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.三、解答题(共7小题,满分69分)18、(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)241;【解题分析】(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【题目详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下: ∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵AB AM BC AN== ∴AB AC AM AN =, ∴△ABM ~△ACN ∴BM AB CN AC=,∴CN AC BM AB ==cos45°=2,∴2BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt△AMC,AM=2222108241AC MC+=+=,∴EF=AM=241.【题目点拨】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.19、(1)详见解析;(2)详见解析.【解题分析】(1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.【题目详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求.【题目点拨】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.20、见解析【解题分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-12x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.【题目详解】(1)把()2,0A ,()0,6B -代入212y x bx c =-++得 2206b c c -++=⎧⎨=-⎩, 解得46b c =⎧⎨=-⎩. ∴这个二次函数解析式为21462y x x =-+-. (2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴C 的坐标为()4,0,∴422AC OC OA =-=-=,∴1126622ABC S AC OB ∆=⨯=⨯⨯=. 【题目点拨】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.21、【解题分析】试题分析:过O 作OF 垂直于CD ,连接OD ,利用垂径定理得到F 为CD 的中点,由AE+EB 求出直径AB 的长,进而确定出半径OA 与OD 的长,由OA ﹣AE 求出OE 的长,在直角三角形OEF 中,利用30°所对的直角边等于斜边的一半求出OF 的长,在直角三角形ODF 中,利用勾股定理求出DF 的长,由CD=2DF 即可求出CD 的长. 试题解析:过O 作OF ⊥CD ,交CD 于点F ,连接OD ,∴F 为CD 的中点,即CF=DF ,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA ﹣AE=4﹣2=2,在Rt △OEF 中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.考点:垂径定理;勾股定理.22、(1)证明见解析;(2)9﹣3π【解题分析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.23、证明见解析.【解题分析】过点B 作BF ⊥CE 于F ,根据同角的余角相等求出∠BCF=∠D ,再利用“角角边”证明△BCF 和△CDE 全等,根据全等三角形对应边相等可得BF=CE ,再证明四边形AEFB 是矩形,根据矩形的对边相等可得AE=BF ,从而得证.【题目详解】证明:如图,过点B 作BF ⊥CE 于F ,∵CE ⊥AD ,∴∠D +∠DCE =90°,∵∠BCD =90°,∴∠BCF +∠DCE =90°∴∠BCF =∠D ,在△BCF 和△CDE 中,90BCF D CED BFC BC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BCF ≌△CDE (AAS ),∴BF =CE ,又∵∠A =90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE =BF ,∴AE =CE .24、34【解题分析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案.【题目详解】原式=1×+2﹣3﹣2+1=2+2﹣1=1﹣1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.。
湖北省荆门市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是( )A .x <0B .﹣1<x <1或x >2C .x >﹣1D .x <﹣1或1<x <2 2.对于反比例函数y=k x(k≠0),下列所给的四个结论中,正确的是( ) A .若点(3,6)在其图象上,则(﹣3,6)也在其图象上B .当k >0时,y 随x 的增大而减小C .过图象上任一点P 作x 轴、y 轴的线,垂足分别A 、B ,则矩形OAPB 的面积为kD .反比例函数的图象关于直线y=﹣x 成轴对称3.如图,五边形ABCDE 中,AB ∥CD ,∠1、∠2、∠3分别是∠BAE 、∠AED 、∠EDC 的外角,则∠1+∠2+∠3等于A .90°B .180°C .210°D .270°4.边长相等的正三角形和正六边形的面积之比为( )A .1∶3B .2∶3C .1∶6D .1∶65.若,则的值为( ) A .﹣6 B .6 C .18 D .306.在平面直角坐标系中,点,则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.下列方程中有实数解的是( )A .x 4+16=0B .x 2﹣x+1=0C +2x x =-D .22111x x x =-- 8.下列计算正确的是( )A .a 3﹣a 2=aB .a 2•a 3=a 6C.(a﹣b)2=a2﹣b2D.(﹣a2)3=﹣a69.关于的一元二次方程有两个不相等的实数根,则的取值范围为()A.B.C.D.10.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-411.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等12.函数的自变量x的取值范围是()A.x>1 B.x<1 C.x≤1D.x≥1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)14.若点M(1,m)和点N(4,n)在直线y=﹣12x+b上,则m___n(填>、<或=)15.如图,已知正方形ABCD中,∠MAN=45°,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_____.①MN=BM+DN②△CMN的周长等于正方形ABCD的边长的两倍;③EF1=BE1+DF1;④点A到MN的距离等于正方形的边长⑤△AEN、△AFM都为等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧设AB=a,MN=b,则ba2﹣1.16.已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上且1tan 3EAC ∠=,则BE 的长为__________.17.已知点 M (1,2)在反比例函数的图象上,则 k =____. 18.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x x x x-+-÷(1﹣1x ) 20.(6分)化简:()()2a b a 2b a -+-.21.(6分)如图1,已知直线l :y=﹣x+2与y 轴交于点A ,抛物线y=(x ﹣1)2+m 也经过点A ,其顶点为B ,将该抛物线沿直线l 平移使顶点B 落在直线l 的点D 处,点D 的横坐标n (n >1).(1)求点B 的坐标;(2)平移后的抛物线可以表示为 (用含n 的式子表示);(3)若平移后的抛物线与原抛物线相交于点C ,且点C 的横坐标为a .①请写出a 与n 的函数关系式.②如图2,连接AC ,CD ,若∠ACD=90°,求a 的值.22.(8分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .23.(8分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案. 24.(10分)已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K .(1)如图1,求证:KE =GE ;(2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sinE =35,AK =10,求CN 的长.25.(10分)如图,在四边形ABCD 中,E 为AB 的中点,DE AB ⊥于点E ,66A ∠=o ,90ABC ∠=o ,BC AD =,求C ∠的度数.26.(12分)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).27.(12分)如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.2.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.3.B【解析】【详解】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B4.C【解析】解:设正三角形的边长为1a,则正六边形的边长为1a.过A作AD⊥BC于D,则∠BAD=30°,AD=AB•cos30°=1a•32=3a,∴S△ABC=12BC•AD=12×1a×3a=3a1.连接OA、OB,过O作OD⊥AB.∵∠AOB=3606=20°,∴∠AOD=30°,∴OD=OB•cos30°=1a•3=3a,∴S△ABO=12BA•OD=12×1a×3a=3a1,∴正六边形的面积为:23a1,∴边长相等的正三角形和正六边形的面积之比为:3a1:23a1=1:2.故选C.点睛:本题主要考查了正三角形与正六边形的性质,根据已知利用解直角三角形知识求出正六边形面积是解题的关键.5.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.6.B【解析】【分析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y轴上的点横坐标为0.7.C【解析】【分析】A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.8.D【解析】各项计算得到结果,即可作出判断.解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=﹣a6,符合题意,故选D9.B【解析】试题分析:根据题意得△=32﹣4m>0,解得m<.故选B.考点:根的判别式.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .11.D【解析】【详解】解:A 、符合AAS ,能判定三角形全等;B 、符合SSS ,能判定三角形全等;;C 、符合SAS ,能判定三角形全等;D 、满足AAA ,没有相对应的判定方法,不能由此判定三角形全等;故选D .12.C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围.试题解析:根据题意得:1-x≥0,解得:x≤1.故选C .考点:函数自变量的取值范围.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.9.1【解析】【分析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4)设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式 可得解析式为2464y 77x =-+,则C (0,647)所以门洞高度为647m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键14.>【解析】【分析】根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣12<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数的性质.15.①②③④⑤⑥⑦.【解析】【分析】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.证明△MAN≌△HAN,得到MN=NH,根据三角形周长公式计算判断①;判断出BM=DN时,MN最小,即可判断出⑧;根据全等三角形的性质判断②④;将△ADF绕点A顺时针性质90°得到△ABH,连接HE.证明△EAH≌△EAF,得到∠HBE=90°,根据勾股定理计算判断③;根据等腰直角三角形的判定定理判断⑤;根据等腰直角三角形的性质、三角形的面积公式计算,判断⑥,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公式计算,判断⑦.【详解】将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH.则∠DAH=∠BAM,∵四边形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN 和△HAN 中,AM AH MAN HAN AN AN ⎧⎪∠∠⎨⎪⎩===,∴△MAN ≌△HAN ,∴MN=NH=BM+DN ,①正确;∵(当且仅当BM=DN 时,取等号)∴BM=DN 时,MN 最小,∴BM=12b , ∵DH=BM=12b , ∴DH=DN ,∵AD ⊥HN ,∴∠DAH=12∠HAN=11.5°, 在DA 上取一点G ,使DG=DH=12b , ∴∠DGH=45°,b , ∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD ,∴AG=HG=2b , ∴AB=AD=AG+DG=2b+12b=12b=a ,∴2b a==,∴2b a≥, 当点M 和点B 重合时,点N 和点C 重合,此时,MN 最大=AB , 即:1b a=,∴2≤b a ≤1,⑧错误; ∵MN=NH=BM+DN∴△CMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周长等于正方形ABCD的边长的两倍,②结论正确;∵△MAN≌△HAN,∴点A到MN的距离等于正方形ABCD的边长AD,④结论正确;如图1,将△ADF绕点A顺时针性质90°得到△ABH,连接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③结论正确;∵四边形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四点共圆,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤结论正确;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴2AF,2AE,如图3,过点M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=1 2AN•MP=12AM•AN•sin45°,S△AEF=12AE•AF•sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正确;∵点A到MN的距离等于正方形ABCD的边长,∴S正方形ABCD:S△AMN=212ABMN AB⨯=1AB:MN,⑦结论正确.即:正确的有①②③④⑤⑥⑦,故答案为①②③④⑤⑥⑦.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形.16.3或1【解析】【分析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E 在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.【详解】解:当点E在对角线交点左侧时,如图1所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,222253AB AO-=-=4,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:∵菱形ABCD 中,边长为1,对角线AC 长为6,∴AC ⊥BD ,BO=222253AB AO -=-=4, ∵tan ∠EAC=133OE OE OA ==, 解得:OE=1,∴BE=BO ﹣OE=4+1=1,故答案为3或1.【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E 在对角线交点左侧时和当点E 在对角线交点左侧时两种情况求BE 得长.17.-2【解析】=1×(-2)=-218.()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)5(2)11x + 【解析】【分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.【详解】解:(1)原式=4﹣2+2+2+1﹣4× =7﹣2=5;(2)原式=÷ =• =. 【点睛】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.20.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.21.(1)B (1,1);(2)y=(x ﹣n )2+2﹣n .(3)a=2n ;2+1. 【解析】【分析】1) 首先求得点A 的坐标, 再求得点B 的坐标, 用h 表示出点D 的坐标后代入直线的解析式即可验证答案。
湖北省荆门市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知关于x 的不等式组0217x a x -<⎧⎨-≥⎩至少有两个整数解,且存在以3,a ,7为边的三角形,则a 的整数解有( )A .4个B .5个C .6个D .7个2.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )A .9710-⨯B .10710-⨯C .11710-⨯D .12710-⨯3.在同一直角坐标系中,函数y=kx-k 与k y x=(k≠0)的图象大致是 ( ) A . B .C .D .4.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,﹣1),C (﹣2,﹣1),D (﹣1,1).以A 为对称中心作点P (0,2)的对称点P 1,以B 为对称中心作点P 1的对称点P 2,以C 为对称中心作点P 2的对称点P 3,以D 为对称中心作点P 3的对称点P 4,…,重复操作依次得到点P 1,P 2,…,则点P 2010的坐标是( )A .(2010,2)B .(2010,﹣2)C .(2012,﹣2)D .(0,2)5.如图:已知AB ⊥BC ,垂足为B ,AB=3.5,点P 是射线BC 上的动点,则线段AP 的长不可能是( )A.3 B.3.5 C.4 D.56.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.167.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于12BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.88.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y29.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C 处,P为直线AD上的一点,则线段BP的长可能是()A.3 B.5 C.6 D.1010.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1)B.(2,1)C.(2,2)D.(3,1)1110﹣1的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间12.如图,//AB CD ,CE 交AB 于点E ,EF 平分BEC ∠,交CD 于F . 若50ECF ∠=o ,则CFE ∠ 的度数为( )A .35oB .45oC .55oD .65o二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.14.在平面直角坐标系中,直线l :y=x ﹣1与x 轴交于点A 1,如图所示依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1、…、正方形A n B n C n C n ﹣1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B n 的坐标是_____.15.计算x x x 111---的结果是__________. 16.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.17.分解因式:mx 2﹣4m =_____.18.因式分解:24m n n -=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?20.(6分)已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ;以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 .21.(6分)关于x 的一元二次方程mx 2﹣(2m ﹣3)x+(m ﹣1)=0有两个实数根.求m 的取值范围;若m 为正整数,求此方程的根.22.(8分)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F . 求证:△ABF ≌△CDE ; 如图,若∠1=65°,求∠B 的大小.23.(8分)如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC的平行线,两直线相交于点E .求证:四边形OCED 是矩形;若CE=1,DE=2,ABCD 的面积是 .24.(10分)如图,Rt △ABC 中,∠C=90°,AB=14,AC=7,D 是BC 上一点,BD=8,DE ⊥AB ,垂足为E ,求线段DE 的长.25.(10分)先化简,再求值:22(1)x y x y x y -÷--,其中32,y=11()2-. 26.(12分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.27.(12分)如图,一个长方形运动场被分隔成A 、B 、A 、B 、C 共5个区,A 区是边长为am 的正方形,C 区是边长为bm 的正方形.列式表示每个B 区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a =20,b =10,求整个长方形运动场的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】依据不等式组至少有两个整数解,即可得到a >5,再根据存在以3,a ,7为边的三角形,可得4<a <10,进而得出a 的取值范围是5<a <10,即可得到a 的整数解有4个.【详解】解:解不等式①,可得x <a ,解不等式②,可得x≥4,∵不等式组至少有两个整数解,∴a>5,又∵存在以3,a,7为边的三角形,∴4<a<10,∴a的取值范围是5<a<10,∴a的整数解有4个,故选:A.【点睛】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.2.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.000000007用科学记数法表示为7×10-1.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.D【解析】【分析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件. 故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.4.B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.5.A【解析】【分析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.6.C【解析】【分析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.7.B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.8.A【解析】【分析】分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.【详解】解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,∴y1=−6,y1=−3,∵−3>−6,∴y1<y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.9.D【解析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.【详解】解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于12,边AC=3,∴12×AC×BN=12,∴BN=8,∴BM=8,即点B到AD的最短距离是8,∴BP的长不小于8,即只有选项D符合,故选D.【点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.10.B【解析】【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B .【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.11.B【解析】【分析】 91016<<.【详解】 91016< ∴3104<, ∴21013<< 10﹣1的值在2和3之间.故选B.【点睛】 10的大小,在确定答案的范围.12.D【解析】分析:根据平行线的性质求得∠BEC 的度数,再由角平分线的性质即可求得∠CFE 的度数. 详解:50,//180130ECF AB CDECF BEC BEC ∠=∴∠+∠=∴∠=o o oQ又∵EF 平分∠BEC ,1652CEF BEF BEC o ∴∠=∠=∠=. 故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).14.(2n ﹣1,2n ﹣1).【解析】【详解】解:∵y=x-1与x 轴交于点A 1,∴A 1点坐标(1,0),∵四边形A 1B 1C 1O 是正方形,∴B 1坐标(1,1),∵C 1A 2∥x 轴,∴A 2坐标(2,1),∵四边形A 2B 2C 2C 1是正方形,∴B 2坐标(2,3),∵C 2A 3∥x 轴,∴A 3坐标(4,3),∵四边形A 3B 3C 3C 2是正方形,∴B 3(4,7),∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴B n 坐标(2n-1,2n -1).故答案为(2n-1,2n -1).15.1【解析】分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果. 详解:原式11 1.111x x x x x -=-==--- 故答案为:1.点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母. 16.62【解析】【分析】根据折叠的性质得出∠2=∠ABD ,利用平角的定义解答即可.【详解】解:如图所示:由折叠可得:∠2=∠ABD ,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC ,∴∠1=∠2=62°,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD 是关键. 17.m (x+2)(x ﹣2)【解析】【分析】提取公因式法和公式法相结合因式分解即可.【详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.18.n (m+2)(m ﹣2)【解析】【分析】先提取公因式 n ,再利用平方差公式分解即可.【详解】m 2n ﹣4n=n (m 2﹣4)=n (m+2)(m ﹣2)..故答案为n(m+2)(m﹣2).【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.20.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B 为位似中心,画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键. 21.(1)98m £且0m ≠;(2)10x =,21x =-. 【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.22.(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD ,AD ∥BC ,∠B=∠D ,得出∠1=∠DCE ,证出∠AFB=∠1,由AAS 证明△ABF ≌△CDE 即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD 是平行四边形, ∴AB=CD ,AD ∥BC ,∠B=∠D , ∴∠1=∠DCE , ∵AF ∥CE , ∴∠AFB=∠ECB , ∵CE 平分∠BCD , ∴∠DCE=∠ECB , ∴∠AFB=∠1, 在△ABF 和△CDE 中,, ∴△ABF ≌△CDE (AAS );(2)由(1)得:∠1=∠ECB ,∠DCE=∠ECB , ∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.23.(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD=90°.∵CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,又∠COD=90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD 的面积为:12AC•BD=12×1×2=1, 故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.24.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE ⊥AB ,∴∠BED=90°,又∠C=90°,∴∠BED=∠C .又∠B=∠B ,∴△BED ∽△BCA ,∴,∴DE===1.考点:相似三角形的判定与性质.25.x+y 3.【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题. 试题解析:原式=()()x x y x y x y x y y -++-⋅- =()()y x y x y x y y+-⋅-=x+y , 当32,y=11()2-=2时,原式3326.(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94. 27.(1)4a (2)8a (3)1500S =【解析】试题分析:(1)结合图形可得矩形B 的长可表示为:a+b ,宽可表示为:a-b ,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可. 试题解析:(1)矩形B 的长可表示为:a+b ,宽可表示为:a-b ,∴每个B 区矩形场地的周长为:2(a+b+a-b )=4a ;(2)整个矩形的长为a+a+b=2a+b ,宽为:a+a-b=2a-b ,∴整个矩形的周长为:2(2a+b+2a-b )=8a ;(3)矩形的面积为:S=(2a+b )(2a-b )=224a b - ,把20a =,10b =代入得,S=4×202-102=4×400-100=1500. 点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各数中,没有平方根的是()A.﹣32 B.|﹣3| C.(﹣3)2 D.﹣(﹣3)试题2:下列运算正确的是()A.=﹣3 B.a2•a4=a6C.(2a2)3=2a6 D.(a+2)2=a2+4试题3:某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s试题4:由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是()A.主视图的面积最大 B.左视图的面积最大C.俯视图的面积最大 D.三个视图的面积一样大评卷人得分试题5:如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60° B.50° C.40° D.30°试题6:若整数k满足k<<k+1,则k的值是()A.6 B.7 C.8 D.9试题7:已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k< B.k> C.k<且k≠0 D.k>且k≠0试题8:如果关于x的不等式组的解集为x<7,则m的取值范围为()A.m=7 B.m>7 C.m<7 D.m≥7试题9:小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度试题10:已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为()A.9 B.12 C.9或12 D.6或12或15试题11:如图,四边形ABCD是平行四边形,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则∠AEB的正切值为()A. B. C. D.试题12:如图,⊙O的半径为2,AB.CD是互相垂直的两条直径,点P是⊙O上任意一点,过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P从点A运动到点D时,点Q所经过的路径长为()A. B. C. D.π试题13:分解因式(a﹣b)(a﹣4b)+ab的结果是.试题14:美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有______幅.试题15:如图,双曲线y=于直线y=﹣x交于A.B两点,且A(﹣2,m),则点B的坐标是___________.试题16:当x=m或x=n(m≠n)时,代数式x2﹣2x+4的值相等,则当x=m+n时,代数式x2﹣2x+4的值为_________.试题17:如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A1MN,连接A1C,则A1C的最小值是__________.试题18:计算:|2﹣|+2sin60°+()﹣1﹣()0;试题19:解二元一次方程组试题20:某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为________人,扇形统计图中D类所对应扇形的圆心角为_______度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.试题21:在△ABC中,∠B=90°,AB=BC,点D是BC边上的一点,连接AD,将AD绕点D顺时针旋转90°得到DE,作EF⊥BC交BC的延长线于点F.(1)依题意补全图形;(2)求证:EF=CF.试题22:某市一种出租车起步价是5元(路程在3km以内均付5元),达到或超过3km,每增加0.5km加价0.7元(不足0.5km按0.5km计).某乘客坐这种出租车从甲地到乙地,下车时付车费14.8元,那么甲地到乙地的路程是多少?试题23:如图,在某海上观测点B处观测到位于北偏东30°方向有一艘救船A,搜救船A最大航速50海里/时,AB=52海里,在位于观测点B的正东方向,搜救船A的东南方向有一失事渔船C,由于当天正值东南风,失事渔船C以2海里/时的速度向西北方向漂移,若不考虑大风对搜救船A的航线和航速的影响,求失事渔船获救的最快时间.试题24:如图,半圆O的直径AB=20,弦CD∥AB,动点M在半径OD上,射线BM与弦CD相交于点E(点E与点C.D不重合),设OM=m.(1)求DE的长(用含m的代数式表示);(2)令弦CD所对的圆心角为α,且sin=.①若△DEM的面积为S,求S关于m的函数关系式,并求出m的取值范围;②若动点N在CD上,且CN=OM,射线BM与射线ON相交于点F,当∠OMF=90°时,求DE的长.试题25:如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y 轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.试题1答案::A.试题2答案:B解:A.=3,故错误:B.正确;C.(2a2)3=8a6,故正确;D.(a+2)2=a2+4a+4,故错误;试题3答案:D解:0.000 000 001=1×10﹣9,试题4答案:C.试题5答案:D解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.试题6答案:D【解答】解:∵9<<10,∴k=9,k+1=10,试题7答案:A【解答】解:∵方程x2﹣2x+3k=0有两个不相等的实数根,∴△=4﹣12k>0,解得:k<.试题8答案:D【解答】解:不等式组整理得:,由已知解集为x<7,得到m的范围是m≥7,试题9答案:C【解答】解:A.根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B.根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C.根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D.小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;试题10答案:B【分析】先把x=2代入x2﹣(5+m)x+5m=0中得4﹣2(5+m)+5m=0,解得m=2,再解方程得到x1=2,x2=5,然后根据三角形三边的关系得到等腰△ABC的腰长为5,底边长为2,再计算三角形的周长.【解答】解:把x=2代入方程x2﹣(5+m)x+5m=0得4﹣2(5+m)+5m=0,解得m=2,方程化为x2﹣7x+10=0,解得x1=2,x2=5,因为这个方程的两个根恰好是等腰△ABC的两条边长,所以等腰△ABC的腰长为5,底边长为2,所以△ABC的周长为5+5+2=12.故选:B.试题11答案:A【分析】BF交AG于H,如图,由作法得AF=AB,由于AG平分∠BAD,根据等腰三角形的性质得到AE⊥BF,BH=FH=BF =3,再利用平行四边形的性质证明∠2=∠3,接着证明BE=BA=5,然后利用勾股定理计算出EH后根据正切的定义求解.【解答】解:BF交AG于H,如图,由作法得AF=AB,∵AG平分∠BAD,∴∠1=∠2,∴AE⊥BF,BH=FH=BF=3,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴BE=BA=5,在Rt△BEH中,HE==4,∴tan∠3==,即∠AEB的正切值为.故选:A.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质和解直角三角形.试题12答案:【解答】解:如图所示:∵PM⊥y轴于点M,PN⊥x轴于点N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,则OQ=1,点Q走过的路径长==.试题13答案:(a﹣2b)2 .【分析】首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可.【解答】解:(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.试题14答案:69 幅.【分析】设展出的油画作品的数量是x幅,展出的国画作品是y幅,则根据“展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅”列出方程组并解答.【解答】解:设展出的油画作品的数量是x幅,展出的国画作品是y幅,依题意得,解得,故答案是:69.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.试题15答案:(2,﹣1).【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=﹣,联立双曲线、直线,得,解得,,∴B(2,﹣1),故答案为:(2,﹣1).【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.试题16答案:4 .【分析】根据已知条件,列出等式m2﹣2m+4=n2﹣2n+4,化简能得出m+n的值为2,将x=2代入代数式即可求值.【解答】解:由题意,得m2﹣2m+4=n2﹣2n+4,移项,得m2﹣n2=2m﹣2n+4﹣4,化简,得(m+n)(m﹣n)=2(m﹣n),等式两边同时除以(m﹣n),得m+n=2.当x=m+n=2时,x2﹣2x+4=22﹣2×2+4=4.故答案为4.【点评】本题考查因式分解的知识,熟练运用提公因式法因式分解和公式法因式分解是解决本题的关键.试题17答案:2﹣2 .【分析】根据题意得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可;【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MH⊥DC于点F,∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=4,∠HDM=60°,∴∠HMD=30°,∴HD=MD=1,∴HM=DM×cos30°=,∴MC==2,∴A′C=MC﹣MA′=2﹣2;故答案为2﹣2.试题18答案:|2﹣|+2sin60°+()﹣1﹣()0 =2﹣+2×+2﹣1=2﹣+2﹣1=3;试题19答案:,②﹣①,得5y=5,解得,y=1,将y=1代入①,得x=3故元方程组的解是.试题20答案:【解答】解:(1)∵七年级(1)班学生总人数为:12÷25%=48(人),∴扇形统计图中D类所对应扇形的圆心角为为:360°×=105°;故答案为:48,105;C类人数:48﹣4﹣12﹣14=18(人),如图:(2)分别用A,B表示两名擅长书法的学生,用C,D表示两名擅长绘画的学生,画树状图得:∵共有12种等可能的结果,抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的有8种情况,∴抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.试题21答案:【解答】解:(1)如图所示:(2)证明:由题可得,∠ADE=∠B=90°,AD=ED,∴∠BAD+∠ADB=∠ADB+∠EDF=90°,∴∠BAD=∠EDF,在△ABD和△DFE中,,∴△ABD≌△DFE(AAS),∴BD=EF,AB=DF,又∵AB=BC,∴BC=DF,∴BC﹣CD=DF﹣CD,即BD=CF,∴EF=CF.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和等腰直角三角形的判定与性质.试题22答案:【解答】解:设从甲地到乙地的路程是xkm,根据题意,得:14.8﹣0.7<5+1.4(x﹣3)≤14.8,解得:9.5<x≤10,答:甲地到乙地的路程大于9.5km且不超过10km.【点评】此题主要考查了一元一次不等式在实际中的应用,注意自变量取值范围的划分,既要科学合理,又要符合实际;理清题意是采用分段函数解决问题的关键.试题23答案:【分析】作AD⊥BC于点D,在直角三角形ABD中,根据三角函数求得AD的长;再在直角三角形ACD中,根据三角函数求得AC的长;先求出BC的长,再根据搜救船行驶路程+失事船只漂移路程=AC的长列方程求解可得.【解答】解:过点A作AD⊥BC于点D,在Rt△ABD中,∵AB=52、∠B=60°,∴AD=ABsinB=52×=78,在Rt△ADC中,AD=78,∠C=45°,∴AC=AD=156,设失事渔船获救的最快时间为t,根据题意,得:2t+50t=156,∴t=3,答:失事渔船获救的最快时间为3小时.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.试题24答案:【分析】(1)由CD∥AB知△DEM∽△OBM,可得=,据此可得;(2)①连接OC.作OP⊥CD.MQ⊥CD,由OC=OD.OP⊥CD知∠DOP=∠COD,据此可得sin∠DOP=sin∠DMQ=、sin∠ODP =,继而由OM=m、OD=10得QM=DMsin∠ODP=(10﹣m),根据三角形的面积公式即可得;如图2,先求得PD=8.CD =16,证△CDM∽△BOM得=,求得OM=,据此可得m的取值范围;②如图3,由BM=OBsin∠BOM=10×=6,可得OM=8,根据(1)所求结果可得答案.【解答】解:(1)∵CD∥AB,∴△DEM∽△OBM,∴=,即=,∴DE=;(2)①如图1,连接OC.作OP⊥CD于点P,作MQ⊥CD于点Q,∵OC=OD.OP⊥CD,∴∠DOP=∠COD,∵sin=,∴sin∠DOP=sin∠DMQ=,sin∠ODP=,∵OM=m、OD=10,∴DM=10﹣m,∴QM=DMsin∠ODP=(10﹣m),则S△DEM=DE•MQ=××(10﹣m)=,如图2,∵PD=ODsin∠DOP=10×=8,∴CD=16,∵CD∥AB,∴△CDM∽△BOM,∴=,即=,解得:OM=,∴<m<10,∴S=,(<m<10).②当∠OMF=90°时,如图3,则∠BMO=90°,在Rt△BOM中,BM=OBsin∠BOM=10×=6,则OM=8,由(1)得DE==.【点评】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.试题25答案:【解答】解:(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE.OE.∵在Rt△BCD中,∠CBD=90°,EC=ED,∴BE=CD=CE.令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵C(0,﹣3),∴OB=OC,又∵BE=CE,OE=OE,∴△OBE≌△OCE(SSS),∴∠BOE=∠COE,∴点E在第四象限的角平分线上,设E点坐标为(m,﹣m),将E(m,﹣m)代入y=x2﹣2x﹣3,得m=m2﹣2m﹣3,解得m=,∵点E在第四象限,∴E点坐标为(,﹣);(3)过点Q作AC的平行线交x轴于点F,连接CF,则S△ACQ=S△ACF.∵S△ACQ=2S△AOC,∴S△ACF=2S△AOC,∴AF=2OA=2,∴F(1,0).∵A(﹣1,0),C(0,﹣3),∴直线AC的解析式为y=﹣3x﹣3.∵AC∥FQ,∴设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,得0=﹣3+b,解得b=3,∴直线FQ的解析式为y=﹣3x+3.联立,解得,,∴点Q的坐标为(﹣3,12)或(2,﹣3).。
湖北省荆门市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 49的算术平方根是()A . ±7B . 7C . -7D .2. (2分) (2018九上·东湖期中) 下列几何图形中不是中心对称图形的是()A . 圆B . 平行四边形C . 正三角形D . 正方形3. (2分) (2015九上·沂水期末) 下列说法中正确的是()A . “任意画出一个等边三角形,它是轴对称图象”是随机事件B . 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C . “概率为0.0001的事件”是不可能事件D . “任意画出一个平行四边形,它是中心对称图形”是必然事件4. (2分)(2018·无锡模拟) 已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A . 平均数B . 方差C . 中位数D . 众数5. (2分)(2017·桂林) 若分式的值为0,则x的值为()A . ﹣2B . 0C . 2D . ±26. (2分) (2017八下·江海期末) 下列二次根式中,最简二次根式的是().A .B .C .D .7. (2分) (2018九上·营口期末) 如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为()A .B .C .D .8. (2分)(2018·鄂州) 小明从如图所示的二次函数y = ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab >0②a+b+c <0 ③b+2c >0 ④a-2b+4c >0 ⑤ .你认为其中正确信息的个数有()A . 2个B . 3个C . 4个D . 5个9. (2分)已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有()A . 8048个B . 4024个C . 2012个D . 1066个10. (2分)(2017·张家界) 在同一平面直角坐标系中,函数y=mx+m(m≠0)与y= (m≠0)的图象可能是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2020七上·槐荫期末) -6的相反数是.12. (1分)(2018·龙东) 人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为________斤.13. (1分)(2017·眉山) 分解因式:2ax2﹣8a=________.14. (1分)如果两个相似三角形周长的比是2:3,那么它们面积的比是________ .15. (1分)如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60°,则∠BAD=________.16. (1分) (2018八上·南充期中) 已知△ABC≌△DEF,∠B=120°,∠F=35°,则∠D=________度.三、解答题 (共9题;共87分)17. (10分)(2017·玉林) 已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.18. (5分)计算:+(π﹣2015)0﹣|﹣2|+2sin60°.19. (10分)(2016九上·仙游期末) 在平面直角坐标系中,的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).①画出△ABC关于轴对称的△A1B1C1;②以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2 ,使△A2B2C2与△A1B1C1的相似比为2︰1.20. (10分)(2018·邯郸模拟) 如图,点O在线段AB上,(不与端点A、B重合),以点O为圆心,OA的长为半径画弧,线段BP与这条弧相切与点P,直线CD垂直平分PB,交PB于点C,交AB于点D,在射线DC上截取DE,使DE=DB。
湖北省荆门市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2018九上·港南期中) cos30°的相反数是()A .B .C .D .2. (2分)(2020·青山模拟) 如图是由若干个正方体组成的几何体的俯视图,数字表示该位置上小正方体的个数,则该几何体左视图可能是()A .B .C .D .3. (2分) (2018七上·天河期末) 据统计,到2017年底,广州市的常住人口将达到14330000人,这个人口数据用科学记数法表示为()A .B .C .D .4. (2分)(2014·深圳) 在﹣2,1,2,1,4,6中正确的是()A . 平均数3B . 众数是﹣2C . 中位数是1D . 极差为85. (2分)若a<b,则下列各式中不成立的是()A . a+2<b+2B . ﹣3a<﹣3bC . 2﹣a>2﹣bD . 3a<3b6. (2分)(2019·秦安模拟) 如图,四边形是正方形,延长到点,使,连结交于点,则等于()A .B .C .D .7. (2分) (2019八下·宽城期末) 函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A .B .C .D .8. (2分)(2017·渝中模拟) “星光隧道”是贯穿新牌坊商圈和照母山以北的高端居住区的重要纽带,预计2017年底竣工通车,图中线段AB表示该工程的部分隧道,无人勘测飞机从隧道一侧的点A出发,沿着坡度为1:2的路线AE飞行,飞行至分界点C的正上方点D时,测得隧道另一侧点B的俯角为12°,继续飞行到点E,测得点B 的俯角为45°,此时点E离地面高度EF=700米,则隧道BC段的长度约为()米.(参考数据:tan12°≈0.2,cos12°≈0.98)A . 2100B . 1600C . 1500D . 15409. (2分)(2019·滨州) 如图,为的直径,为上两点,若,则的大小为().A . 60°B . 50°C . 40°D . 20°10. (2分)(2019·湖南模拟) 如图,在和中,添加下列条件可以证明的是()A .B .C .D .11. (2分)(2020·菏泽) 如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A . 互相平分B . 相等C . 互相垂直D . 互相垂直平分12. (2分) (2015八上·哈尔滨期中) 与三角形三个顶点距离相等的点,是这个三角形的()A . 三条中线的交点B . 三条角平分线的交点C . 三条高的交点D . 三边的垂直平分线的交点13. (2分)(2019七上·天台月考) 观察下列一组算式:…,用含字母n(n为正整数)的式子表示其中的规律为()A .B .C .D .14. (2分)(2020·桐乡模拟) 对于函数y=ax2-(2a+1)x-3a+1(a是常数),有下列说法:①函数图象与坐标轴总有三个不同的交点;②当x<1时,不是y随x的增大而增大就是y随x的增大而减小;③若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。
2019-2020学年数学中考模拟试卷一、选择题1.已知:如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧上不同于点C 的任意一点,则∠BPC的度数是( )A .45°B .60°C .75°D .90°2.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )A. B. C. D.3.四个实数0、、﹣3.14、﹣2中,最小的数是( ) A.0B.C.﹣3.14D.﹣24.不等式组20215x x -⎧⎨-⎩>< 的解是( )A .x >2B .x <3C .2<x <3D .2<x <65.某班学生到距学校12km 的烈士陵园扫墓,一部分同学骑自行车先出发,经过12h 后,其余同学乘汽车出发,由于____________,设自行车的速度为/xkm h ,则可得方程为1212132x x -=,根据此情境和所列方程,上题中______________中的内容应该是( ) A .汽车速度是自行车速度的3倍,结果同时到达B .汽车速度是自行车速度的3倍,后部分同学比前部分同学迟到12h C .汽车速度是自行车速度的3倍,前部分同学比后部分同学迟到1h AD .汽车每小时比自行车多行驶3km ,结果同时到达.6.已知关于x 的一元二次方程(m ﹣1)x 2﹣2x+1=0有实数根,则m 的取值范围是( ) A .m≤2B .m≥2C .m≤2且m≠1D .m≥﹣2且m≠17.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A .16B .13C .12D .238.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A(13,0)直线y=kx-3k+4与交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .D .9.如图6, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是A.24B.30C.48D.6010.《流浪地球》作为第一部中国自己的科幻大片,票房已破46亿元(4600000000元),4600000000用科学记数法表示为( ) A .84610⨯ B .84.610⨯ C .90.4610⨯ D .94.610⨯ 11.肥皂泡的泡壁厚度大约是0.0000007m ,将0.0000007用科学计数法可表示为( )A .60.710-⨯B .7710-⨯C .6710-⨯D .70.710-⨯12.下列运算正确的是( )A .a 3•a 4=a 12B .a 5÷a ﹣3=a 2C .(3a 4)2=6a 8D .(﹣a )5•a=﹣a 6二、填空题13.如图,已知在矩形ABCD 中,AB =6,BC =9,E 、F 为矩形内部的两动点,且满足EF ∥BC ,EF =4,S四边形BEFC=26,则BE+EF+FC 的最小值等于___.14.如图所示,在平面直角坐标系xOy 中,Rt △ABC 的直角顶点C 在第一象限,CB ⊥x 轴于点B ,点A 在第二象限,AB 与y 轴交于点G ,且满足AG =OG =12BG ,反比例函数y =kx 的图象分别交BC ,AC 于点E ,F ,CF =14k .以EF 为边作等边△DEF ,若点D 恰好落在AB 上时,则k 的值为_____15.若直线232y x b =-++经过第一、二、四象限,则b 的取值范围是_____. 16.如果等腰三角形的两边长分别为4和7,则三角形的周长为_____.17.如图,在平行四边形ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=_____cm18.一组数据:16,5,11,9,5的中位数是_____.三、解答题19.为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?20.某幼儿园购买了A,B两种型号的玩具,A型玩具的单价比B型玩具的单价少9元,已知该幼儿园用了3120元购买A型玩具的件数与用4200元购买B型玩具的件数相等.(1)该幼儿园购买的A,B型玩具的单价各是多少元?(2)若A,B两种型号的玩具共购买200件,且A型玩具数量不多于B型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元?21.如图,把可以自由转动的圆形转盘A,B分别分成3等份的扇形区域,并在每一个小区域内标上数字.小明和小颖两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针两区域的数字均为奇数,则小明胜;若指针两区域的数字均为偶数,则小颖胜;若有指针落在分割线上,则无效,需重新转动转盘.这个游戏规则对双方公平吗?请说明理由.22.设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值范围.23.如图,二次函数y=﹣14x2+bx+c的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.(1)求此二次函数的解析式;(2)证明:AO平分∠BAC;(3)在二次函数对称轴上是否存在一点P使得AP=BP?若存在,请求出点P的坐标;若不存在,请说明理由.24.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,销售利润最大.25.如图,在平面直角坐标系中,Rt△AOC的直角边OA在y轴正半轴上,且顶点O与坐标原点重合,点C的坐标为(1,2),直线y=﹣x+b过点C,与x轴交于点B,与y轴交于点D.(1)B点的坐标为,D点的坐标为;(2)动点P从点O出发,以每秒1个单位长度的速度,沿O→A→C的路线向点C运动,同时动点Q从点B出发,以相同速度沿BO的方向向点O运动,过点Q作QH⊥x轴,交线段BC或线段CO于点H.当点P 到达点C时,点P和点Q都停止运动,在运动过程中,设动点P运动的时间为t秒:①设△CPH的面积为S,求S关于t的函数关系式;②是否存在以Q、P、H为顶点的三角形的面积与S相等?若存在,直接写出t的值;若不存在,请说明理由.【参考答案】***一、选择题13.14.715.23 b>-;16.15或1817.5。
18.9三、解答题19.(1)户外活动时间为1.5小时的人数有120人,补全的条形统计图如下图所示,见解析;(2)中位数是1小时;(3)该校每天户外活动时间超过1小时的学生有720人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1800名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)∵0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:100÷20%=500,1,5小时的人数有:500﹣100﹣200﹣80=120,补全的条形统计图如下图所示,故答案为:500;(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,故答案为:1;(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:12080500+×1800=720人,即该校每天户外活动时间超过1小时的学生有720人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.20.(1)该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)购买这些玩具的总费用最少需要5650元. 【解析】 【分析】(1)根据题意可以得到相应的分式方程,从而可以求得该幼儿园购买的A ,B 型玩具的单价各是多少元;(2)根据题意可以得到费用与购买A 型和B 型玩具之间的关系,从而可以解答本题. 【详解】解:(1)设购买A 型玩具的单价是x 元,则购买B 型玩具的单价是(x+9)元,312042009x x =+, 解得,x =26,经检验,x =26是原分式方程的解, ∴x+9=35,答:该幼儿园购买的A ,B 型玩具的单价各是26元,35元;(2)设购买A 型玩具a 件,则购买B 型玩具(200﹣a )件,所需费用为w 元, w =26a+35(200﹣a )=﹣9a+7000, ∵a≤3(200﹣a ), ∴a≤150,∴当a =150时,w 取得最小值,此时w =﹣9×150+7000=5650, 答:购买这些玩具的总费用最少需要5650元. 【点睛】本题考查一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分式方程的知识解答. 21.这个游戏规则对双方公平,见解析. 【解析】 【分析】利用树状图列举出所有情况,分别求得两人获胜的概率,比较大小即可得知这个游戏规对双方是否公平. 【详解】这个游戏规则对双方公平,理由如下: 如图所示:共9种情况,其中均为偶数的有2种结果,均为奇数的情况数有2种, 所以小明获胜的概率为29、小颖获胜的概率为29, ∵29=29, ∴这个游戏规则对双方公平. 【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.a 的取值范围为a >﹣1且56a ≠-且14a ±≠. 【解析】 【分析】先通过代数式变形得(b+c )2=2a 2+16a+14+2(a 2-4a-5)=4a 2+8a+4=4(a+1)2,即有b+c=±2(a+1).有了b+c 与bc ,就可以把b ,c 可作为一元二次方程x 2±2(a+1)x+a 2-4a-5=0③的两个不相等实数根,由△=4(a+1)2-4(a 2-4a-5)=24a+24>0,得到a >-1.再排除a=b 和a=c 时的a 的值.先设a=b 和a=c ,分别代入方程③,求得a 的值,则题目要求的a 的取值范围应该是在a >-1的前提下排除求得的a 值. 【详解】∵b 2+c 2=2a 2+16a+14,bc =a 2﹣4a ﹣5,∴(b+c )2=2a 2+16a+14+2(a 2﹣4a ﹣5)=4a 2+8a+4=4(a+1)2, 即有b+c =±2(a+1). 又bc =a 2﹣4a ﹣5,所以b ,c 可作为一元二次方程x 2±2(a+1)x+a 2﹣4a ﹣5=0③的两个不相等实数根, 故△=4(a+1)2﹣4(a 2﹣4a ﹣5)=24a+24>0, 解得a >﹣1.若当a =b 时,那么a 也是方程③的解, ∴a 2±2(a+1)a+a 2﹣4a ﹣5=0, 即4a 2﹣2a ﹣5=0或﹣6a ﹣5=0,解得,1a 4=或56a =-.当a =c 时,同理可得1a 4±=或56a =-.所以a 的取值范围为a >﹣1且56a ≠-且a ≠. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的求根公式:)240x b ac =-,…同时考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式b 2-4ac 和根与系数的关系. 23.(1)y =﹣14x 2+12x+2;(2)见解析;(3)存在.点P 的坐标为(1,﹣4); 【解析】 【分析】(1)将点A (4,0)与点B (−4,-4)代入函数解析式即可;(2)求出直线AB 的解析式,求出AB 与y 轴交点D (0,−2),可得OC =OD ,再由AO ⊥CD ,可证AO 平分∠BAC ;(3)二次函数的对称轴为直线x =1,设点P 的坐标为(1,m ),AP 2=(4−1)2+m 2,BP 2=(1+4)2+(m4)2,当AP =BP 时,求出m =−4即可; 【详解】(1)∵点A (4,0)与点B (﹣4,-4)在二次函数的图象上,∴044444b cb c =-++⎧⎨-=--+⎩,解得122b c ⎧=⎪⎨⎪=⎩,∴二次函数的解析式为y =211242x x -++; (2)设直线AB 的解析式为y =ax+n则有4040a n a n +=⎧⎨-+=⎩,解得122a b ⎧=⎪⎨⎪=-⎩,故直线AB 的解析式为y =12x ﹣2, 设直线AB 与y 轴的交点为点D , x =0, 则y =﹣2,故点D 为(0,﹣2), 由(1)可知点C 为(0,2), ∴OC =OD 又∵AO ⊥CD , ∴AO 平分∠BAC ; (3)存在. ∵y =﹣14x 2+12x+2=﹣14(x ﹣1)2+14+2, ∴二次函数的对称轴为直线x =1, 设点P 的坐标为(1,m ),AP 2=(4﹣1)2+m 2,BP 2=(1+4)2+(m4)2, 当AP =BP 时,AP 2=BP 2, 则有9+m 2=25+m 2+16+8m , 解得m =﹣4,∴点P 的坐标为(1,﹣4); 【点睛】本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式,利用勾股定理求边长是解题的关键.24.(1)该种水果每次降价的百分率是10%;(2)第10天时销售利润最大; 【解析】 【分析】(1)设这个百分率是x ,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价-进价)×销量-费用列函数关系式,并根据增减性求最大值,作对比; 【详解】(1)设该种水果每次降价的百分率是x , 10(1﹣x )2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9, ∴y=(9﹣4.1)(80﹣3x )﹣(40+3x )=﹣17.7x+352, ∵﹣17.7<0,∴y 随x 的增大而减小, ∴当x=1时,y 有最大值, y 大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元, ∴y=(8.1﹣4.1)﹣(3x 2﹣64x+400) =﹣3x 2+60x+80 =﹣3(x ﹣10)2+380, ∵﹣3<0,∴当9≤x≤10时,y 随x 的增大而增大, 当10<x <15时,y 随x 的增大而减小, ∴当x=10时,y 有最大值, y 大=380(元),综上所述,第10天时销售利润最大. 【点睛】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大利润.25.(1)(3,0);(0,3);(2)①S = 22153(02)2256(23)t t t t t t ⎧-+<⎪⎨⎪-+-<<⎩…;②存在,t =1或73时,以Q 、P 、H 为顶点的三角形的面积与S 相等. 【解析】 【分析】(1)把点C 坐标代入直线求得b 的值即得到直线解析式,令y =0求点B 坐标,令x =0求点D 坐标. (2)①由Rt △AOC 中∠OAC =90°求得OA+AC =OB =3,即t 的取值范围为0≤t<3且t≠2.画图发现有两种情况:当0≤t<2时,点P 在线段OA 上,点H 在线段BC 上,可证得PH ∥x 轴,故S =S △CPH =12PH•AP,用t 表示PH 、AP 的值再代入即能用t 表示S ;当2<t <3时,点P 在线段AC 上,点H 在线段OC 上,此时以PC 为底、点H 到CP 距离h 为高来求S ,用t 表示CP 、h 的值再代入即能用t 表示S .再把两式统一写成S 关于t 的分段函数关系式.②与①类似把点P 、Q 的位置分两种情况讨论计算;其中P 在AC 上、H 在OC 上时,以QH 为底求△QPH 的面积,需对点P 到QH 的距离PE 的表示再进行一次分类.用t 表示△QPH 面积后与S 相等列得方程,解之求得t 的值. 【详解】解:(1)∵直线y =﹣x+b 过点C (1,2) ∴﹣1+b =2∴b =3,即直线为y =﹣x+3当y =0时,﹣x+3=0,得x =3;当x =0时,y =3 ∴B (3,0),D (0,3)故答案为:(3,0);(0,3).(2)①∵Rt △AOC 中,∠OAC =90°,C (1,2) ∴A (0,2),OA =2,AC =1 ∵OB =OD =3,∠BOD =90° ∴OA+AC =OB =3,∠OBD =45° ∴0≤t<3,且t≠2i )当0≤t<2时,点P 在线段OA 上,点H 在线段BC 上,如图1∴OP =BQ =t∴AP =OA ﹣OP =2﹣t ,OQ =OB ﹣BQ =3﹣t ∵HQ ⊥x 轴于点Q ∴∠BQH =90°∴△BQH 是等腰直角三角形 ∴HQ =BQ =t ∴HQ ∥OP 且HQ =OP ∴四边形OPHQ 是平行四边形 ∴PH ∥x 轴,PH =OQ =3﹣t ∴S =S △CPH =12PH•AP=12(3﹣t )(2﹣t )=12t 2﹣52t+3 ii )当2<t <3时,点P 在线段AC 上,点H 在线段OC 上,如图2∴CP =OA+AC ﹣t =3﹣t ,x H =OQ =3﹣t ∵直线OC 解析式为:y =2x ∴QH =y H =2(3﹣t )=6﹣2t∴点H 到CP 的距离h =2﹣(6﹣2t )=2t ﹣4 ∴S =S △CPH =12CP•h=12(3﹣t )(2t ﹣4)=﹣t 2+5t ﹣6 综上所述,S 关于t 的函数关系式为S = 22153(02)2256(23)t t t t t t ⎧-+<⎪⎨⎪-+-<<⎩…②存在以Q、P、H为顶点的三角形的面积与S相等.i)当0≤t<2时,如图3∵S△CPH=S△QPH,两三角形有公共底边为PH∴点C和点Q到PH距离相等,即AP=OP∴t=2﹣t∴t=1ii)当2<t≤2.5时,如图4,延长QH交AC于点E∴AE=OQ=3﹣t,AP=t﹣2,QH=6﹣2t∴PE=AE﹣AP=(3﹣t)﹣(t﹣2)=5﹣2t∴S△QPH=12QH•PE=12(6﹣2t)(5﹣2t)=2t2﹣11t+15∵S△CPH=S△QPH∴﹣t2+5t﹣6=2t2﹣11t+15解得:t1=3(舍去),t2=7 3iii)当2.5<t<3时,如图5,延长QH交AC于点E∴PE=AP﹣AE=(t﹣2)﹣(3﹣t)=2t﹣5∴S△QPH=12QH•PE=12(6﹣2t)(2t﹣5)=﹣2t2+11t﹣15∴﹣t2+5t﹣6=﹣2t2+11t﹣15 解得:t1=t2=3(舍去)综上所述,t=1或73时,以Q、P、H为顶点的三角形的面积与S相等.【点睛】本题考查了一次函数的图象与性质,等腰三角形的性质,平行四边形的性质,解一元二次方程.由于点P、Q位置不同导致求三角形的计算不同是解决本题的关键,需画出图形数形结合地进行分类讨论.2019-2020学年数学中考模拟试卷一、选择题1.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)2.在平面直角坐标系中,点A 1(﹣1,1)在直线y =x+b 上,过点A 1作A 1B 1⊥x 轴于点B 1,作等腰直角三角形A 1B 1B 2(B 2与原点O 重合),再以A 1B 2为腰作等腰直角三角形A 2A 1B 2;以A 2B 2为腰作等腰直角三角形A 2B 2B 3;按照这样的规律进行下去,那么A 2019的坐标为( )A.(22018﹣1,22018) B.(22018﹣2,22018) C.(22019﹣1,22019) D.(22019﹣2,22019))3.一个大平行四边形按如图方式分割成九个小平行四边形且只有标号为①和②的两个小平行四边形为菱形,在满足条件的所有分割中,若知道九个小平行四边形中n 个小平行四边形的周长,就一定能算出这个大平行四边形的长,则n 的最小值是( )A.2B.3C.4D.54.如图,已知平行四边形ABCD 的对角线的交点是O ,直线EF 过O 点,且平行于AD ,直线GH 过O 点且平行于AB ,则图中平行四边形共有( )A .15个B .16个C .17个D .18个5.下列算式中,结果等于8x 的是( )A.2222x x x x ⋅⋅⋅B.2222x x x x +++C.24x x ⋅D.62x x + 6.若常数k 满足一元二次方程x 2+kx+4=0有实数根,则k 的值不可以取( )A .B .3.5C .﹣4D .﹣5 7.规定以下两种变换::①f(m,n)=(m,−n),如f(2,1)=(2,−1);②(,)(,)g m n m n =-- ,如(2,1)(2,1)g =--.按照以上变换有:()()()3,43,43,4f g f =--=-⎡⎤⎣⎦,那么()2,3g f -⎡⎤⎣⎦等于( )A .(2-,3-)B .(2,3-)C .(2-,3)D .(2,3)8.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯ 9.如图,直线a ∥b ,在Rt △ABC 中,点C 在直线a 上,若∠1=54°,∠2=24°,则∠A 的度数为( )A .56°B .36°C .30°D .26°10.如图,在△ABC 中,5,6AB AC BC ===,动点P ,Q 在边BC 上(P 在Q 的左边),且2PQ =,则AP AQ +的最小值为( )A .8B .C .9D .11.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,给出下列四个结论:①abc >0;3b+2c <0;③4a+c<2b ;④当y >0时,﹣52<x <12.其中结论正确的个数是( )A .2B .3C .4D .112.如图,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC =( )A .55°B .110°C .125°D .70°二、填空题 13.若一个多边形的内角和等于外角和,那么这个多边形的边数是_____.14.若分式242x x -- 的值为0,则x 的值为_____. 15.如图①,在正方形ABCD 中,点E 是AB 的中点,点P 是对角线AC 上一动点,设PC 的长度为,x PE 与PB 的长度和为y ,图②是y 关于x 的函数图象,则图象上最低点H 的坐标为_______.16.如图,//AB CD ,EF AB ⊥于E ,EF 交CD 于F ,已知15812'∠=︒,则2∠=___.17.计算63a a ÷的结果等于_____.18.将矩形纸片ABCD 如图那样折叠,使顶点B 与顶点D 重合,折痕为EF .若∠DFC =70°,则∠DEF =_____°.三、解答题19.每年的4月23日,是“世界读书日”.据统计,“幸福家园小区”1号楼的住户一年内共阅读纸质图书460本,2号楼的住户一年内共阅读纸质图书184本,1号楼住户的人数比2号楼住户人数的2倍多20人,且两栋楼的住户一年内人均阅读纸质图书的数量相同.求这两栋楼的住户一年内人均阅读纸质图书的数量是多少本?20.某学校为了创建书香校园,去年购买了一批图书.其中科普书的单价比文学书的单价多8元,用1800元购买的科普书的数量与用l000元购买的文学书的数量相同.(1)求去年购买的文学书和科普书的单价各是多少元;(2)这所学校今年计划再购买这两种文学书和科普书共200本,且购买文学书和科普书的总费用不超过2088元.今年文学书的单价比去年提高了20%,科普书的单价与去年相同,且每购买1本科普书就免费赠送1本文学书,求这所学校今年至少要购买多少本科普书?21.2017年我国“十二五”规划圆满完成,“十三五”规划顺利实施,经济社会发展取得历史性成就,发生历史性变革.这五年来,经济实力跃上新台阶,国内生产总值达到82.7万亿元,2018年,我国国内生产总值达到900309亿元人民币,首次迈过90万亿元门槛,比上一年同比增长66%,实现了65%左右的预期发展目标.下面的统计图反映了我国2013年到2018年国内生产总值及其增长速度情况,其中国内生产总值绝对数按现价计算,增长速度按不变价格计算根据以上信息,回答下列问题(1)把统计图补充完整;(2)我国2013年到2018年这六年的国内生产总值增长速度的中位数是%;(3)2019年政府工作报告提出,今年的预期目标是国内生产总值比2018年增长6‰﹣6.5%,通过计算说明2019年我国国内生产总值至少达到多少亿元,即可达到预期目标.22.某文化商店计划同时购进A、B两种仪器,若购进A种仪器2台和B种仪器3台,共需要资金1700元;若购进A种仪器3台,B种仪器1台,共需要资金1500元.(1)求A、B两种型号的仪器每台进价各是多少元?(2)已知A种仪器的售价为760元/台,B种仪器的售价为540元/台.该经销商决定在成本不超过30000元的前提下购进A、B两种仪器,若B种仪器是A种仪器的3倍还多10台,那么要使总利润不少于21600元,该经销商有哪几种进货方案?23.如图,一架无人机在距离地面高度为13.3米的点A处,测得地面点M的俯角为53°,这架无人机沿仰角为35°的方向飞行了55米到达点B,恰好在地面点N的正上方,M、N在同一水平线上求出M、N 两点之间的距离.(结果精确到1米)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)24.计算:11 20192-⎛⎫⎪⎝⎭.25.先化简,再求值:(1+12x-)•2241xx--,其中x=3.【参考答案】*** 一、选择题13.414.﹣215.(16.3148'︒17.a318.55三、解答题19.这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本【解析】【分析】设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.根据等量关系“1号楼住户的人数比2号楼住户人数的2倍多20人”列出方程并解答.【详解】解:设这两栋楼的住户一年内人均阅读纸质图书的数量为x本.由题意,得460218420 x x⨯=+.解得 x=4.6.经检验,x=4.6是原方程的解,且符合题意.答:这两栋楼的住户一年内人均阅读纸质图书的数量为4.6本.【点睛】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.20.(1)文学书的单价是10元,科普书的单价是18元;(2) 至少要购买52本科普书.【解析】【分析】(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据“用1800元购买的科普书的数量与用l000元购买的文学书的数量相同”列出方程;(2)设这所学校今年要购买y本科普书,根据“购买文学书和科普书的总费用不超过2088元”列出不等式.【详解】解:(1)设去年购买的文学书的单价是x元,科普书的单价是(x+8)元,根据题意,得180010008x x=+.解得x=10.经检验 x=10是原方程的解.当x=10时,x+8=18.答:去年购买的文学书的单价是10元,科普书的单价是18元;(2)设这所学校今年要购买y本科普书,根据题意,得10×(1+20%)(200﹣y﹣y)+18y≤2088解得y≥52答:这所学校今年至少要购买52本科普书.【点睛】本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.21.(1)见解析(2)6.9%(3)可达到预期目标【解析】【分析】(1)根据题意把统计图补充完整即可;(2)根据中位线的定义即可得到结论;(3)根据题意列式计算即可.【详解】(1)把统计图补充完整,如图所示;(2)我国2013年到2018年这六年的国内生产总值增长速度的中位数是6.9%;(3)900309×(1+6%)=954327.54亿元,答:2019年我国国内生产总值至少达到954327.54亿元,即可达到预期目标.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)A、B两种型号的仪器每台进价各是400元、300元;(2)有三种具体方案:①购进A种仪器18台,购进B种仪器64台;②购进A种仪器19台,购进B种仪器67台;③购进A种仪器20台,购进B种仪器70台.【解析】【分析】(1)设A、B两种型号的仪器每台进价各是x元和y元.此问中的等量关系:①购进A种仪器2台和B 种仪器3台,共需要资金1700元;②购进A种仪器3台几,B种仪器1台,共需要资金1500元;依此列出方程组求解即可.(2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过30000元;②总利润不少于21 600元.列不等式组进行分析.【详解】解:(1)设A、B两种型号的仪器每台进价各是x元和y元.由题意得:231700 31500x yx y+=⎧⎨+=⎩,解得:400300 xy=⎧⎨=⎩.答:A、B两种型号的仪器每台进价各是400元、300元;(2)设购进A种仪器a台,则购进A种仪器(3a+10)台.则有:400300(310)30000(760400)(540300)(310)21600a aa a++⎧⎨-+-+⎩……,解得710 1720913a≤≤.由于a为整数,∴a可取18或19或20.所以有三种具体方案:①购进A种仪器18台,购进B种仪器64台;②购进A种仪器19台,购进B种仪器67台;③购进A种仪器20台,购进B种仪器70台.【点睛】考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.注意:利润=售价﹣进价.23.35米【解析】【分析】过点A作AC⊥BN于C.过点M作MD⊥AC于D,在Rt△AMD中,通过解直角三角形可求出AD的长,在Rt △ABC中,通过解直角三角形可求出AC的长,由AC⊥BN,MD⊥AC,MN⊥BN可得出四边形MDCN是矩形,再利用矩形的性质即可求出MN的长,此题得解.【详解】过点A作AC⊥BN于C.过点M作MD⊥AC于D,如图所示.在Rt△AMD中,DM=13.3,∠DAM=53°,∴ADDMtan53==︒10;在Rt△ABC中,AB=55,∠BAC=35°,∴AC=AB•cos53°=55×0.82=45.1.∵AC⊥BN,MD⊥AC,MN⊥BN,∴四边形MDCN是矩形,∴MN=DC=AC﹣AD≈35.答:MN两点的距离约是35米.【点睛】本题考查了解直角三角形的应用:仰角俯角问题以及矩形的判定与性质,通过解直角三角形,求出AD,AC的长度是解题的关键.24.1【解析】【分析】直接利用负指数幂的性质、零指数幂的性质以及二次根式的性质分别化简得出答案.【详解】原式=1﹣2+2=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.1 2【解析】【分析】先通分计算括号里的,再计算乘法,最后合并,然后把x的值代入计算即可.【详解】解:原式=()()()221211xxx x x--⋅-+-=21 x+,当x=3时,原式=23+1=12.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.2019-2020学年数学中考模拟试卷一、选择题1.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m , 求道路的宽.如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )=540B .(20-x )(32-x )=100C .(20+x )(32+x )=540D .(20+x )(32-x )=5402.如图是某几何体的三视图,该几何体是( )A.三棱柱B.三棱锥C.长方体D.正方体3.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0ky k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A .2B .34C .65D .2454.如图,双曲线y =6x(x >0)经过线段AB 的中点M ,则△AOB 的面积为( )A .18B .24C .6D .125.如果a+b =12,那么a b a b b a+--22的值是( ) A .12B .14C .2D .46.今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄是儿子年龄的4倍.设今年儿子的年龄为x岁,则下列式子正确的是( ) A .4x -5=3(x -5) B .4x+5=3(x+5) C .3x+5=4(x+5) D .3x -5=4(x -5)7.如图,PA 、PB 与⊙O 相切,切点分别为A 、B ,PA =3,∠BPA =60°,若BC 为⊙O 的直径,则图中阴影部分的面积为( )A .3πB .πC .2πD .2π 8.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)ky k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .D .69.如图,线段AB =1,点P 是线段AB 上一个动点(不包括A 、B )在AB 同侧作Rt △PAC ,Rt △PBD ,∠A =∠D =30°,∠APC =∠BPD =90°,M 、N 分别是AC 、BD 的中点,连接MN ,设AP =x ,MN 2=y ,则y 关于x 的函数图象为( )A. B.C. D.10.如图,射线OB 、OC 在∠AOD 的内部,下列说法: ①若∠AOC =∠BOD =90°,则与∠BOC 互余的角有2个; ②若∠AOD+∠BOC =180°,则∠AOC+∠BOD =180°; ③若OM 、ON 分别平分∠AOD ,∠BOD ,则∠MON =12∠AOB ; ④若∠AOD =150°、∠BOC =30°,作∠AOP =12∠AOB 、∠DOQ =12∠COD ,则∠POQ =90° 其中正确的有( )A .1个B .2个C .3个D .4个11,则它的外接圆的面积为( ) A .πB .3πC .4πD .12π12.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A .B .C .D .二、填空题13.如图,矩形ABCD 中,AB =12,AD =15,E 是CD 上的点,将△ADE 沿折痕AE 折叠,使点D 落在BC 边上点F 处,点P 是线段CB 延长线上的动点,连接PA ,若△PAF 是等腰三角形,则PB 的长为____.14.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.15.计算:13--=_____.16.不等式组的解集是 .17.若关于x 的一元二次方程2230x x m -+-=有两个相等的实数根,则m 的值是______________. 18.计算:|﹣=_____. 三、解答题19.(1)如图,已知线段a 和MBN ∠,请在给出的图形上用尺规作出ABC ∆,使得:点A 在射线BN 上,点C 在射线BM 上,且AB a =,90ACB ∠=︒;(保留作图痕迹,不写作法)(2)求证:直角三角形斜边上的中线等于斜边的一半.(要求:利用(1)中的Rt ABC ∆,画出斜边AB 上的中线CD ,写出已知、求证和证明过程)20.现有一次函数y =mx+n 和二次函数y =mx 2+nx+1,其中m≠0,(1)若二次函数y =mx 2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式. (2)若一次函数y =mx+n 经过点(2,0),且图象经过第一、三象限.二次函数y =mx 2+nx+1经过点(a ,y 1)和(a+1,y 2),且y 1>y 2,请求出a 的取值范围.(3)若二次函数y =mx 2+nx+1的顶点坐标为A (h ,k )(h≠0),同时二次函数y =x 2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围. 21.(1)计算:(4cos301+-(2) 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩22.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部G 点为BC 的中点,求矮建筑物的高CD .23.《中国诗词大会》栏目中,外卖小哥击败北大硕士引发新一轮中华优秀传统文化热。