旋转重点题型
- 格式:doc
- 大小:115.00 KB
- 文档页数:4
23.1 图形的旋转旋转的概念将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.注意:旋转的三要素:旋转中心、旋转方向和旋转角度;图形的旋转不改变图形的形状、大小.题型1:旋转中的概念及对应元素1.下列运动中,属于旋转运动的是( )A.小明向北走了4 米B.一物体从高空坠下C.电梯从1 楼到12 楼D.小明在荡秋千【答案】D【解析】【解答】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,A不合题意;B. 一物体从高空坠下,是平移,不属于旋转运动,B不合题意;C. 电梯从1 楼到12 楼,是平移,不属于旋转运动,C不合题意;D. 小明在荡秋千,是旋转运动,D符合题意.故答案为:D.【分析】根据图形旋转的定义求解即可。
【变式1-1】如图,线段AB绕着点O旋转一定的角度得线段A'B',下列结论错误的是( )A.AB=A'B'B.∠AOA'=∠BOB'C.OB=OB'D.∠AOB'=100°【答案】D【解析】【解答】∵线段AB绕着点O旋转一定的角度得线段A'B',∴AB=A′B′,∠AOA′=BOB′,OB=OB′,故A,B,C选项正确,∵∠AOB和∠BOB′的度数不确定,∴∠AOB′≠100°,故D选项错误.故答案为:D.【分析】由旋转的性质可得AB=A′B′,∠AOA′=BOB′,OB=OB′,据此判断.【变式1-2】如图(1)中,△和△都是等腰直角三角形,∠和∠都是直角,点在上,△绕着点经过逆时针旋转后能够与△重合,再将图(1)作为“基本图形”绕着点经过逆时针旋转得到图(2).两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°【答案】A【解析】根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.旋转的性质一个图形和它经过旋转所得到的图形中:(1)对应点到旋转中心的距离相等; (2)两组对应点分别与旋转中心连线所成的角相等. 注意:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.题型2:旋转的性质及旋转中心的确定2.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是( )A.(1,1)B.(0,1)C.(-1,1)D.(2,0)【答案】B【解析】【解答】解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故答案为:B.【分析】连接AD、BE,作线段AD、BE的垂直平分线,根据旋转的性质即可求解。
二、旋转图形的做法1. 在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4.(1)画出△OAB绕原点O顺时针旋转90°后得到的三角形△OA′B′;(2)求点A在旋转过程中经过的路径长.2. 如图,在8×11的方格纸中,每个小正方形的边长均为1,△ABC的顶点均在小正方形的顶点处.(1)画出△ABC绕点A顺时针方向旋转90°得到的△AB′C′;(2)求点B运动到点B′所经过的路径的长.3.已知,如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,0), B(1,0),C(2,2).以A为旋转中心,把△ABC逆时针旋转90°,得到△AB′C′.(1)画出△AB′C′;(2)点B′的坐标为________;(3)求点C旋转到C′所经过的路线长.4. 如图,Rt△ABC中,∠C=90°,∠A=30°,AB=2.(1)用尺规作图,作出△ABC绕点A逆时针旋转60°后得到的△AB1C1(不写画法,保留画图痕迹);结论:__________________为所求。
(2)在(1)的条件下,连接B1C,求B1C的长。
5.如图,在8×8正方形网格中,每个小正方形的边长均为1个单位长度.将格点△ABC向下平移4个单位长度,得到△A’B’C’,再把△A’B’C’绕点O顺时针旋转90°,得到△A”B”C”,请你画出△A’B’C’和△A”B”C”.6.在平面直角坐标系xOy中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4),C(-2,9).(1)画出△ABC;(2)画出△ABC绕点A顺时针旋转90°后得到的△AB1C1,并求出CC1的长.三、对称中心的找法1.已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由.四、中心对称图形的做法1.如图,在正方形网络中,已知格点△ABC,请画出ABC△关于点B成中心对称的△A’BC’建议收藏下载本文,以便随时学习!建议收藏下载本文,以便随时学习!建议收藏下载本文,以便随时学习!4.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.(1)探究:线段BM、MN、NC之间的关系,并加以证明.(2)若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图②中画出图形,并说明理由.5. 如图,已知△ABC为等腰直角三角形,∠BAC=90°,E、F是BC边上点,且∠EAF=45°.求证:BE2+CF2=EF2..建议收藏下载本文,以便随时学习!建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙3. 如图17,正方形ABCD,E、F分别为BC、CD边上一点.(1)若∠EAF=45º.求证:EF=BE+DF.(2)若△AEF绕A点旋转,保持∠EAF=45º,问△CEF的周长是否随△AEF位置的变化而变化?(3)已知正方形ABCD的边长为1,如果△CEF的周长为2.求∠EAF的度数.八、应用1. 已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.2. (1)如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45 °,求证:EF=BE+FD.(2)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请说明理由.5. 已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.(Ⅰ)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程:(Ⅱ)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.8. 如图,在正方形ABCD中,E、F分别是AB、BC的中点,求证:AM=AD.九、中心对称图形的认识1. 下列图形是中心对称图形的是2. 下列图形中,既是中心对称图形又是轴对称图形的是3.下列图形中,既是中心对称图形又是轴对称图形的是( ).A.等边三角形 B.菱形 C.等腰梯形 D.平行四边形。
专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。
旋转中三种几何模型十三类题型第一部分【模型图形归纳与题型目录】【模型1】等边三角形旋转模型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的P A、PB、PC三条线段集中于图(1-1-b)中的一个ΔP/CP中,此时ΔP/CP也为正三角形。
【模型2】正方形旋转模型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的P A、PB、PC三条线段集中于图(2-1-b)中的ΔCPP/中,此时ΔCPP/为等腰直角三角形。
【模型3】等腰直角三角形旋转模型在等腰直角三角形ΔABC中,∠C=900,P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP/CP为等腰直角三角形。
模型类型与题型目录【模型1】等边三角形旋转模型【题型1】利用等边三角形旋转模型求线段长....................................2;【题型2】利用等边三角形旋转模型求角度......................................4;【题型3】利用等边三角形旋转模型求面积......................................5;【题型4】利用等边三角形旋转模型进行推理....................................6;【模型2】正方形旋转模型【题型5】利用正方形的旋转模型求角度.......................................8;【题型6】利用正方形的旋转模型求线段长.....................................10;【题型7】利用正方形的旋转模型求面积.......................................12;【题型8】利用正方形的旋转模型进行推理.....................................13;【模型3】等腰直角三角形旋转模型【题型9】利用等腰直角三角形的旋转模型求线段长.............................16;【题型10】利用等腰直角三角形的旋转模型求角度..............................17;【题型11】利用等腰直角三角形的旋转模型求面积..............................18;【题型12】利用等腰直角三角形的旋转模型进行推理............................19;【题型13】拓展与延伸......................................................22.第二部分【题型展示与方法点拨】【题型1】利用等边三角形旋转模型求线段长1.(2024·重庆沙坪坝·模拟预测)如图,△ABC,△CDE都是等边三角形,将△CDE绕点C旋转,使得点A,D,E在同一直线上,连接BE.若BE=2,AE=7,则CD的长是.【答案】5【分析】本题主要考查等边三角形的性质,旋转的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.根据题意证明△CBE≌△CAD(SAS),即可求解.解:∵△ABC,△CDE都是等边三角形,∴BC=AC,CE=DC,∠ACB=∠DCE=60°,∵∠ACD+∠DCB=∠ACB=60°,∠DCB+∠BCE=∠DCE=60°,∴∠ACD=∠BCE,在△CBE和△CAD中,BC =AC∠BCE =∠ACD CE =DC,∴△CBE ≌△CAD (SAS ),∴BE =AD ,∵BE =2,AE =7,∴BE =AD =2,∴DE =AE -AD =7-2=5,∴CD =5.故答案为:5.2.(2024·河南驻马店·三模)如图,在等边三角形ABC 中,AB =2,点P 在AB 上,且BP =32,将BP 绕点B 在平面内旋转,点P 的对应点为点Q ,连接AQ ,CQ .当QA =QC 时,AQ 的长为.【答案】72或312【分析】延长BQ 1交AC 于点H ,由等边三角形的性质可得AB =BC =AC =2,再根据线段垂直平分线的判定可得AH =CH =1,利用勾股定理求得BH =3,根据旋转的性质分两种情况讨论:当点Q 在线段BH 上时;当点Q 在线段HB 的延长线上时,求出Q 1H ,Q 2H 的值,再利用勾股定理求解即可.解:如图,延长BQ 1交AC 于点H ,∵△ABC 是等边三角形,∴AB =BC =AC =2,又∵QA =QC ,∴BQ 1垂直平分AC ,∴AH =CH =1,∴BH =22-12=3,∵将BP 绕点B 在平面内旋转,点P 的对应点为点Q ,∴BP =BQ =32,当点Q 1在线段BH 上时,Q 1H =32,∴AQ 1=AH 2+Q 1H 2=34+1=72,当点Q 在线段HB 的延长线上时,Q 2H =332,∴AQ 2=AH 2+Q 2H 2=274+1=312,故答案为:72或312.【点拨】本题考查等边三角形的性质、线段垂直平分线的判定、勾股定理、旋转的性质,利用分类讨论思想解决问题是解题的关键.【题型2】利用等边三角形旋转模型求角度3.(23-24七年级下·海南海口·期末)如图,△ABC是等边三角形,D是BC边上任意一点(与点B、C不重合),△ADC经顺时针旋转后与△AEB重合.连接ED,则∠ADE=度;设∠BAD=x°,则∠AEB的度数为度(用含有x的代数式表示).【答案】60x+60【分析】本题考查了等边三角形的判定和性质,图形旋转的性质,三角形内角和定理、外角和定理的运用,掌握等边三角形的判定和性质是解题的关键.根据等腰三角形的性质,旋转的性质可得AE=AD,∠EAD=60°,可判定△AED是等边三角形,根据∠ADC=∠AEB,及三角形外角的性质即可求解.解:∵△ABC是等边三角形,∴AB=BC=AC,∠ABC=∠BCA=∠BAC=60°,∵△ADC旋转与△AEB重合,∴AE=AD,∠EAD=60°,∴△AED是等边三角形,∴∠ADE=60°;∵△ADC旋转后与△AEB重合,∴∠AEB=∠ADC,∵△ABC是等边三角形,∴∠ABC=60°,在△ABD中,∠ADC是外角,∴∠ADC=∠BAD+∠ABD=x+60,∴∠AEB=∠ADC=x+60,故答案为:60,x+60.4.(23-24八年级下·贵州毕节·期末)如图,P是等边三角形ABC内一点,将线段PB绕点B沿顺时针方向旋转60°得到线段BP ,连接CP ,PP .若PB=3,PC=4,P A=5,则∠BPC的度数是.【答案】150°/150度【分析】本题考查了等边三角形的判定和性质,旋转的性质,全等三角形的判定和性质,勾股定理的逆定理的运用,掌握全等三角形的判定和性质,勾股定理逆定理的计算是解题的关键.根据等边三角形,旋转的性质可证△BPP 是等边三角形,可得∠ABP =∠CBP ,由此可证△ABP ≌△CBP ,根据勾股定理逆定理可得△CPP 是直角三角形,结合∠BPC =∠CPP +∠BPP 即可求解.解:∵△ABC 是等边三角形,∴AB =BC =AC ,ABC =∠ACB =∠BAC =60°,∴∠ABP +∠PBC =60°,∵PB 绕点B 旋转60°得P B ,∴PB =P B ,∠PBP =∠PBC +∠CBP =60°,∴△BPP 是等边三角形,∠BPP =∠BP P =∠PBP =60°,∴∠ABP =∠CBP ,在△ABP ,△CBP 中,AB =CB∠ABP =∠CBP BP =BP,∴△ABP ≌△CBP SAS ,∴AP =CP =5,且PP =PB =P B =3,CP =4,∵CP 2=52=25,CP 2=42=16,PP 2=32=9,即PP 2+CP 2=CP 2,∴△CPP 是直角三角形,∠CPP =90°,∴∠BPC =∠CPP +∠BPP =90+60=150°,故答案为:150°.【题型3】利用等边三角形旋转模型求面积5.(2024·广东河源·一模)等边三角形ABC 的边长为2,将该三角形绕顶点A 在平面内旋转30°,则旋转后的图形与原图形重叠部分的面积为()A.6-33B.6-32C.32D.34【答案】A【分析】本题考查了旋转的性质,等边三角形的性质,掌握旋转的性质是解题的关键.由旋转的性质可得∠BAD =30°,可得AD ⊥CD ,由等边三角形的性质和直角三角形的性质可求CD =1,AD =3,由三角形的面积公式可求解.解:如图,设AB 与BC 的交点为D ,∵将该三角形绕顶点A 在平面内旋转30°,∴∠BAD =30°=∠CAD ,∠B =60°=∠B ,∴AD ⊥CD ,AF ⊥B C ,∴BD =CD =1=BF =C F ,AD =3CD =3=AF ,∴S △ACD =12×CD ⋅AD =12×1×3=32,∵CF =AC -AF =2-3,∴EF =23-3,∴S △EFC =12×(2-3)(23-3)=73-122,∴旋转后的图形与原图形重叠部分的面积=32-73-122=6-33,故选:A 6.(21-22九年级上·新疆乌鲁木齐·阶段练习)如图,△ABC 是等边三角形,点P 在△ABC 内,P A =2,将△P AB 绕点A 逆时针旋转得到△QAC ,则△APQ 的面积等于()A.5B.6C.3D.23【答案】C【分析】根据等边三角形的性质推出AC =AB ,∠CAB =60°,根据旋转的性质得出△CQA ≅△BP A ,推出AQ =AP ,∠CAQ =∠BAP ,求出∠P AQ =60°,得出△APQ 是等边三角形,即可求出答案.解:∵△ABC 是等边三角形,∴AC =AB ,∠CAB =60°,∵将△P AB 绕点A 逆时针旋转得到△QAC∴△CQA ≅△BP A ,∴AQ =AP ,∠CAQ =∠BAP ,∴∠CAB =∠CAP +∠BAP =∠CAP +∠CAQ =60°,即∠P AQ =60°,∴△APQ 是等边三角形,∴QP =P A =2,过点Q 作QE ⊥AP 于点E ,如图,则PE =12AP =1,由勾股定理得,QE =QP 2-PE 2=3∴△APQ 的面积=12AP ×QE =12×2×3=3故选:C .【点拨】本题考查了等边三角形的性质和判定,全等三角形的性质和判定,旋转的性质等知识点,关键是得出△APQ 是等边三角形,注意“有一个角等于60°的等腰三角形是等边三角形,等边三角形的对应边相等,每个角都等于60°.【题型4】利用等边三角形旋转模型进行推理7.(2024九年级·全国·竞赛)如图,在等边△ABC 中,点D 为BC 上一点,连接AD ,将△ABD 绕点A 按逆时针方向旋转60°得到△ACE ,连接DE ,若AB =10cm ,AD =8cm ,则下列结论错误的是()A.∠CDE=∠ADBB.CE∥ABC.△CDE的周长是18cmD.△ADE是等边三角形【答案】A【分析】根据等边三角形得性质得AB=AC和∠B=60°,由旋转的性质得∠DAE=60°和AD=AE,则△ADE为等边三角形,则∠ADE=60°,结合三角形外角定理得∠ADC=∠B+∠BAD和AB>BD,可判定∠ADB>∠EDC,由等边三角形和旋转得∠BAC=∠ACE,可判定CE∥AB,由旋转得BD=CE,等边三角形的性质得DE=AD,可得C△CDE=DE+EC+CD=AD+BC.解:∵△ABC为等边三角形,∴AB=AC,∠B=60°,∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴∠DAE=60°,AD=AE,∴△ADE为等边三角形,则∠ADE=60°,∵∠ADC=∠B+∠BAD,∴∠ADE+∠EDC=∠B+∠BAD,即∠EDC=∠BAD,∵AB>BD,∴∠ADB>∠BAD,则∠ADB>∠EDC,故A错误;∵△ABC为等边三角形,∴∠BAC=∠B=60°,∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴∠ACE=∠B=60°,∴∠BAC=∠ACE,则CE∥AB,故B正确;∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴BD=CE,∵△ADE为等边三角形,∴DE=AD,∵AB=BC=10cm,AD=8cm,∴C△CDE=DE+EC+CD=AD+BD+CD=AD+BC=18cm,故C正确;∵△ABD绕点A按逆时针方向旋转60°得到△ACE,∴∠DAE=60°,AD=AE,∴△ADE为等边三角形,故D正确;故选:A.【点拨】本题主要考查等边三角形的判定和性质、旋转的性质、三角形外角定理和平行线的判定,解题的关键是熟悉等边三角形的性质和旋转的性质.8.(23-24八年级上·山东济宁·期末)如图,已知△ABE,∠ABE=120°,将△ABE绕点B顺时针旋转60°得到△CBD,连接AC,ED,AE和CD交于点P.则下列结论中正确的是()A.∠APC=30°B.AC与BE不平行C.△BDE可以看作是△ABC平移而成的D.△ABC和△BDE都是等边三角形【答案】D【分析】本题考查了旋转的性质,等边三角形的判定与性质,平行线的判定,平移的性质,熟练掌握旋转的性质,以及等边三角形的判定与性质是解题的关键.设AE与BC相交于点F,根据旋转可得:∠ABC=∠DBE=60°,△ABE≌△CBD,从而可得∠BAE=∠BCD,BA=BC,BE=BD,进而可得△ABC和△BED 都是等边三角形,然后利用等边三角形的性质可得∠BAC=60°,从而可得∠BAC=∠DBE=60°,进而可得AC∥BE,再利用三角形内角和定理,以及对顶角相等可得∠APC=∠ABC=60°,最后根据AB≠BD,可得△ABC和△BED不全等,从而利用平移的性质可得△BDE不可以看作是△ABC平移而成的,即可解答.解:如图:设AE与BC相交于点F,由旋转得:∠ABC=∠DBE=60°,△ABE≌△CBD,∴∠BAE=∠BCD,BA=BC,BE=BD,∴△ABC和△BED都是等边三角形,∴∠BAC=60°,∴∠BAC=∠DBE=60°,∴AC∥BE,∵∠AFB=∠CFP,∠APC=180°-∠BCD-∠CFP,∠ABC=180°-∠BAE-∠AFB,∴∠APC=∠ABC=60°,∵AB≠BD,∴△ABC和△BED不全等,∴△BDE不可以看作是△ABC平移而成的,故A、B、C不符合题意,D符合题意,故选:D.【题型5】利用正方形的旋转模型求角度9.(22-23八年级下·江苏无锡·期中)如图,已知正方形ABCD,P是正方形ABCD内一点.若P A=2,PB=2,PC=10,则∠APB的度数为°;△PBC的面积为.【答案】1353【分析】将△ABP 绕点B 顺时针旋转90°,使得AB 与BC 重合,根据旋转的性质可得△BPP 是等腰直角三角形,然后求出PP ′,再根据勾股定理逆定理判定出△PP C 是直角三角形,然后求出∠BP C 的度数,再根据旋转的性质可得∠APB =∠BP C ,过点B 作BH ⊥PP ,垂足为H ,过点C 作CG ⊥BP ,垂足为G ,证明△BHP 是等腰直角三角形,求出PH ,进而求出AB ,易得△BCP 是等腰三角形,推出BG =PG =1,求出CG ,即可求解.解:如图,将△ABP 绕点B 顺时针旋转90°,使得AB 与BC 重合,则P C =P A =2,△BPP 是等腰直角三角形,∵PB =2,∴PP =2PB =22,在△PP C 中,PP 2+P C 2=22 2+2 2=10,PC 2=10 2=10,∴PP 2+P C 2=PC 2,∴△PP C 是直角三角形,∴∠BP C =∠BP P +∠PP C =45°+90°=135°∵△CBP 是△ABP 绕点B 顺时针旋转90°得到,∴∠APB =∠BP C =135°;∵BP =BP ,∠PBP =90°,∴∠BPP =45°,∴∠APB +∠BPP =180°,∴A ,P ,P 三点共线,过点B 作BH ⊥PP ,垂足为H ,过点C 作CG ⊥BP ,垂足为G ,∵△BPP 是等腰直角三角形,∠BHP =90°,∠BPP =45°,∴△BHP 是等腰直角三角形,∴BH =PH ,∵BP =2,∴BH =PH =2,∴AH =AP +PH =22,∴AB =BH 2+AH 2=10,∵四边形ABCD 是正方形,∴BC =AB =10,∴PC =BC ,∴△BCP 是等腰三角形,∴BG =PG =12BP =1,∴CG =BC 2-BG 2=3,∴S△BCP =12BP ⋅CG =3,故答案为:135,3.【点拨】本题主要考查了旋转的性质,勾股定理逆反定理,正方形性质,等腰三角形的判定与性质,熟练掌握性质定理是本题关键.10.(23-24八年级下·广东江门·期中)如图,P为正方形ABCD内一点,P A=2,PB=4,PC=6,则∠APB=.【答案】135°/135度【分析】此题考查了旋转的性质及勾股定理的逆定理,将△APB绕B点顺时针旋转90°并连接PE,构造两个直角三角形:Rt△PBE和Rt△PCE,利用勾股定理逆定理解答即可.解:将△APB绕B点顺时针旋转90°并连接PE,∵将△APB绕B点顺时针旋转90°,得△BEC,∴△BEC≌△BP A,∠APB=∠BEC,∴△BEP为等腰直角三角形,∴∠BEP=45°,∵PB=4,∴PE=42,∵PC=6,CE=P A=2,∴PC2=PE2+CE2,∴∠PEC=90°,∴∠APB=∠BEC=∠BEP+∠PEC=45°+90°=135°.故答案为:135°.【题型6】利用正方形的旋转模型求线段长11.(22-23九年级上·浙江台州·期中)如图,边长为1的正方形ABCD绕点A逆时针旋转60°得到正方形AEFG,连接CF,则CF的长是()A.2B.1.5C.3D.32-3【答案】A【分析】本题主要考查了正方形的性质,旋转的性质,等边三角形的性质与判定,连接AC、AF,证明△ACF为等边三角形,求得AC 便可得出结果.解:连接AC 、AF ,由旋转性质得,AC =AF ,∠CAF =60°,∴△ACF 为等边三角形,∴AC =CF ,∵边长为1的正方形ABCD ,∴AB =BC =1,∴AC =AB 2+BC 2=2,∴CF =AC =2故选:A .12.(23-24九年级上·湖北武汉·期末)如图,边长为3的正方形ABCD 绕点C 顺时针旋转30°后得到正方形EFCG ,EF 交AD 于点H ,则AH 的长是.【答案】3-1【分析】本题考查了旋转的性质,考查了正方形的性质.连接CH ,如图,根据旋转的性质得∠DCG =30°,∠CFH =∠B =90°,CF =CD =3,再根据“HL ”证明△CHF ≌△CHD ,则∠HCF =∠HCD =30°,然后利用含30度的直角三角形三边的关系求出DH 即可得到AH 的长.解:连接CH ,如图,∵边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,∴∠DCG =30°,∠CFH =∠B =90°,CF =CD =3,∴∠DCF =60°,在Rt △CHF 和Rt △CHD 中CH =CHCF =CD ,∴△CHF ≌△CHD ,∴∠HCF =∠HCD ,∵∠HCF +∠HCD =∠DCF ,∴∠HCF =∠HCD =30°在Rt △CDH 中,∵∠DCH =30°,∴DH =33CD =33×3=1,∴AH =3-1,故答案为3-1.【题型7】利用正方形的旋转模型求面积13.(24-25九年级上·全国·假期作业)如图,正方形ABCD 的边长为1;将其绕顶点C 按逆时针方向旋转一定角度到CEFG 的位置,使得点B 落在对角线CF 上,则阴影部分的面积是()A.14B.2-2C.2-1D.12【答案】C【分析】本题考查了正方形的性质及旋转的性质,等腰三角形的判定;依据△BFH 、△CEF 为等腰直角三角形,即可得到阴影部分的面积.解:正方形ABCD 的边长为1,将其绕顶点C 按逆时针方向旋转一定角度到CEFG 位置,使得点B 落在对角线CF 上,∴EF =CE =BC =1,∴CF =2,∴BF =2-1,∵∠BFE =45°,∴BH =BF =CF -BC =2-1,∴阴影部分的面积=12×1×1-12×(2-1)2=2-1,故选:C .14.(24-25九年级上·内蒙古巴彦淖尔·开学考试)如图,边长为1的正方形ABCD 绕点A 顺时针旋转30°到AB C D 的位置,则图中阴影部分的面积为()A.12B.33C.1-33D.1-34【答案】C【分析】根据旋转的性质和正方形的性质得出AD =AB =AB ,∠BAB =∠DAD =30°,利用HL 证明Rt △AD E ≌Rt △ABE ,得出∠EAD =∠EAB =30°,利用含30°角的直角三角形的性质及勾股定理求出BE =33,根据S 阴影=S 正方形ABCD -2S △ABE 即可得答案.解:如图,连接AE ,∵边长为1的正方形ABCD 绕点A 顺时针旋转30°到AB C D 的位置,∴AD =AB =AB ,∠BAB =∠DAD =30°,∴∠BAD =60°,在Rt △AD E 和Rt △ABE 中,AD=AB AE =AE ,∴Rt △AD E ≌Rt △ABE ,∴∠EAD =∠EAB =30°,∴BE =12AE ,即AE =2BE ,∵在Rt △ABE 中,AE 2=BE 2+AB 2,∴(2BE )2=BE 2+12,解得:BE =33,∴S 阴影=S 正方形ABCD -2S △ABE =1×1-2×12×33×1=1-33.故选:C .【点拨】本题考查旋转的性质、正方形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质及勾股定理,熟练掌握相关性质和判定定理是解题关键.【题型8】利用正方形的旋转模型进行推理15.(23-24八年级下·山东济南·期末)如图,正方形ABCD 边长为52,E 从B 出发沿对角线BD 向D 运动,连接CE ,将线段CE 绕C 点顺时针旋转90°得到CF ,连接DF ,EF 设BE =m ,下列说法:①△DEF 是直角三角形;②当m =4时,EF =213;③有且只有一个实数m ,使得S △DEF =12.5;④取EF 中点G ,连接BG ,CG ,△BCG 的面积随着m 的增大而增大.正确的有()A.1个B.2个C.3个D.4个【答案】C 【分析】根据正方形的性质可得∠CBD =∠BDC =45°,BC =DC ,∠BCD =90°再根据旋转的性质可得CE =CF ,∠ECF =90°,从而证得△BCE ≌△DCF ,得到∠DBC =∠CDF =45°,即可求得∠BDF =∠BDC +∠CDF =90°,可判断①正确;根据正方形的性质可得BD 的长,再根据△BCE ≌△DCF 可得DF 的长,再利用勾股定理可得EF =213,可判断②正确;根据题意列出关于△DEF 面积的一元二次方程,求得有且只有一个实数m =5,使得S △DEF =12.5,可判断③正确;连接DG ,作GH ⊥CD 于点H ,可得GH ∥BC ,由∠EDF =∠ECF =90°,点G 为EF 的中点,可得DG =CG =12EF ,则CH =DH =522,从而求得S △BCG =12.5,可判断④错误;即可解题.解:∵四边形ABCD 是正方形,BD 为对角线,∴AB =BC =CD =AD ,∠CBD =∠BDC =45°,∠BCD =90°,∵线段CE 绕C 点顺时针旋转90°得到CF ,∴CE =CF ,∠ECF =90°,又∵∠BCE =∠BCD -∠ECD ,∠DCF =∠ECF -∠ECD ,∴∠BCE =∠DCF ,在△BCE 和△DCF 中:BC =DC∠BCE =∠DCF CE =CF,∴△BCE ≌△DCF SAS ,∴∠DBC =∠CDF =45°,∴∠EDF =∠BDC +∠CDF =90°,∴△DEF 是直角三角形,故①正确;∵正方形ABCD 边长为52,∴BD =BC 2+CD 2=10,∵△BCE ≌△DCF ,BE =m ,m =4,∴DF =BE =4,∴EF =DF 2+DE 2=DF 2+BD -BE 2=213,故②正确;由题可知:S △DEF =12⋅DE ⋅DF =12⋅BD -BE ⋅BE =1210-m m =5m -12m 2,要S △DEF =12.5,则5m -12m 2=12.5,整理得:m -5 2=0,解得:m =5,∴有且只有一个实数m ,使得S △DEF =12.5,故③正确;如图,连接DG ,作GH ⊥CD 于点H ,则∠GHD =∠BCD =90°,∴GH ∥BC ,∴CH 与△BCG 的边BC 上的高相等,∵∠EDF =∠ECF =90°,点G 为EF 的中点,∴DG =CG =12EF ,∴CH =DH =12DC =12×52=522,∴S △BCG =12BC ⋅CH =12×52×522=12.5,∴△BCG 的面积不随着m 的变化而变化,故④错误;故选:C .【点拨】本题考查了正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质、勾股定理,解一元二次方程,旋转的性质,直角三角形性质,综合运用以上知识是解题的关键.16.(23-24八年级下·河北唐山·期中)如图,点E为正方形ABCD内一点,∠AEB=90°,将△AEB绕点B按顺时针方向旋转90°,得到△CBG.延长AE交CG于点F,连接DE,下列结论:①AF⊥CG;②四边形BEFG是正方形,③若DA=DE,则2CF=CG;④若∠DAE=60°,S四边形ABCD =4S四边形BGFE其中正确的结论是()A.①②③④B.①②④C.①③D.①④【答案】A【分析】本题考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等边三角形的性质,设AF交BC于K,由∠ABK=90°及将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBG,可得∠KAB=∠BCG,即可得∠KFC=90°,从而判断①正确;由旋转的性质可得∠AEB=∠CGB=90°,BE=BG,∠EBG=90°,由正方形的判定可证四边形BEFG是正方形,可判断②正确;过点D作DH⊥AE于H,由等腰三角形的性质可得AH=12AE,DH⊥AE,由“AAS”可得△ADH≌△BAE,可得AH=BE=12AE,由旋转的性质可得AE=CG,从而可得CF=FG,可判断③正确;由等边三角形的性质得到AD=AE,可得AD=2BE,再根据正方形的面积可得,可判断④正确;灵活运用以上性质进行推理是解题的关键.解:设AF交BC于K,如图,∵四边形ABCD是正方形,∴∠ABK=90°,∴∠KAB+∠AKB=90°,∵将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBG,∴∠KAB=∠BCG,∵∠AKB=∠CKF,∴∠BCG+∠CKF=90°,∴∠KFC=90°,∴AF⊥CG,故①正确;∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CGB=90°,BE=BG,∠EBG=90°,又∵∠BEF=90°,∴四边形BEFG是矩形,又∵BE=BG,∴四边形BEFG是正方形,故②正确;如图,过点D作DH⊥AE于H,∵DA=DE,DH⊥AE,∴AH=12AE,∠ADH+∠DAH=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAH+∠EAB=90°,∴∠ADH=∠EAB,又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE AAS,∴AH=BE=12AE,∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CG,∵四边形BEFG是正方形,∴BE=GF,∴GF=12CG,∴CF=FG,故③正确;若∠DAE=60°,则∠EAB=30°,∵BE=12AE,∴BE=12AD,即AD=2BE,∵四边形ABCD和四边形BGFE是正方形,∴S四边形ABCD =4S四边形BGFE,故④正确;∴正确的有①②③④,故选:A.【题型9】利用等腰直角三角形的旋转模型求线段长17.(23-24九年级上·山东济宁·阶段练习)如图,△ABC是等腰直角三角形,∠ABC=90°,将△BPC绕点B逆时针旋转后,能与△BP A重合,连接PP ,如果BP=3,那么PP 的长等于()A.42B.23C.32D.33【答案】C【分析】本题考查了旋转的性质,勾股定理,解题的关键是掌握旋转前后对应线段相等,对应线段的夹角等于旋转角.根据旋转的性质得出∠PBP =∠ABC=90°,BP=BP =3,再根据勾股定理即可解答.解:∵△BPC绕点B逆时针旋转后,能与△BP A重合,BP=3,∠ABC=90°,∴∠PBP =∠ABC=90°,BP=BP =3,∴PP =BP2+BP 2=32,故选:C.18.(22-23八年级下·山东菏泽·期末)如图,D是等腰直角三角形ABC内一点,BC是斜边,将△ABD绕点A按逆时针方向旋转到△ACD 的位置,如果AD=3,那么DD 的长是.【答案】32【分析】证明△ADD 是等腰直角三角形即可解决问题.解:由旋转可知:△ABD≌△ACD ,∴∠BAD=∠CAD ,AD=AD =3,∴∠BAC=∠DAD =90°,即△ADD 是等腰直角三角形,∴DD =AD2+AD 2=32+32=32,故答案为:32.【点拨】本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【题型10】利用等腰直角三角形的旋转模型求角度19.(2024·山东聊城·三模)如图,点D是等腰直角三角形ABC内的一点,且∠BAC=90°,AB=AC,将△ABD绕点A按逆时针方向旋转90°,得到△AEC,连接ED,交AC于点F.若∠BAD=62°,则∠EFC=.【答案】107°/107度【分析】本题考查旋转的性质,等腰三角形的性质,余角的性质,三角形外角的性质.熟练掌握旋转的性质是解题的关键.先由旋转的性质得AE=AD,∠DAE=90°,再根据等腰直角三角形的性质和余角性质求得∠AED=∠ADE=45°,∠CAE=∠BAD=62°,然后由三角形外角性质求解即可.解:由旋转可得:AE=AD,∠DAE=90°,∴∠AED=∠ADE=45°,∵∠CAD+∠BAD=∠BAC=90°,∠CAD+∠CAE=∠DAE=90°,∴∠CAE=∠BAD=62°,∴∠EFC=∠E+∠CAE=45°+62°=107°,故答案为:107°.20.(22-23八年级下·江苏·开学考试)如图,在等腰直角三角形ABC中,∠A=90°,P是ΔABC内一点,P A=1,PB=3,PC=7,那么∠CP A=度.【答案】135【分析】将ΔABP绕A点逆时针旋转90°,然后连接PQ,可得AQ=AP=1,CQ=PB=3,∠QAC=∠P AB,∠QP A=45°,证明PC2+PQ2=7+2=9=CQ2,可得∠QPC=90°,从而可得答案.解:将ΔABP绕A点逆时针旋转90°,然后连接PQ,则AQ=AP=1,CQ=PB=3,∠QAC=∠P AB,∠QAP=90°,∴PQ2=AQ2+AP2=2,且∠QP A=45°,在ΔCPQ中,PC2+PQ2=7+2=9=CQ2∴∠QPC=90°,∴∠CP A=∠QP A+∠QPC=135°.故答案为:135.【点拨】本题考查的是旋转的性质,勾股定理与勾股定理的逆定理的应用,熟练的利用旋转的性质解题是关键.【题型11】利用等腰直角三角形的旋转模型求面积21.(23-24八年级上·四川宜宾·期末)如图,在等腰直角三角形ABC的斜边上取异于B,C的两点E,F,使∠EAF=45°,CF=3,EF=5,则以EF、BE、CF为边的三角形的面积为.【答案】6【分析】首先把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG,可得△ACF≌△ABG.进而得到AG=AF,BG=CF=3,∠ABG=∠ACF=45°,,再证明△BEG是直角三角形,进而即可得解.解:把△ACF绕点A顺时针旋转90°,得到△ABG.连接EG.则△ACF≌△ABG,∴AG=AF,BG=CF=3,∠ABG=∠ACF=45°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°.∴∠GBE=∠ABC+∠ABG=90°,∴BE=EG2-BG2=52-32=4,×3×4=6,∴以EF、BE、CF为边的三角形的面积为12故答案为:6.【点拨】本题考查了勾股定理及等腰直角三角形的性质,旋转的性质,正确作出辅助线后得出直角三角形是解答此题的关键.22.(23-24八年级下·福建·期末)将直角边长为6cm的等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB C ,则图中阴影部分的面积是cm2.【答案】63【分析】本题考查了旋转的性质,等腰三角形的性质.关键是通过旋转的性质判断阴影部分三角形的特点,计算三角形的面积.设AB与B C 交于D点,根据旋转角∠CAC =15°,等腰直角△ABC的一锐角∠CAB=45°,可求∠C AD,旋转前后对应边相等,对应角相等,AC =AC=6cm,∠C =∠C=90°,根据勾股定理求得C D,进而根据三角形的面积公式可求阴影部分面积.解:设AB与B C 交于D点,根据旋转性质得∠CAC =15°,而∠CAB=45°,∴∠C AD=∠CAB-∠CAC =30°,又∵AC =AC=6cm,∠C =∠C=90°,∴AD=2C D,由勾股定理得,AD2-C D2=AC 2,即4C D2-C D2=62,∴C D=23cm,×6×23=63cm2.∴阴影部分的面积=12故答案为:63.【题型12】利用等腰直角三角形的旋转模型进行推理23.(22-23八年级上·四川宜宾·期末)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连接CE.下列结论:①BD= CE;②BD2+CD2=2AE2;③∠DAC=∠CED;④在△ABC内存在唯一一点P,使得P A+PB+PC 的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+3.其中含所有正确结论的选项是.【答案】①②③【分析】①正确.证明△BAD ≌△CAE ,可得结论;②正确.根据△BAD ≌△CAE 得到∠ABC =∠ACB =∠ACE =45°,得到∠DCE =90°证明即可;③正确.根据△BAD ≌△CAE 得到∠BDA =∠CEA ,根据三角形外角性质,得到∠BDA =45°+∠DAC ,∠CEA =45°+∠CED 证明即可;④错误.将△BPC 绕点B 顺时针旋转60°得到△BNM ,连接PN ,当点A ,点P ,点N ,点M 共线时,P A +PB +PC 值最小,此时∠APB =∠BPC =∠CP A =120°,PB =PC ,AD ⊥BC ,设PD =t ,则BD =PD =3t ,构建方程求出t ,可得结论.解:∵△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,∴AB =AC ,AD =AE ,∠ABD =∠ACD =∠ADE =∠AED =45°,∴∠BAD =90°-∠DAC =∠CAE ,∵BA =CA∠BAD =∠CAE DA =EA,∴△BAD ≌△CAE SAS ,∴BD =CE ,故①正确;∵△BAD ≌△CAE ,∴∠ABC =∠ACB =∠ACE =45°,∴∠DCE =90°,∴DC 2+CE 2=DE 2,∵BD =CE ,AD 2+AE 2=DE 2=2AE 2,∴BD 2+CD 2=2AE 2;故②正确;∵△BAD ≌△CAE ,∴∠BDA =∠CEA ,根据三角形外角性质,得到∠BDA =45°+∠DAC ,∠CEA =45°+∠CED ,∴∠DAC =∠CED ,故③正确;将△BPC 绕点B 顺时针旋转60°得到△BNM ,连接PN ,根据旋转性质,得到△PBN 是等边三角形,当点A ,点P ,点N ,点M 共线时,P A +PB +PC 值最小,此时∠APB =∠BPC =∠CP A =120°,PB =PC ,AD ⊥BC ,∠BPD =60°,∠PBD =30°设PD=t,则BD=AD=3t,根据题意,得BD=PD=3t,解得t=3+1,故CE=BD=AD=3t=3+3故④错误.故答案为:①②③.【点拨】本题考查等腰直角三角形的性质,全等三角形的判定和性质,旋转的性质,直角三角形的性质,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题,属于中考选择题中的压轴题.24.(2023·天津河北·二模)如图,已知△ABC为等腰直角三角形,∠CBA=90°,将△ABC绕点A顺时针旋转60°得到△ADE,点B,C的对应点分别为点D,E,下列结论中错误的是()A.BC=ADB.AC=CEC.∠CAE-∠BAC=10°D.△ABD是等边三角形【答案】C【分析】根据旋转可知AB=AD,AC=AE,∠CAE=∠BAD=60°,则得△ABD和△ACE是等边三角形,即可作答.解:根据旋转的性质可知AB=AD,AC=AE,∠CAE=∠BAD=60°,∴△ABD和△ACE是等边三角形,故选项D结论正确,∴AC=CE,故选项B结论正确;∵△ABC为等腰直角三角形,∠CBA=90°,∴AB=BC,∠BAC=45°∴BC=AD,故选项A结论正确,∠CAE-∠BAC=60°-45°=15°,故选项C结论错误,符合题意;故选:C.【点拨】本题考查了旋转的性质和全等三角形的判定与性质,得出△ABD和△ACE是等边三角形是解答本题的关键.第三部分【拓展延伸】【题型13】拓展延伸25.如图,P 在等边△ABC 内且∠APC =120°,则PB P A 的最小值是()A.12B.33C.22D.32【答案】D【分析】将△APC 旋转60°到△ADB ,由于要求PB P A的最小值,我们不断让P A 变大,点P 往下移,如图1,根据直角三角形中斜边比直角边大,当PE 与PB 重合时取到最小值,如图2,当P A ⊥PB 时,取到最小值,此时P A ∥BD ,P A =PD ,且∠PDB =60°,可得PB P A 的最小值.解:将△APC 旋转60°到△ADB ,由于要求PB P A 的最小值,我们不断让P A 变大,点P 往下移,如图1,当CP ⊥AB 时,P A =PB ,PB P A =1,PB P A=PB PD ,根据直角三角形中斜边比直角边大,当PE 与PB 重合时取到最小值,如图3,当P A ⊥PB 时,取到最小值,此时P A ∥BD ,P A =PD ,且∠PDB =60°,可得PB P A=32.故选:D .【点拨】本题考查等边三角形的性质,垂线段最短,旋转变换等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中压轴题.26.(2024九年级·全国·竞赛)如图,△ABC 和△ADE 都为等腰直角三角形,点D 在AC 上,点E 在BA 的延长线上,AB =AC =10cm ,AD =AE =6cm ,现将△ADE 绕点A 旋转60°,得到△AD E ,连接BE 、CD ,过点A 作AF ⊥BE ,垂足为点F ,直线AF 交CD 于点G ,则线段FG 的长度为cm .【答案】7+1573或7-1573【分析】分△ADE 按顺时针旋转和逆时针旋转两种情况讨论,过点E 作E M ⊥BE ,垂足为点M ,过点C 作CH ∥AD 交AG 的延长线于点H ,连接HD ,利用勾股定理,含30度角的直角三角形的特征求出AM =3cm ,E M =33cm ,根据等面积法求出AF =1573cm ,证明△ABE ≌△CAH AAS ,得到AD =CH ,易得四边形ACHD 为平行四边形,利用平行四边形对角线互相平分的性质即可求解.解:如图1和图2,过点E 作E M ⊥BE ,垂足为点M ,过点C 作CH ∥AD 交AG 的延长线于点H ,连接HD ,则有∠E AM =60°,AE =AE =6cm ,得∠AE M =30°,AM =3cm ,E M =33cm ,∴BM =AB +AM =13cm ,BE =ME 2+BM 2=14cm ,由等面积法有12BE ⋅AF =12AB ⋅E M ;∴AF =1573cm ,∵∠GAD +∠FAE =90°=∠FAE +∠AE F ,∠HAC +∠FAB =90°=∠FAB +∠ABF ,∴∠GAD =∠AE F ,∠HAC =∠ABF ,∵CH ∥AD ,∴∠AHC =∠GAD ,∴∠AHC =∠AE F ,∵AB =AC ,∴△ABE ≌△CAH AAS ,∴AE =CH =AD =AD =6cm ,BE =AH =14cm ,∵CH ∥AD ,∴四边形ACHD 为平行四边形,∴AG =12AH =7cm ,∴在图1中,FG =AF +AG =7+1573cm ,在图2中,同理得:FG =AG -AF =7-1573cm .。
九年级数学上册第二十三章旋转笔记重点大全单选题1、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.2、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.3、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.4、以图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是()A.绕着OB的中点旋转180°即可B.先绕着点O旋转180°,再向右平移1个单位C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.只要向右平移1个单位答案:D分析:根据旋转、平移和轴对称的定义进行分析即可.由旋转、平移和轴对称的性质可知:经过A、B、C的变化,图(1)均可得到图(2),经过D的变化不能得到图(2);故选:D小提示:本题主要考查了旋转、平移和轴对称的性质,熟练地掌握各个性质是解题的关键.5、如图,在平面直角坐标系中,OA1=OB1,∠A1OB1=120°,将ΔA1OB1绕点O顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为120°的等腰三角形.第一次变化后得到等腰三角形A2OB2,点A1(1,0)的对应点为A2(−1,−√3);第二次变化后得到等腰三角形A3OB3,点A2的对应点为A3(−32,3√32);第三次变化后得到等腰三角形A4OB4,点A3的对应点为A4(4,0)⋯⋯依此规律,则第2022个等腰三角形中,点B2022的坐标是()A.(2022,0)B.(−2022,−2022√3)C.(−1011,1011√3)D.(−1011,−1011√3)答案:D分析:利用循环的规律,找到第2022个等腰三角形与第一个循环的图形的第几个位置相同,再根据第一个循环中的点坐标进行求值即可.解:由题意可知,旋转规律为4次一个循环,即第2022次为:505个循环余2,∴点B2022位置与B3相同,在第三象限,∵B3坐标为(−32,−3√32),∴点B2022坐标为(−20222,−2022√32),即为(−1011,−1011√3).故选:D.小提示:本题主要考查的是坐标系与几何图形的规律问题,准确找到循环规律是解题的关键.6、如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是()A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC答案:C分析:根据旋转的性质,对每个选项逐一判断即可.解:∵将△ABM绕点A逆时针旋转得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故选项A不符合题意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB与CN不一定平行,故选项B不符合题意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且顶角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故选项C符合题意;∵AM=AN,而AC不一定平分∠MAN,∴AC与MN不一定垂直,故选项D不符合题意;故选:C.小提示:本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.7、在平面直角坐标系中,抛物线y=x2−4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的表达式为()A.y=−x2−4x+5B.y=x2+4x+5C.y=−x2+4x−5D.y=−x2−4x−5答案:A分析:先求出C点坐标,再设新抛物线上的点的坐标为(x,y),求出它关于点C对称的点的坐标,代入到原抛物线解析式中去,即可得到新抛物线的解析式.解:当x=0时,y=5,∴C(0,5);设新抛物线上的点的坐标为(x,y),∵原抛物线与新抛物线关于点C成中心对称,由2×0−x=−x,2×5−y=10−y;∴对应的原抛物线上点的坐标为(−x,10−y);代入原抛物线解析式可得:10−y=(−x)2−4⋅(−x)+5,∴新抛物线的解析式为:y=−x2−4x+5;故选:A.小提示:本题综合考查了求抛物线上点的坐标、中心对称在平面直角坐标系中的运用以及求抛物线的解析式等内容,解决本题的关键是设出新抛物线上的点的坐标,求出其在原抛物线上的对应点坐标,再代入原抛物线解析式中求新抛物线解析式,本题属于中等难度题目,蕴含了数形结合的思想方法等.8、将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为(1,√3),将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为()A.(−1,√3)B.(−√3,1)C.(−√33,1)D.(−1,√33)答案:A分析:根据旋转性质,可知6次旋转为1个循环,故先需要求出前6次循环对应的A点坐标即可,利用全等三角形性质求出第一次旋转对应的A点坐标,之后第2次旋转,根据图形位置以及OA长,即可求出,第3、4、5次分别利用关于原点中心对称,即可求出,最后一次和A点重合,再判断第2023次属于循环中的第1次,最后即可得出答案.解:由题意可知:6次旋转为1个循环,故只需要求出前6次循环对应的A点坐标即可第一次旋转时:过点A′作x轴的垂线,垂足为C,如下图所示:由A的坐标为(1,√3)可知:OB=1,AB=√3,在RtΔAOB中,∠AOB=90°−∠A=60°,OA=2由旋转性质可知:ΔAOB≌ΔA′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°−∠A′OB′−∠AOB=60°,在ΔA′OC与ΔAOB中:{∠A′OC′=∠AOB=60°∠A′CO=∠ABO=90°OA′=OA∴ΔA′OC′≌ΔAOC(AAS),∴OC =OB =1,A ′C =AB =√3,∴此时点A 对应坐标为(−1,√3),当第二次旋转时,如下图所示:此时A 点对应点的坐标为(−2,0).当第3次旋转时,第3次的点A 对应点与A 点中心对称,故坐标为(−1,−√3).当第4次旋转时,第4次的点A 对应点与第1次旋转的A 点对应点中心对称,故坐标为(1,−√3). 当第5次旋转时,第5次的点A 对应点与第2次旋转的A 点对应点中心对称,故坐标为(2,0). 第6次旋转时,与A 点重合.故前6次旋转,点A 对应点的坐标分别为:(−1,√3)、(−2,0)、(−1,−√3)、(1,−√3)、(2,0)、(1,√3).由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A 点的对应点为(−1,√3).故选:A .小提示:本题主要是考查了旋转性质、中心对称求点坐标、三角形全等以及点的坐标特征,熟练利用条件证明全等三角形,;通过旋转和中心对称求解对应点坐标,是求解该题的关键.9、如图,点O 是等边三角形ABC 内一点,OA =2,OB =1,OC =√3,则ΔAOB 与ΔBOC 的面积之和为( )A .√34B .√32C .3√34D .√3答案:C分析:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,得到△BOD是等边三角形,再利用勾股定理的逆定理可得∠COD=90°,从而求解.解:将ΔAOB绕点B顺时针旋转60°得ΔBCD,连接OD,∴OB=OD,∠BOD=60°,CD=OA=2,∴ΔBOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+(√3)2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,∴ΔAOB与ΔBOC的面积之和为S△BOC+S△BCD=S△BOD+S△COD=√34×12+12×1×√3=3√34.故选:C.小提示:本题主要考查了等边三角形的判定与性质,勾股定理的逆定理,旋转的性质等知识,利用旋转将ΔAOB与ΔBOC的面积之和转化为S△BOC+S△BCD,是解题的关键.10、已知点P(m−3,m−1)关于原点的对称点P′在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.答案:D分析:先确定点P 所在的象限,然后根据点所在象限的坐标特点列不等式组求解即可.解:∵点P(m −3,m −1)关于原点的对称点P′在第四象限,∴点P 在第二象限,∴ {m −3<0m −1>0, 解得:1<m <3,故选:D .小提示:本题主要考查了点的坐标特征,掌握第二象限的点的横坐标小于零、纵坐标大于零是解答本题的关键.填空题11、△ABC 中,AB =8,AC =6,AD 是BC 边上的中线,则AD 长度的范围是__________.答案:1<AD <7分析:延长AD 至E ,使DE =AD ,连接CE .根据SAS 证明△ABD ≌△ECD ,得CE =AB ,再根据三角形的三边关系即可求解.解:延长AD 至E ,使DE =AD ,连接CE .在△ABD 和△ECD 中,{DE =AD∠ADB =∠CDE DB =DC,∴△ABD ≌△ECD (SAS ),∴CE =AB .在△ACE 中,CE -AC <AE <CE +AC ,即2<2AD <14,故1<AD<7.故答数为:1<AD<7.小提示:本题主要考查了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.12、如图,正方形OABC的边长为2,将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,连接BC′,当点A′恰好落在线段BC′上时,线段BC′的长度是 ___.答案:√6+√2分析:连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,由正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,所以∠OC'E=45°,OA=OC'=AB=2,∠A=90°,根据勾股定理得到BE的长,从而得到BC'.解:如图,连接OB,过点O作OE⊥C'B于E,则∠OEC'=∠OEB=90°,∵将正方形OABC绕点O逆时针旋转角α(0°<α<180°)得到正方形OA′B′C′,点A′恰好落在线段BC′上,∴∠OC'E=45°,OA=OC'=AB=2,∠A=90°,∴OB=2√2,OE=EC'=√2,在Rt△OBE中,由勾股定理得:BE=√OB2−OE2=√(2√2)2−(√2)2=√6,∴BC'=BE+EC'=√6+√2.所以答案是:√6+√2小提示:本题考查了旋转的性质、正方形的性质以及勾股定理,解题的关键是作辅助线构造特殊三角形.13、已知坐标系中点A(−2,a)和点B(b,3)关于原点中心对称,则a+b=__________.答案:-1分析:直接利用关于原点对称点的性质,得出a,b的值,即可得出答案.解:∵坐标系中点A(-2,a)和点B(b,3)关于原点中心对称,∴b=2,a=-3,则a+b=2-3=-1.所以答案是:-1.小提示:此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14、如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,2),B(-2,2),C(-1,0).将△ABC绕某点顺时针旋转90°得到△DEF,则旋转中心的坐标是_____________.答案:(1,-1)分析:由旋转的性质可得A的对应点为D,B的对应点为E,C的对应点为F,同时旋转中心在AD和BE的垂直平分线上,进而求出旋转中心坐标.解:由旋转的性质,得A的对应点为D,B的对应点为E,C的对应点为F作BE和AD的垂直平分线,交点为P∴点P的坐标为(1,-1)所以答案是:(1,-1)小提示:本题考查坐标与图形变化—旋转,图形的旋转需结合旋转角求旋转后的坐标,常见的旋转角有30°,45°,60°,90°,180°.15、若点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,则a+b=___.答案:2分析:根据关于原点对称的性质得到a-1+5=0,5+1-b=0,求出a、b,问题得解.解:∵点P(a-1,5)与点Q(5,1-b)关于原点成中心对称,∴a-1+5=0,5+1-b=0,∴a=-4,b=6,∴a+b=2.所以答案是:2小提示:本题考查了关于原点对称的点的坐标特点,熟知“两个点关于原点对称,则这两个点的横纵坐标都互为相反数”是解题关键.解答题16、如图,已知等边△ABC中,点D、E、F分别为边AB、AC、BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你连结EN,并判断EN与MF有怎样的数量关系?点F是否在直线NE 上?请写出结论,并说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M在点C右侧时,请你判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论:若不成立,请说明理由.答案:(1)相等,在,理由见解析;(2)成立,证明见解析;(3)成立.分析:(1)连接DE、DF、EF,NF,根据等边三角形的性质和三角形中位线的性质,先证得△DBF是等边三角形,可得△DMB≌△DNF,可得∠DBM=∠DFN,从而得到∠NFD+∠DFE=180°,再由△DMN是等边三角形,从而证得△DMF≌△DNE,得到EN=MF,即可求证;(2)连接DF,NF,EF,等边三角形的性质,可证得△DMB≌△DNF,得到BM=FN,∠DFN=∠FDB=60°,从而NF∥BD,再由EF是△ABC的中位线,可得EF∥BD,从而F在直线NE上,即可求证;(3)连接DF、DE,EF,根据等边三角形的性质和三角形中位线的性质,可得△DBF是等边三角形,从而证得△DNE≌△DMF,即可求证.解:(1)EN=MF,点F在直线NE上,理由如下:如图1,连接DE、DF、EF,NF,∴AB=AC=BC,∠ABC=60°,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴∠FDE=∠DFE=60°∵D、F分别是AB、BC的中点,∴BD=BF,∴△DBF是等边三角形,∴∠BDF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠BDN=∠BDF-∠BDN,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN,∵∠ABC=60°,∴∠DBM=120°,∴∠NFD=120°,∴∠NFD+∠DFE=120°+60°=180°,∴N、F、E三点共线,∴F在直线NE上;∴∠MDN=60°,DM=DN,∴∠FDE+∠NDF=∠MDN+∠NDF,∴∠MDF=∠NDE,在△DMF和△DNE中,∵DF=DE,∠MDF=∠NDE,DM=DN,∴△DMF≌△DNE,∴MF=NE,(2)成立,理由如下:如图2,连接DF,NF,EF,∵△ABC是等边三角形且D、F分别是AB、BC的中点,∴∠ABC=60°,BD=BF,∴△DBF是等边三角形,∴∠BDF=∠DBF=60°,∵△DMN是等边三角形,∴∠MDN=60°,DM=DN,∴∠MDN=∠BDF=60°,DB=DF,∴∠MDN-∠FDM=∠BDF-∠FDM,即∠MDB=∠NDF,在△DMB和△DNF中,∵DM=DN,∠MDB=∠NDF,DB=DF,∴△DMB≌△DNF,∴∠DBM=∠DFN=60°,BM=FN,∴∠DFN=∠FDB=60°,∴NF∥BD,∵E,F分别为边AC,BC的中点,∴EF是△ABC的中位线,BF=12BC=12AB,∴EF∥BD,EF=12AB,∴F在直线NE上,BF=EF,∴MF=EN;(3)MF与EN相等的结论仍然成立,理由如下:如图3,连接DF、DE,EF,∵△ABC是等边三角形,∴AB=AC=BC,又∵点D、E、F分别为边AB、AC、BC的中点,∴DE、DF、EF为等边△ABC的中位线,DE=12BC,EF=12AB,DF=12AC,∴DE=DF=EF,∴△DEF是等边三角形,∴∠FDE=60°,∵△DMN是等边三角形,∴∠MDN=∠FDE=60°,DM=DN,∴∠EDM+∠NDE=∠EDM+∠FDM,∴∠NDE=∠FDM,在△DNE和△DMF中,∵DE=DF,∠NDE=∠FDM,DN=DM,△DNE≌△DMF,∴MF=NE.小提示:本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,熟练掌握等边三角形的性质和判定,全等三角形的性质和判定是解题的关键.17、已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点Р(端点除外),连接PD.将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点Р在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.答案:(1)见解析(2)∠DPQ大小不变,理由见解析(3)CP=AQ,证明见解析分析:(1)连接BD,由等边三角形的性质可得AC垂直平分BD,继而得出AB=BC=CD=AD,便可证明;(2)连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,可证明△APE是等边三角形,由等腰三角形三线合一证明∠APF=∠EPF,∠QPF=∠BPF,即可求解;(3)由等腰三角形三线合一的性质可得AF = FE,QF = BF,即可证明.(1)连接BD,∵△ABC是等边三角形,∴AB=BC=AC,∵点B,D关于直线AC对称,∴AC垂直平分BD,∴DC=BC,AD=AB,∴AB=BC=CD=AD,∴四边形ABCD是菱形;(2)当点Р在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点Р逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,∵△ABC是等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P作PE∥CB交AB于点E,PF⊥AB于点F,则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠APE=∠BAC=60°=∠AEP,∴△APE是等边三角形,∴AP=EP=AE,∵PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB = PD,∠DPA =∠BPA,∴PQ = PD,∵PF⊥AB,∴∠QPF=∠BPF,∴∠QPF -∠APF=∠BPF -∠EPF,即∠QPA = ∠BPE,∴∠DPQ =∠DPA - ∠QPA=∠BPA-∠BPE = ∠APE= 60°;(3)AQ= CP,证明如下:∵AC = AB,AP= AE,∴AC - AP = AB–AE,即CP= BE,∵AP = EP,PF⊥AB,∴AF = FE,∵PQ= PD,PF⊥AB,∴QF = BF,∴QF - AF = BF–EF,即AQ= BE,∴AQ= CP.小提示:本题考查了图形的旋转,等边三角形的判定和性质,等腰三角形的性质,菱形的判定等,熟练掌握知识点是解题的关键.18、如图所示的两个图形成中心对称,请找出它的对称中点.答案:见解析.分析:根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.小提示:本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.。
专题02 图形的旋转(七大类型)【题型1 生活中的旋转现象】【题型2 利用旋转的性质求角度】【题型3 利用旋转的性质求线段长度】【题型4 旋转中的坐标与图形变换】【题型5 作图-旋转变换】【题型6 旋转对称图形】【题型7 旋转中周期性问题】【题型1 生活中的旋转现象】1.(2023春•沭阳县月考)下列运动属于数学上的旋转的有( )A.钟表上的时针运动B.城市环路公共汽车C.地球绕太阳转动D.将等腰三角形沿着底边上的高对折【答案】A【解答】解:A、钟表上的时针运动,属于旋转,故此选项正确;B、城市环路公共汽车,不属于旋转,故此选项错误;C、地球绕太阳转动,不属于旋转,故此选项错误;D、将等腰三角形沿着底边上的高对折,不属于旋转,故此选项错误;故选:A.2.(2022秋•隆安县期中)下列运动形式属于旋转的是( )A.飞驰的动车B.匀速转动的摩天轮C.运动员投掷标枪D.乘坐升降电梯【答案】B【解答】解:由题意知,匀速转动的摩天轮属于旋转,故选:B.3.(2021秋•栖霞市期末)下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A.B.C.D.【答案】D【解答】解:A、B、C这三个图都只能由旋转得到,不能由平移得到,只有D 既可经过平移,又可经过旋转得到,故选:D.4.(2022春•诏安县期中)下列现象不是旋转的是( )A.传送带传送货物B.飞速转动的电风扇C.钟摆的摆动D.自行车车轮的运动【答案】A【解答】解:传送带传送货物的过程中没有发生旋转.故选:A【题型2 利用旋转的性质求角度】5.(2023春•肃州区校级期中)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△AB'C使得点A恰好落在AB上,则旋转角度为( )A.30°B.60°C.90°D.150°【答案】B【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故选:B.6.(2023春•曹县期末)如图,△ABC绕点A顺时针旋转50°,得到△ADE,点E落在BC边上,连接BD,当BD⊥BC时,∠ABC的度数为( )A.20°B.25°C.30°D.35°【答案】B【解答】解:∵△ABC绕点A顺时针旋转50°,得到△ADE,∴AB=AD,∠BAD=50°,∴∠ABD=∠ADB==65°,又∵BD⊥BC,∴∠DBC=90°,∴∠ABC=∠DBC﹣∠DBA=90°﹣65°=25°,故选:B.7.(2023春•顺德区期末)如图,将△ABC绕点A逆时针旋转90°得到△ADE,连接BD,则∠ABD的度数为( )A.30°B.45°C.55°D.60°【答案】B【解答】解:∵将△ABC绕点A逆时针旋转90°得到△ADE,∴AB=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,故选:B.8.(2023春•惠安县期末)如图,将△ABC绕点B逆时针旋转80°,得到△EBD.若点A、D、E在同一条直线上,则∠CAD的度数为( )A..100°B..90°C..80°D..110°【答案】A【解答】解:∵将△ABC绕点B逆时针旋转80°,得到△EBD,∴∠EBA=80°,BE=BA,∠CAB=∠E,∴∠E=∠BAE=∠CAB,∵∠CAD=∠CAB+∠BAE,∴∠CAD=∠BAE+∠E,∵∠EBA=80°,∴∠E+∠BAE=100°,即∠CAD=100°,故选:A.9.(2023•普兰店区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是( )A.50°B.60°C.40°D.30°【答案】A【解答】解:∵将△OAB绕点O逆时针旋转80°∴∠A=∠C,∠AOC=80°∴∠DOC=80°﹣α∵∠A=2∠D=100°∴∠D=50°∵∠C+∠D+∠DOC=180°∴100°+50°+80°﹣α=180°解得α=50°故选:A.10.(2023•小店区校级一模)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC'∥AB,划∠BAB′的度数是( )A.35°B.40°C.50°D.70°【答案】B【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,∵将△ABC在平面内绕点A旋转到△AB′C′的位置,∴∠C′AB′=∠CAB=70°,AC′=AC,∴∠C=∠AC′C=∠C′CA=70°,∴∠C′AC=180°﹣70°﹣70°=40°,∴∠C′AC=∠BAB′=40°,即旋转角的度数是40°,故选:B.【题型3 利用旋转的性质求线段长度】11.(2023•扎兰屯市一模)如图,P为正方形ABCD内一点,PC=1,将△CDP 绕点C逆时针旋转得到△CBE,则PE的长是( )A.1B.C.2D.2【答案】B【解答】解:∵将△CDP绕点C逆时针旋转得到△CBE,∴∠BCD=∠PCE=90°,PC=CE=1,∴PE===,故选:B.12.(2023春•沈河区期末)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在边AB上,则点B'与点B之间的距离为( )A.4B.2C.3D.【答案】B【解答】解:如图,连接BB',∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠BCB'=∠ACA',CB=CB',CA=CA',∵∠A=60°,∴△ACA'是等边三角形,∠ABC=30°,∴∠ACA'=60°,AB=2AC,∴∠BCB'=60°,∴△BCB'是等边三角形,∴BB'=BC,在Rt△ABC中,AB=2AC=4,∴BC===2,∴BB'=2,故选:B.13.(2023春•沙坪坝区校级期中)如图,在边长为4的正方形ABCD中,M为边AB上一点,且,将CM绕着点M顺时针旋转使得点C落在AB延长线上的点E处,连接CE,则点M到直线CE的距离是( )A.2B.C.5D.【答案】D【解答】解:∵正方形ABCD的边长为4,∴AB=BC=4,∠ABC=90°,∵,∴BM=3,在Rt△BMC中,由勾股定理得,CM==5,∵将CM绕着点M顺时针旋转使得点C落在AB延长线上的点E处,∴CM=CE=5,∴BE=2,在Rt△CBE中,由勾股定理得,CE==2,设点M到直线CE的距离为h,则S=,△MCE∴h=,∴点M到直线CE的距离是2,故选:D.14.(2023•阿荣旗一模)如图,边长为2的正方形ABCD的对角线相交于点O,正方形EFGO绕点O旋转,若两个正方形的边长相等,则两个正方形的重合部分的面积( )A.B.C.1D.2【答案】C【解答】解:如图:OE交AB于点N,O交BC于点M,∵四边形ABCD和四边形OEFG是两个边长相等的正方形,∴OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON=∠MOC,在△OBN与△OCM中,,∴△OBN≌△OCM(ASA),∴S△OBN =S△OCM,∴四边形OMBN的面积等于△BOC的面积,即重合部分的面积等于正方形面积的,∴两个正方形的重合部分的面积=,故选:C.15.(2023•凤阳县二模)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转到△ABG的位置,点D的对应点是点B.若DF=3,则BE的长为( )A.B.C.1D.2【答案】D【解答】解:∵将△ADF绕点A顺时针旋转到△ABG的位置,点D的对应点是点B.∴∠ADF=∠ABG=90°,AF=AG,∠DAF=∠GAB,∴∠ABG+∠ABE=180°,∴点G、B、E共线,∵∠EAF=45°,∴∠DAF=∠BAE=∠GAB+∠BAE=45°,∴∠EAF=∠GAE,∵AE=AE,∴△EAF≌△EAG(SAS),∴EF=EG,设BE=x,则EF=EG=x+3,CE=6﹣x,在Rt△ECF中,由勾股定理得,32+(6﹣x)2=(x+3)2,解得x=2,∴BE=2,故选:D【题型4 旋转中的坐标与图形变换】16.(2023•沛县三模)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转90°得到点A',则点A'坐标为( )A.(1,−)B.(−,1)C.(0,2)D.(,1)【答案】D【解答】解:如图所示,过A作AB⊥x轴于B,过A'作A'C⊥x轴于C,∵∠AOA'=90°=∠ABO=∠OCA',∴∠BAO+∠AOB=90°=∠A'OC+∠AOB,∴∠BAO=∠COA',又∵AO=OA',∴△AOB≌△OA'C(AAS),∴A'C=BO=1,CO=AB=,∴点A′坐标为(,1),故选:D.17.(2023春•六盘水期中)平面直角坐标系中,O为坐标原点,点A的坐标为(6,﹣1),将OA绕原点按顺时针方向旋转90°得OB,则点B的坐标为( )A.(﹣6,1)B.(﹣1,﹣6)C.(﹣6,﹣1)D.(﹣1,6)【答案】B【解答】解:作BC⊥x轴于点C,∵点A的坐标为(6,﹣1),将OA绕原点顺时针方向旋转90°得OB,∴OB=OA,∠BOC=90°,∴点B的坐标为(﹣1,﹣6),故选:B.18.(2023•南海区校级三模)如图,A(2,0),C(0,4),将线段AC绕点A 顺时针旋转90°到AB,则B点坐标为( )A.(6,2)B.(2,6)C.(2,4)D.(4,2)【答案】A【解答】解:过点B作BD⊥x轴于D,∵A(2,0),C(0,4),∴OA=2,OC=4,∵∠AHB=∠AOC=∠BAC=90°,∴∠CAO+∠ACO=90°,∠CAO+∠BAD=90°,•∴∠ACO=∠BAD,在△AOC和△BAD中,,∴△AOC≌△BAD(AAS),∴BD=OA=2,AD=OC=4,∴OD=AD+OA=6,∴C(6,2).故答案为:A.19.(2023•商丘模拟)如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为( )A.(6,4)B.(4,3)C.(7,4)D.(8,6)【答案】C【解答】解:过A′作A'C⊥x轴于点C,由旋转可得∠O'=90°,O'B⊥x轴,∴四边形O'BCA'为矩形,∴BC=A'O'=OA=3,A'C=O'B=OB=4,∴OC=OB+BC=7,∴点A'坐标为(7,4).故选:C.20.(2023•柘城县模拟)如图,平面直角坐标系中,A为第一象限一点,B(2,0),∠OBA=120°,OB=AB,将△OAB绕O点逆时针旋转30°,此时点A 的对应点A1的坐标为( )A.(3,)B.(,3)C.(2,2)D.(2,2)【答案】B【解答】解:如图,过点A作AD⊥x轴于D,过点A1作A1H⊥OB于H.∵B(2,0),∠OBA=120°,OB=AB,∴∠AOB=30°,∠ABD=60°,AB=OB=2,∴AD=AB=,∴OA=2AD=2,∵OA1=OA=2,∴△OAB绕点O逆时针旋转30°得到△OA1B1,则∠A1OH=60°,∴OH=OA1=,A1H=OH=3,∴点A1的坐标是(,3),故选:B.21.(2023•大冶市校级一模)如图,在平面直角坐标系中,A(1,0),B(﹣2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是( )A.(4,3)B.(4,4)C.(5,3)D.(5,4)【答案】C【解答】解:如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.∵A(1,0),B(﹣2,4),∴OA=1,BE=4,OE=2,AE=3,∵∠AEB=∠AFC=∠BAC=90°,∴∠B+∠BAE=90°,∠BAE+∠CAF=90°,∴∠B=∠CAF,∵AB=AC,∴△BEA≌△AFC(AAS),∴CF=AE=3,AF=BE=4,OF=1+4=5,∴C(5,3),故选:C.【题型5 作图-旋转变换】22.(2023•蜀山区校级三模)在平面直角坐标系中,△ABC的三个顶点在格点上(每个方格的边长均为1个单位长度).(1)请画出△ABC关于x轴对称的图形△A1B1C1;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小(不写作法,保留作图痕迹).【答案】(1)见解答;(2)见解答;(3)见解答.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,P即为所求.23.(2023•合肥模拟)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点),直线l也经过格点.(1)画出△ABC关于直线l对称的△A′B′C′;(2)将线段AB绕点A′顺时针旋转90°得到线段DE,画出线段DE.【答案】(1)见解答.(2)见解答.【解答】解:(1)如图,△A′B′C′即为所求.(2)如图,线段DE即为所求.24.(2023春•崂山区期末)在平面直角坐标系中,△ABC的位置如图,网格中小正方形边长为1,点A坐标为(1,2),请解答下列问题:(1)作出△ABC绕点O的逆时针旋转90°得到的△A1B1C1;(2)计算△A1B1C1的面积.【答案】(1)见解析;【解答】解:(1)如图所示,△A1B1C1即为所求;(2)△A1B1C1的面积=4×2﹣=.25.(2022秋•雄县期末)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别为(﹣1,0),(﹣2,﹣2).(1)△A1B1C1与△ABC关于点O成中心对称,请在图中画出△A1B1C1,并直接写出点C1的坐标;(2)在(1)的基础上,将△ABC绕点A1逆时针旋转90°后得到△A2B2C2,请在图中画出△A2B2C2,并直接写出点C2的坐标.【答案】(1)图见解析,C1的坐标为(4,1);(2)图见解析,点C2的坐标为(2,﹣5).【解答】解:(1)△A1B1C1如图,点C1的坐标为(4,1);(2)解:△A2B2C2如图;点C2的坐标为(2,﹣5).【题型6 旋转对称图形】26.(2023•东方校级二模)将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )A.B.【答案】C【解答】解:∵△AOB绕点O旋转180°得到△DOE,∴作图正确的是C选项图形.故选:C.27.(2023•宁江区三模)下列图形绕某点旋转90°后,能与原来图形重合的是( )A.B.【答案】B【解答】解:A、绕它的中心旋转60°才能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项符合题意;C、绕它的中心旋转180°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°能与原图形重合,故本选项不合题意.故选:B.35.(2023•海安市模拟)如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为( )A.45B.60C.72D.144【答案】C【解答】解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.28.(2023•南关区校级三模)如图,图案由三个叶片组成,且其绕点O旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为( )平方厘米.A.2B.4C.6D.8【答案】B【解答】解:∵三个叶片的总面积为12平方厘米,∴一个叶片的总面积为4平方厘米,∵∠AOB=120°,∴阴影部分的面积之和一个叶片的总面积为4平方厘米,故选:B.29.(2022春•丰县月考)如图,以点O为旋转中心旋转如图所示的图形,若旋转后的图形与原图形重合,是旋转角可以为( )A.60°B.180°C.90°D.120°【答案】D【解答】解:O为圆心,连接三角形的三个顶点,即可得到∠AOB=∠BOC=∠AOC=120°,所以旋转120°或240°后与原图形重合.故选:D.30.(2021春•子洲县期中)将图绕其中心旋转某一角度后会与原图形重合,这个角不能是( )A.90°B.120°C.180°D.270°【答案】B【解答】解:图形可看作由一个基本图形旋转90°所组成,故最小旋转角为90°.则该图形绕其中心旋转90°n(n取1,2,3…)后会与原图形重合.故这个角不能是120°.故选:B.31.(2022秋•澄海区期末)把图中的五角星图案,绕着它的中心旋转,旋转角至少为 72 度时,旋转后的五角星能与自身重合.【答案】见试题解答内容【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,旋转角至少为72°.故答案为:72.【题型7 旋转中周期性问题】32.(2023•渠县校级模拟)如图,正方形OABC的顶点A,C在坐标轴上,将正方形绕点O第1次逆时针旋转45°得到正方形OA1B1C1,依此方式,连续旋转至第2023次得到正方形OA2023B2023C2023.若点A的坐标为(1,0),则点B2023的坐标为( )A.(1,﹣1)B.C.D.(﹣1,1)【答案】C【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:,由旋转的性质得:,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴,B 2(﹣1,1),,B4(﹣1,﹣1),,B 6(1,﹣1),…,发现是8次一循环,则2023÷8=252…7,∴点B2023的坐标为;故选:C.33.(2023春•中原区校级期中)如图,Rt△AOB中,∠AOB=90°,OA=3,OB=4,将△AOB沿x轴依次以三角形三个顶点为旋转中心顺时针旋转,分别得图②,图③,则旋转到图⑩时直角顶点的坐标是( )【答案】B【解答】解:∵∠AOB=90°,OA=3,OB=4,∴AB===5,根据图形,每3个图形为一个循环组,3+5+4=12,所以,图⑨的直角顶点在x轴上,横坐标为12×3=36,所以,图⑨的顶点坐标为(36,0),又∵图⑩的直角顶点与图⑨的直角顶点重合,∴图⑩的直角顶点的坐标为(36,0).故选:B.34.(2023•叶县模拟)如图,在平面直角坐标系中,正方形ABCD的边AB在x 轴上,点B(3,0),点D(1,2),将正方形ABCD绕点A逆时针旋转,每次旋转90°,当第2023次旋转结束时,点C的坐标是( )A.(﹣1,﹣2)B.(﹣1,2)C.(2,﹣3)D.(3,﹣2)【答案】D【解答】解:由题可知,将矩形ABCO绕点O逆时针旋转,每次旋转90°,∴每旋转4次则回到原位置,∵2023÷4=505……3,∴第2023次旋转结束后,图形顺时针旋转了90°,∵点B(3,0),点D(1,2),∴C(3,2),∴第2023次旋转结束时,点C的坐标是(3,﹣2),故选:D.35.(2023春•迁安市期中)将△OBA按如图方式放在平面直角坐标系中,其中∠OBA=90°,∠A=30°,顶点A的坐标为,将△OBA绕原点逆时针旋转,每次旋转60°,则第2023次旋转结束时,点A对应点的坐标为( )A.B.C.D.【答案】D【解答】解:由题意可知:6次旋转为1个循环,第一次旋转时:过点A′作x轴的垂线,垂足为C,如图所示:由A的坐标为可知:,AB=3,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,,由旋转性质可知:△AOB≌△A′OB′,∴∠A′OB′=∠AOB=60°,OA′=OA,∴∠A′OC=180°﹣∠A′OB′﹣∠AOB=60°,在△A′OC与△AOB中:,∴△A′OC′≌△AOB(AAS),∴,A′C=AB=3,∴此时点A′对应坐标为,当第二次旋转时,如所示:此时A′点对应点的坐标为.当第3次旋转时,第3次的点A对应点与A点中心对称,故坐标为,当第4次旋转时,第4次的点A对应点与第1次旋转的A′点对应点中心对称,故坐标为,当第5次旋转时,第5次的点A对应点与第2次旋转的A′点对应点中心对称,故坐标为.第6次旋转时,与A点重合.故前6次旋转,点A对应点的坐标分别为:、、、、、.由于2023÷6=337⋅⋅⋅⋅⋅⋅1,故第2023次旋转时,A点的对应点为.故选:D.36.(2023•太康县一模)如图,平面直角坐标系中,有一个矩形ABOC,边BO 在x轴上,边OC在y轴上,AB=1,BO=2.将矩形ABOC绕着点O顺时针旋转90度,得到矩形A1B1OC1,再将矩形A1B1OC1,绕着点C1顺时针旋转90°得到矩形A2B2O1C1,依次旋转下去,则经过第2023次旋转,点A的对应点的坐标是( )A.(3033,1)B.(3033,2)C.(3033,0)D.(3032,0)【答案】C【解答】解:由题意,A1(1,2),A2(3,0),A3(3,0),A4(4,1),……,四次应该循环,∵2023÷4=505…3,∴A2023在x轴上,坐标为(505×6+3,0),即(3033,0).故选:C.37.(2023•鲁山县一模)如图,在平面直角坐标系中,已知点A(0,2),点B在第一象限内,AO=AB,∠OAB=120°,△AOB绕点O逆时针旋转,每次旋转90°,则第2023次旋转后,点B的坐标为( )A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥y轴于H,在Rt△ABH中,∠AHB=90°,∠BAH=180°﹣120°=60°,AB=OA=2,∴∠ABH=30°,∴AH=AB=1,OH=OA+AH=3,由勾股定理得BH==,∵AB=OA=2,∠OAB=120°,∴∠AOB=30°,∴OB=2BH=2,∴B(,3),B1(﹣,3),B2(﹣2,0),B3(﹣,﹣3),B4(,﹣3),B5(2,0),....,6次一个循环,∴2023÷6=337……1,∴第2023次旋转后,点B的坐标为(﹣,3).故选:D.38.(2023•阜新模拟)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…则正方形铁片连续旋转2024次后,点P的坐标为( )A.(6070,2)B.(6072,2)C.(6073,2)D.(6074,1)【答案】C【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2024÷4=506,P2024的纵坐标与P4相同为2,横坐标为1+12×506=6073,∴P2024(6073,2).故选:C.。
第02讲图形的旋转(8类热点题型讲练)1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题;(重点,难点)3.能够根据旋转的性质进行简单的旋转作图.知识点01旋转的概念(1)旋转的概念:把一个平面图形绕着平面内某一点O转动一定角度的变换.点O叫作旋转中心;转动的角度叫作旋转角;图形上点P旋转后得到点P’,这两个点叫作对应点.(2)旋转三要素:①旋转方向;②旋转中心;③旋转角度注:旋转中心可在任意位置.即可在旋转图形上,也可不在旋转图形上.知识点02旋转的性质旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心连线所成的角相等.知识点03确定旋转中心确定旋转中心:由旋转的性质可得,对应点到旋转中心的距离相等,所以旋转中心位于对应点连线的垂直平分线上,即旋转中心是两对对应点所连线段的垂直平分线的交点.知识点04旋转作图旋转作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.题型01判断生活中的旋转现象【例题】(2023上·内蒙古呼和浩特·九年级校考期中)下列运动形式属于旋转的是()A .足球在地上的滚动B .电梯的运行C .热气球点火升空D .钟摆的摆动【变式训练】1.(2023上·广西玉林·九年级统考期中)下列现象属于旋转的是()A .电梯的上下移动B .飞机起飞后冲向空中的过程C .幸运大转盘转动的过程D .笔直的铁轨上飞驰而过的火车2.(2023上·福建福州·九年级校考阶段练习)下列生活中的实例是旋转的是()A .钟表的指针的转动B .汽车在笔直的公路上行驶C .传送带上,瓶装饮料的移动D .足球飞入球网中题型02找旋转中心、旋转角、对应点【例题】(2023上·天津东丽·九年级校联考期中)如图,P 为正方形ABCD 内一点,1PC ,CDP △将绕点C 逆时针旋转得到CBE △,(1)旋转中心是______.旋转角为______度.(2)求PE 的长度.【变式训练】1.(2023上·辽宁大连·九年级统考期中)如图,四边形ABCD 是正方形,E 是CD 上的一点,ABF △是ADE V 的旋转图形.(1)由ADE V 顺时针旋转到△(2)连接EF ,判断并说明AEF △2.(2023上·湖南永州·八年级校考开学考试)(1)旋转中心为点,并求出旋转角=度;(2)求出BAE ∠的度数和AE 的长.题型03根据旋转的性质求解【变式训练】1.(2023上·浙江·九年级专题练习)如图,将若AD BE ,则CAE ∠的度数为2.(2024上·广东肇庆·九年级统考期末)∠与AC交于点G.若B题型04求绕原点旋转90°点的坐标【例题】(2023上·江苏苏州点B,则点B的坐标为2.(2023下·江苏泰州·八年级校联考阶段练习)点B到x轴的距离是8,将题型05求绕某点(非原点)旋转90°点的坐标【例题】(2023上·全国·将AC绕A点顺时针旋转【变式训练】2.(2023·湖北宜昌·统考模拟预测)如图,点点A 按逆时针方向旋转90︒得到线段题型06平面直角坐标系中旋转作图【例题】(2024上·吉林松原·九年级校联考期中)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平而直角坐标系,OAB 的顶点都在格点上,已知点()4,2A --,()2,6B --.(1)将OAB 向右平移4个单位长度得到111O A B △,请画出111O A B △;(2)将OAB 绕点O 顺时针旋转90︒,画出所得的22OA B △.【变式训练】1.(2023上·四川自贡·九年级校考期中)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点()5,5A ,()6,3B ,()2,1C 均在格点上,(1)画出将ABC 向下平移4个单位长度得到的111A B C △;(2)画出ABC 绕点C 逆时针旋转90︒后得到的22A B C ,并写出点2A 的坐标;2.(2024上·陕西延安·九年级统考期末)如图,网格中每个小正方形的边长都是单位1,ABC 是格点三角形.(1)画出将ABC 向右平移2个单位得到的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90︒得到的222A B C △,并写出点2B 的坐标.题型07坐标与旋转规律问题【变式训练】1.(2023上·辽宁鞍山·九年级校考阶段练习)如图,在平面直角坐标系中,将11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将的位置,点2C 在x 轴上,将112A B C V 绕点2C 顺时针旋转到222A B C △的位置,点()()B 2.(2023下.广西.七年级广西大学附属中学校考期中)如图,已知点向连续翻转241次,点A 依次落在点1A ,2A ,3A , (241)题型08旋转综合题——几何变换【例题】(2023上·北京朝阳·九年级校考期中)如图,在ABC 中,,BAC AB AC α∠==,点D 为BC 边上一点(不与点B 重合),连接AD ,将ABD △绕点A 逆时针旋转得到ACE △.(1)若80α=︒,写出旋转角及其度数;(2)当α度数变化时,DAE ∠与DCE ∠之间存在某种不变的数量关系.请你写出结论并证明.【变式训练】(1)将ADE V 绕A 点旋转到图2位置时,写出BD 、CE 的数量关系;(2)当90BAC ∠=︒时,将ADE V 绕A 点旋转到图3位置.①猜想BD 与CE 有什么数量关系和位置关系?请就图3的情形进行证明;②当点C 、D 、E 在同一直线上时,直接写出ADB ∠的度数.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD (2)【探究】:把DCE △绕点C 旋转到如图2的位置,连接AD ,(3)【拓展】:把DCE △绕点C 在平面内自由旋转,若6AC =,CE 时,直接写出BE 的长.一、单选题1.(2024上·安徽合肥·九年级统考期末)垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.你认识垃圾分类的图标吗?请选出其中的旋转对称图形()A .可回收物B .有害垃圾C .厨余垃圾D .其他垃圾2.(2024上·河北唐山·七年级统考期末)如图,OAB 绕点O 逆时针旋转70︒,得到OCD ,若15AOB ∠=︒,则AOD ∠等于()A .85︒B .70︒C .55︒D .45︒3.(2024上·江西上饶·九年级统考期末)如图,将一块含有30︒的直角三角板ABC (假定90C ∠=︒,30B ∠=︒)绕顶点A 逆时针旋转100︒得到AB C ''△,则BB C ''∠等于()A .5︒B .10︒C .15︒D .20︒4.(2024上·广东肇庆·九年级统考期末)如图,将线段AB 绕点O 顺时针旋转90︒,得到线段A B '',那么()2,5A -的对应点A '的坐标是()A .()5,2-B .()2,5-C .()5,2D .()2,55.(2024上·山东烟台·八年级统考期末)如图,已知ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕A 点逆时针旋转50︒得到AB C ''△,以下结论:①BC B C ''=,②AC C B '' ,③C B BB '''⊥,④ABB ACC ''∠=∠,正确的有()A .①②③B .②③④C .①③④D .①②④二、填空题7.(2023上·安徽淮南·九年级统考期末)如图将为(,)a b ,则A 的坐标为.8.(2024上·辽宁大连·九年级统考期末)如图,将点B '恰在边AC 上,若2AB =9.(2024上·天津宁河·九年级统考期末)在平面直角坐标系中,点针旋转,得11A BO △,点A O ,为,点1A 的坐标为10.(2024上·辽宁盘锦·九年级校考期末)如图,D 为AB 的中点,点E 在是直角三角形时,AE '的长为三、解答题(1)将ABC 绕坐标原点O 顺时针旋转(2)求111A B C △的面积.12.(2024上·湖北武汉·九年级统考期末)点B 顺时针旋转90°到CBE '△的位置((1)判断BEE ' 的形状为(2)若2AE =,4BE =,13.(2024上·湖北武汉·九年级统考期末)如图,在Rt ABC △中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,延长ED 交AB 于点F .(1)直接写出AFE ∠的度数;(2)若67.5A Ð=°,求证:2DE AF =.14.(2023上·陕西渭南·九年级统考期末)如图,将一个钝角ABC (其中120ABC ∠=︒)绕点B 顺时针旋转得111A B C △,使得C 点落在AB 的延长线上的点1C 处,连接1AA .(1)求证:1AA BC ∥;(2)若120A AC ∠=︒,求11AA C ∠的度数.15.(2024上·甘肃武威·九年级校联考期末)如图,在ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF 、EF 与AC 交于点G .(1)求证:BC EF =;(2)若64ABC ∠=︒,25ACB ∠=︒,求AGE ∠的度数.16.(2024上·浙江台州·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,旋转角为α,CD ,DE 分别交AB 于点F ,G ,连接BD .(1)求证:AGD α∠=;(2)若2BC =,30a =︒,BD AC ∥.①求AB 的长;②连接AD ,BE ,AE ,求四边形ADBE 的面积.17.(2024上·陕西西安·七年级校考期末)如图,已知ABC 中,90B Ð=°,将ABC 沿着射线BC 方向平移得到DEF ,其中点A 、点B 、点C 的对应点分别是点D 、点E 、点F ,且CE DE =.(1)如图①,如果6AB =,3BC =,那么平移的距离等于______;(请直接写出答案)(2)如图②,将DEF 绕着点E 逆时针旋转90︒得到CEG ,连接AG ,如果AB a =,BC b =,求ACG 的面积;(3)如图③,在(2)题的条件下,分别以AB ,BC 为边向外作正方形,正方形的面积分别记为1S ,2S ,且满足1216S S -=,如果平移的距离等于8,求出ACG 的面积.(1)如图1,当EC 与BC 重合,30α=︒时,ACD ∠=;(2)如图2,三角形ABC 固定不动,将三角形CDE 绕点C 旋转,使点E 落到AB 的延长线上,当射线EC 平分DEA ∠时,求ECB ∠的度数;(3)三角形ABC 固定不动,将三角形CDE 绕点C 旋转,当25ACE ∠=︒且射线CD 平分。
第3单元旋转压轴精选30题一.选择题(共8小题)1.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°【答案】B【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ABD经旋转后到达△ACE的位置,∴∠BAC等于旋转角,即旋转角等于60°.故选:B.2.如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D 为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1B.2C.3D.不能确定【答案】A【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.3.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm2【答案】B【解答】解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠FAN=∠FAN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.4.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1【答案】D【解答】方法一:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,=×OD•AD=,∴S△ADO∴四边形AB1OD的面积是=2×=﹣1,方法二:解:∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C=AD•AC=×1×1=,∵S△ADC=S△ADC﹣S△OB1C=﹣(﹣1)2=﹣1;∴S四边形AB1OD故选:D.5.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π【答案】D【解答】解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动2015次经过的路线长为:6π×504=3024π.故选:D.6.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2C.:2D.1:【答案】B【解答】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.7.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【答案】B【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选:B.8.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③【答案】A【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S 四边形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,则S△AOC故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.二.填空题(共16小题)9.如图,在Rt△ABC中,已知∠C=90°,∠B=30°,点D在边AB上,,把△ADC绕点D逆时针旋转m(0°<m<180°)度后,如果点A恰好落在初始Rt△ABC的边上,那么m=60°或120°.【答案】60°或120°.【解答】解:如图,D以为圆心,以AD为半径画圆,分别交AC于A1,交BC于A2、交DB于A3.∵∠B=30°,∠C=90°,∴∠A=60°且AD=A1D,∴△AA1D是等边三角形,∴①旋转角m=∠ADA1=60°.②在Rt△BDA2中,∵BD=AD,且∠B=30°,∴BC与圆相切于A点,∴∠BDA2=60°,旋转角m=∠ADA2=180°﹣∠BDA2=120°.③当旋转到A3时,刚好旋转了180°,不符合题意,.故答案为:60°或120°.10.如图,△ABC中,∠ACB=90°,把△ABC绕点C顺时针旋转到△A1B1C的位置,A1B1交直线CA于点D.若AC=6,BC=8,当线段CD的长为6或5或时,△A1CD是等腰三角形.【答案】见试题解答内容【解答】解:三角形是等腰三角形,有如下三种情况:①当CD=A1C=AC=6时,三角形是等腰三角形;②当CD=A1D时,∵∠B=90°﹣∠BCB1=∠ACB1,∠B=∠B1,∴∠B1=∠B1CD,∴B1D=CD.∵CD=A1D,∴CD=A1B1=5时,三角形是等腰三角形;③当A1C=A1D时,如图.过点C作CE⊥A1B1于E.∵△A1B1C的面积=×6×8=×10×CE,∴CE=4.8.在△A1CE中,∠A1EC=90°,由勾股定理知A1E==3.6,∴DE=6﹣3.6=2.4.在△CDE中,∠CED=90°,由勾股定理知CD==.故当线段CD的长为6或5或时,△A1CD是等腰三角形.11.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△P AC 绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为6,∠APB=150°.【答案】见试题解答内容【解答】解:连接PP′,如图,∵△P AC绕点A逆时针旋转60°后,得到△P′AB,∴∠P AP′=60°,P A=P′A=6,P′B=PC=10,∴△P AP′为等边三角形,∴PP′=PA=6,∠P′PA=60°,在△BPP′中,P′B=10,PB=8,PP′=6,∵62+82=102,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.故答案为6,150°.12.如图,边长为1的正方形ABCD绕点A逆时针旋转30°,得到正方形AB′C′D′,则图中阴影部分的面积为.【答案】见试题解答内容【解答】解:设B′C′与CD交于点E,连接AE.在△AB′E与△ADE中,∠AB′E=∠ADE=90°,∵,∴△AB′E≌△ADE(HL),∴∠B′AE=∠DAE.∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=AD•tan∠DAE=.=2S△ADE=2××=.∴S四边形AB′ED﹣S四边形AB′ED=1﹣=.∴阴影部分的面积=S正方形ABCD13.如图,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为cm2.【答案】见试题解答内容【解答】解:设A′B′交BC于D,在直角△DPB中,BP=AP=AC=3,∵∠A=60°设PD=x,则BD=2x,∵DP2+BP2=BD2,∴x2+32=(2x)2,∴DP=x=,∵B′P=BP,∠B=∠B′,∠B′PH=∠BPD=90°,∴△B′PH≌△BPD,∴PH=PD=,∵在直角△BGH中,BH=3+,∴GH=,BG=,=××=,S△BDP=×3×=,∴S△BGH∴S DGHP==cm2.14.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为15度.【答案】见试题解答内容【解答】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°﹣∠DBE=180°﹣30°=150°,∠BDC=(180°﹣∠CBD)=15°.故答案为15°.15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为42cm.【答案】见试题解答内容【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.16.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=110°.【答案】见试题解答内容【解答】解:∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°﹣2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°;故答案为:110°.17.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5.【答案】见试题解答内容【解答】解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.故答案为:1.5.18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.【答案】见试题解答内容【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.19.如图,在平面直角坐标系中,已知点A(﹣3,0),B(0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是(21,0),第2012个三角形离原点O最远距离的坐标是(8049,0).【答案】见试题解答内容【解答】解:∵点A(﹣3,0),B(0,4),∴OB=4,OA=3,∴AB=5,∵对△OAB连续作如图所示的旋转变换,∴△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,而2012=3×670+2,∴第⑤个三角形和第2012个三角形都和三角形②的状态一样,∴2012个三角形离原点O最远距离的点的横坐标为670×12+9=8049,纵坐标为0.第⑤三角形离原点O最远距离的点的横坐标为12+9=21,纵坐标为0.故答案为(21,0),(8049,0).20.已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN 交AC边于点N,且满足∠MDN=60°,则△AMN的周长为2.【答案】见试题解答内容【解答】证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在Rt△BDM≌Rt△CDM1中,BD =CD ∠ABD =∠DCM 1=90°CM 1=BM ,∴Rt △BDM ≌Rt △CDM 1(SAS ),得MD =M 1D ,∠MDB =∠M 1DC ,∴∠MDM 1=120°﹣∠MDB +∠M 1DC =120°,∴∠NDM 1=60°,∵MD =M 1D ,∠MDN =∠NDM 1=60°,DN =DN ,∴△MDN ≌△M 1DN ,∴MN =NM 1,故△AMN 的周长=AM +MN +AN =AM +AN +NM 1=AM +AM 1=AB +AC =2.故答案为:2.21.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =,则图中阴影部分的面积等于﹣1.【答案】见试题解答内容【解答】解:∵△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,∠BAC =90°,AB =AC =,∴BC =2,∠C =∠B =∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD =BC =1,AF =FC ′=sin45°AC ′=AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.22.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是40°.【答案】见试题解答内容【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故填:40°.23.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是19.【答案】见试题解答内容【解答】解:∵△ABC是等边三角形,∴AC=AB=BC=10,∵△BAE由△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,∴DE=BD=9,∴△AED的周长=AE+AD+DE=AC+BD=19.故答案为:19.24.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S四边形AEPF=S△ABC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有①②③⑤.【答案】见试题解答内容【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=∠BAC=45°,AP=BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②由①知,△AEP≌△CFP,∴∠APE=∠CPF.正确;③由①知,△AEP≌△CFP,∴PE=PF.又∵∠EPF=90°,∴△EPF是等腰直角三角形.正确;④只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;⑤∵△AEP≌△CFP,同理可证△APF≌△BPE.=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.正确.∴S四边形AEPF故正确的序号有①②③⑤.三.解答题(共6小题)25.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFE,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD 上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【答案】见试题解答内容【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(3)猜想:DE2=BD2+EC2,证明:把△AEC绕点A顺时针旋转90°得到△ABE′,连接DE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.26.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【答案】见试题解答内容【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.27.阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?【答案】见试题解答内容【解答】解:操作与证明:(1)BE=AD.∵△C′DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.(2)BE=AD.∵△C′DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.猜想与发现:当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.28.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC 按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.【答案】见试题解答内容【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABE′由△CBE旋转而成,∴BE=BE′,∠ABE′=∠CBE,∴∠DBE′=∠DBE,在△DBE与△DBE′中,∵,∴△DBE≌△DBE′(SAS),∴DE′=DE;(2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AE′重合,∴AE′=EC,∴∠E′AB=∠BCE=45°,∴∠DAE′=90°,在Rt△ADE′中,DE′2=AE′2+AD2,∵AE′=EC,∴DE′2=EC2+AD2,同(1)可得DE=DE′,∴DE2=AD2+EC2.29.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB =90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.【答案】见试题解答内容【解答】(1)证明:∵∠ACB=90°,D是AB的中点.∴CD=AD=BD,又∵∠B=90°﹣∠A=60°,∴△BCD是等边三角形.又∵CN⊥DB,∴DN=DB.∵∠EDF=90°,△BCD是等边三角形,∴∠ADG=30°,而∠A=30°.∴GA=GD.∵GM⊥AB,∴AM=AD.又∵AD=DB,∴AM=DN.(2)解:(1)的结论依然成立.理由如下:∵DF∥AC,∴∠1=∠A=30°,∠AGD=∠GDH=90°,∴∠ADG=60°.∵∠B=60°,AD=DB,∴△ADG≌△DBH,∴AG=DH.又∵GM⊥AB,HN⊥AB,∴∠GMA=∠HND=90°,∵∠1=∠A,∴Rt△AMG≌Rt△DNH,∴AM=DN.30.如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.【答案】见试题解答内容【解答】解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CBQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有AC=4,AP=,PC=3,∴PQ==2.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=PB,∵AP=CQ,∴PQ2=PC2+CQ2=P A2+PC2,故有2PB2=PA2+PC2.。
网红“旋转”问题必考题型梳理题型1 旋转的概念旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.例题1下面是4个能完全重合的正六边形,请仔细观察A、B、C、D四个图案,其中与所给图形不相同的是()A.B.C.D.【分析】将选项中的图形绕正六边形的中心旋转,与题干的图形不相同的即为所求.【解析】观察图形可知,只有选项B中的图形旋转后与图中的正六边形不相同.选B.变式1如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.144°B.90°C.72°D.60°【分析】如图,由于是正五角星,设O的是五角星的中心,那么∠AOB=∠BOC=∠COD=∠DOE=∠AOE,所以要使正五角星旋转后与自身重合,那么它们就是旋转角,而它们的和为360°,由此即可求出绕中心顺时针旋转的角度.【解析】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.选C.变式2如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q【解析】∵△ABC经过旋转后得到△EFD,∴点A与点E为对应点,点B和点F为对应点,∴旋转中心在AE的垂直平分线上,也在BF的垂直平分线上,作AE的垂直平分线和BF的垂直平分线,它们的交点为N点,如图,即旋转中心为N点.选B.变式3规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【解析】(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:题型2 利用旋转求角度解决此类问题的关键是掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.例题2如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【解析】∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC 绕点B 逆时针旋转得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,∴∠A ′BA =∠ABC =40°,A ′B =AB ,∴∠BAA ′=∠BA ′A =12(180°﹣40°)=70°,∴∠CAA '=∠CAB +∠BAA ′=50°+70°=120°.选D .变式4 如图,将△OAB 绕点O 逆时针旋转70°,得到△OCD ,若∠A =2∠D =100°,则∠a 的度数是( )A .50°B .60°C .40°D .30°【解析】∵将△OAB 绕点O 逆时针旋转70°,∴∠A =∠C ,∠AOC =70°,∴∠DOC =70°﹣α,∵∠A =2∠D =100°,∴∠D =50°,∵∠C +∠D +∠DOC =180°,∴100°+50°+70°﹣α=180°,解得α=40°,选C .变式5 如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α【解析】∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°,∵∠BAD =α,∴∠BED =180°﹣α.选D .变式6 Rt △ABC ,已知∠C =90,∠B =50°,点D 在边BC 上,BD =2CD (如图).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =( )A .80B .80或120C .60或120D .80或100【解析】当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AB边上的B′点,如图1,∴∠BDB′=m,DB′=DB,∴∠1=∠B=50°,∴∠BDB′=180°﹣∠1﹣∠B=80°,即m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点位置,如图2,∴∠BDB′=m,DB′=DB,∵BD=2CD,∴DB′=2CD,∴∠CB′D=30°,则∠B′DC=60°,∴∠BDB′=180°﹣∠B′DC=120°,即m=120°,综上所述,m的值为80°或120°.选B.题型3 旋转作图(坐标系)例题3在如图所示平面直角坐标系中(每个小方格都是边长为1个单位长度的正方形),解答下列问题:(1)画出与△ABC关于y轴对称的△A1B1C1;(2)画出以C1为旋转中心,将△A1B1C1顺时针旋转90°后的△A2B2C1;(3)连接A1A2,则△C1A1A2是三角形,并直接写出△C1A1A2的面积.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)∵C1A12=12+22=5,C1A22=12+22=5,A1A22=12+32=10,∴C1A12+C1A22=A1A22,∴△C1A1A2是直角三角形,而C1A1=C1A2,∴△C1A1A2是等腰直角三角形,它的面积=12×√5×√5=52.故答案为等腰直角.变式7在平面直角坐标系中,△ABC的点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.【解析】(1)如图所示,△A1B1C1即为所求,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)若△ABC上有一点P(m,n),则对应点P1的坐标为(n,﹣m).(3)如图所示,△A2B2C2即为所求.变式8如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,坐标分别为A(2,2),B(1,0),C(3,1).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出将△ABC绕原点O顺时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,直接写出对称中心的坐标.【分析】(1)利用利用y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A2、B2、C2,从而得到△A2B2C2;(3)根据中心对称的定义进行判断.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)△A1B1C1与△A2B2C2成中心对称图形,对称中心的坐标为(−12,−12).变式9如图,在平面直角坐标系中,A(1,1).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1,并写出点B1的坐标;(2)点C绕O点逆时针方向旋转90°后所对应点C2的坐标为;(3)在x轴上存在一点P,且满足点P到点B1和点C1距离之和最小,请直接写出PB1+PC1的最小值.【解析】(1)如图,△A1B1C1即为所求,点B1的坐标为(﹣4,﹣4);(2)点C2的坐标为(﹣1,5);(3)点P即为所求,PB1+PC1的最小值为√26:题型4 与旋转有关的点的坐标例题4如图,在平面直角坐标系中,A(1,0),B(﹣2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是()A.(4,3)B.(4,4)C.(5,3)D.(5,4)【分析】如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.利用全等三角形的性质求出AF,CF即可解决问题.【解析】如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.∵A(1,0),B(﹣2,4),∴OA=1,BE=4,OE=2,AE=3,∵∠AEB=∠AFC=∠BAC=90°,∴∠B+∠BAE=90°,∠BAE+∠CAF=90°,∴∠B=∠CAF,∵AB=AC,∴△BEA≌△AFC(AAS),∴CF=AE=3,AF=BE=4,OF=1+4=5,∴C(5,3),选C.变式10如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针旋转90°,则旋转后点A的对应点A'的坐标是()A.(﹣1,√3)B.(√3,﹣1)C.(−√3,1)D.(﹣2,1)【解析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴AE=√AO2−OE2√22−12=√3,∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,OH=AE=√3,∴A′(−√3,1),选C.【小结】本题考查坐标与图形变化﹣旋转,等边三角形的性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.变式11如图,在平面直角坐标系中,△AOB的顶点B在第一象限,点A在y轴的正半轴上,AO=AB=2,∠OAB=120°,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(﹣2−√32,√3)B.(﹣2−√32,2−√32)C.(﹣3,2−√32)D.(﹣3,√3)【解析】作B′H⊥x轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=12A′B′=1,B′H=√3,∴OH=3,∴B′(﹣3,√3),选D.变式12如图,在平面直角坐标系中,长方形ABCD的顶点B在坐标原点,顶点A、C分别在y轴、x轴的负半轴上,其中A(0,﹣4),C(﹣2,0),将矩形ABCD绕点D逆时针旋转得到矩形A'B'C'D,点B'恰好落在x轴上,线段B'A'与CD交于点E的坐标为()A.(﹣2,−32)B.(﹣2,−34)C.(﹣2,﹣2)D.(﹣2,−54)【解析】如图,连接BD,B'D,∵矩形ABCD绕点D逆时针旋转得到矩形A'B'C'D,∴BD=B'D,又∵DC⊥BB',A(0,﹣4),C(﹣2,0),∴BC=B'C=2=A'D,又∵∠B 'CE =∠DA 'E =90°,∠B 'EC =∠DEA ',∴△B 'EC ≌△DEA ',∴B 'E =DE ,设CE =x ,则B 'E =DE =4﹣x ,∵Rt △B 'EC 中,CE 2+B 'C 2=B 'E 2,∴x 2+22=(4﹣x )2,解得x =32,∴E (﹣2,−32),选A . 题型5 与旋转有关的点的坐标(周期规律)例题5 如图,Rt △AOB 中,∠AOB =90°,OA =3,OB =4,将△AOB 沿x 轴依次以三角形三个顶点为旋转中心顺时针旋转,分别得图②,图③,则旋转到图⑩时直角顶点的坐标是( )A .(28,4)B .(36,0)C .(39,0)D .(912,32√3)【解析】∵∠AOB =90°,OA =3,OB =4,∴AB =√OA 2+OB 2=√32+42=5,根据图形,每3个图形为一个循环组,3+5+4=12,所以,图⑨的直角顶点在x 轴上,横坐标为12×3=36, 所以,图⑨的顶点坐标为(36,0),又∵图⑩的直角顶点与图⑨的直角顶点重合,∴图⑩的直角顶点的坐标为(36,0).选B .变式13 如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2020次得到正方形OA 2020B 2020C 2020,如果点A 的坐标为(1,0),那么点B 2020的坐标为( )A .(﹣1,1)B .(−√2,0)C .(﹣1,﹣1)D .(0,−√2)【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【解析】∵四边形OABC 是正方形,且OA =1,∴B (1,1),连接OB ,由勾股定理得:OB =√2,由旋转得:OB =OB 1=OB 2=OB 3=⋯=√2,∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,依次得到∠AOB =∠BOB 1=∠B 1OB 2=…=45°,∴B 1(0,√2),B 2(﹣1,1),B 3(−√2,0),B (﹣1,﹣1),…,发现是8次一循环,所以2020÷8=252…4,∴点B 2020的坐标为(﹣1,﹣1),选C .变式14 如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP n (n 为正整数),则点P 2020的坐标是 .【解析】∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;∴OP 1=1,OP 2=2,∴OP 3=4,如此下去,得到线段OP 4=23,OP 5=24…,∴OP n =2n ﹣1, 由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P 2020的坐标与点P 4的坐标在同一直线上,正好在y 轴的负半轴上,∴点P 2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).变式15如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x 轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为.【解析】∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).题型6 与旋转有关的最值问题例题6如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P1,连CP1的最小值为()A.1.6B.2.4C.2D.2√2【解析】如图,过点P′作P′E⊥AC于点E,则∠A=∠P′ED=90°,由旋转可知:DP=DP′,∠PDP′=90°,∴∠ADP=∠EP′D,∴△DAP≌△P′ED(AAS)∴P′E=AD=2,∴当AP=DE=2时,DE=DC,即点E与点C重合,此时CP′=EP′=2,∴线段CP′的最小值为2.选C.变式16如图,△ABC是等边三角形,AB=4,E是AC的中点,D是直线BC上一动点,线段ED绕点E 逆时针旋转90°,得到线段EF,当点D运动时,则AF的最小值为()A.2B.2√3C.√3D.√3+1【分析】作DM⊥AC于M,FN⊥AC于N,如图,设DM=x,则CM=√33x,可计算出EM=−3√3x+2,再利用旋转的性质得到ED=EF,∠DEF=90°,证明△EDM≌△FEN,当D在BC上时,DM=EN=x,EM=NF=−√33x+2,接着利用勾股定理得到AF2=(−√33x+2)2+(2+x)2,配方得到AF2=43(x+3−√32)2+4+2√3,此时AF2没有最小值,当D在BC的延长线上时,DM=EN=x,EM=NF=√33x+2,在Rt△AFN中,AF2=(√33x+2)2+(2﹣x)2=43(x−3−√32)2+4+2√3,然后利用非负数的性质得到AF的最小值.【解析】作DM⊥AC于M,FN⊥AC于N,如图,设DM=x,在Rt△CDM中,CM=√33DM=√33x,而EM+√33x=2,∴EM=−√33x+2,∵线段ED绕点E逆时针旋转90°,得到线段EF,∴ED=EF,∠DEF=90°,易得△EDM≌△FEN,当D在BC上时,∴DM=EN=x,EM=NF=−√33x+2,在Rt△AFN中,AF2=(−√33x+2)2+(2+x)2=43(x+3−√32)2+4+2√3,此时AF2没有最小值,当D在BC的延长线上时,∴DM=EN=x,EM=NF=√33x+2,在Rt △AFN 中,AF 2=(√33x +2)2+(2﹣x )2=43(x −√33)2+4+2√3, 当x =3−√32时,AF 2有最小值4+2√3,∴AF 的最小值为√4+2√3=√3+1.选D . 变式17 如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,DF 的最小值是 .【解析】取线段AC 的中点G ,连接EG ,如图所示.∵△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =6,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG .在△FCD 和△ECG 中,{FC =EC∠FCD =∠ECG DC =GC,∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG ∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时EG =DF =12CD =14BC =3.变式18 如图,等腰直角△ABC 中,∠ACB =90°,AC =BC =4,M 为AB 中点,D 是射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED 、ME ,则点D 在运动过程中ME 的最小值为 .【解析】如图,连接BE ,过点M 作MG ⊥BE 的延长线于点G ,过点A 作AK ⊥AB 交BD 的延长线于点K ,∵等腰直角△ABC 中,∠ACB =90°,∴∠B =45°,∴∠K =45°,∴△AKB 是等腰直角三角形. ∵线段AD 绕点A 逆时针旋转90°得到线段AE ,∴△ADE 是等腰直角三角形,∴∠KAD +∠DAB =∠BAE +∠DAB =90°,∴∠KAD =∠BAE ,在△ADK和△AEB中,{AD=AE∠KAD=∠BAEAK=AB∴△ADK≌△AEB(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵AC=BC=4,∴AB=4√2,∵M为AB中点,∴BM=2√2,∴MG=BG=2,∠G=90°,∴BM>MG,∴当ME=MG时,ME的值最小,∴ME=BE=2.题型7 旋转综合变换例题7已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAB绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.【解析】(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,{AE=AN∠EAM=∠NAMAM=AM,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵{AD=AB∠ADQ=∠ABMDQ=MB,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,{AQ=AM∠QAN=∠MANAN=AN,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.变式19在△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC,DC=EC.(1)如图1,点D在BC上,求证:AD=BE,AD⊥BE.(2)将图1中的△DCE绕点C按逆时针方向旋转到图2所示的位置,旋转角为α(α为锐角),线段DE,AE,BD的中点分别为P,M,N,连接PM,PN.①请直接写出线段PM,PN之间的关系,不需证明;②若AE=2PM,求α.【解答】(1)证明:如图1,延长AD交BE于F.在△ACD和△BCE中,{AC=BC∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠ACB=90°,∴∠CEB+∠CBE=∠ACB=90°,∴∠AFB=∠CEB+∠CAD=∠CEB+∠CBE=90°,∴AD⊥BE.(2)①PM=PN,PM⊥PN.理由是:如图2,连接BE,AD,交于点Q,∵∠ACB=∠ECD=90°,∴∠ACB+∠BCD=∠BCD+∠ECD,即∠ACD=∠BCE,在△ACD和△BCE中,∵{AC=BC∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠OBQ,∵∠AOC=∠BOQ,∴∠BQO=∠ACO=90°,∴AD⊥BE,∵M是AE的中点,P是ED的中点,∴PM=12AD,PM∥AD,同理得:PN=12BE,PN∥BE,∴PM=PN,PM⊥PN.②由①知PM=PN,又∵AE=2PM,∴AE=BE.在△ACE和△BCE中,{AC=BCAE=BECE=CE,∴△ACE≌△BCE(SSS),∴∠ACE=∠BCE.∵∠ACB=∠DCE=90°,∴∠ACE=∠BCE=(360°﹣∠ACB)÷2=135°,∴α=∠BCD=∠BCE﹣∠DCE=135°﹣90°=45°.变式20【操作发现】如图1,△ABC为等边三角形,点D为AB边上的一点,∠DCE=30°,将线段CD 绕点C顺时针旋转60°得到线段CF,连接AF、EF,请直接写出下列结果:①∠EAF的度数为;②DE与EF之间的数量关系为;【类比探究】如图2,△ABC为等腰直角三角形,∠ACB=90°,点D为AB边上的一点,∠DCE=45°,将线段CD绕点C顺时针旋转90°得到线段CF,连接AF、EF.①则∠EAF的度数为;②线段AE,ED,DB之间有什么数量关系?请说明理由;【实际应用】如图3,△ABC是一个三角形的余料,小张同学量得∠ACB=120°,AC=BC,他在边BC上取了D、E两点,并量得∠BCD=15°、∠DCE=60°,这样CD、CE将△ABC分成三个小三角形,请求△BCD、△DCE、△ACE这三个三角形的面积之比.【解析】操作发现:①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°,由旋转知,CD=CF,∠DCF=60°,∴∠ACF=∠BCD,在△ACF和△BCD中,{AC=BC∠ACF=∠BCDCF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;②DE=EF;理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE,在△DCE和△FCE中,{CD=CF∠DCF=∠FCECE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;类比探究:①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°,由旋转知,CD=CF,∠DCF=90°,∴∠ACF=∠BCD,在△ACF和△BCD中,{AC=BC∠ACF=∠BCDCF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE2+DB2=DE2,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE,在△DCE和△FCE中,{CD=CF∠DCE=∠FCECE=CE,∴△DCE≌△FCE(SAS),∴DE=EF,在Rt△AEF中,AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.实际应用:如图3,将△BCD绕点C顺时针旋转120°,连接AF,EF,∵△ABC是等腰三角形,∠ACB=120°,又∴AC=BC,∠BAC=∠B=30°,由旋转知,CD=CF,∠DCF=120°,∴∠ACF=∠BCD,在△ACF和△BCD中,{AC=BC∠ACF=∠BCDCF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=30°,AF=DB,∠AFC=∠BDC=180°﹣∠B﹣∠BCD=135°∴∠EAF=∠BAC+∠CAF=60°,∵∠DCF=120°,∠DCE=60°,∴∠FCE=120°﹣60°=60°,∴∠DCE=∠FCE,在△DCE和△FCE中,{CD=CF∠DCE=∠FCECE=CE,∴△DCE≌△FCE(SAS),∴DE=EF,∠CFE=∠ADE=∠B+∠BCD=45°,∴∠AFE=90°,在Rt△AEF中,∠EAF=60°,∴∠AEF=30°,∴EF=√3AF,AE=2AF,∴DE=EF=√3AF,BD=AF.∴S△BCD:S△CDE:S△ACE=BD:DE:AE=AF:√3AF:2AF=1:√3:2.【小结】本题是几何变换综合题目,考查旋转性质、等边三角形性质、全等三角形判定与性质、等腰直角三角形判定与性质、勾股定理等知识;综合性强,有一定难度,证明三角形全等是解决问题的关键.变式21阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP 逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).(1)请你回答:AP的最大值是.(2)参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP最小值长解题思路.提示:要解决AP+BP+CP最小值问题,可仿照题目给出做法.把△ABP绕B点逆时针旋转60,得到△A′BP′①请画出旋转后的图形②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).【解析】(1)∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;(2)①旋转后的图形如图1;②如图2,∵Rt △ABC 是等腰三角形,∴AB =BC .以B 为中心,将△APB 逆时针旋转60°得到△A 1P 1B .则A 1B =AB =BC =4,P A =P 1A 1,PB =P 1B , ∴P A +PB +PC =P 1A 1+P 1B +PC .∵当A 1、P 1、P 、C 四点共线时,(P 1A +P 1B +PC )最短,即线段A 1C 最短,∴A 1C =P A +PB +PC ,∴A 1C 长度即为所求.过A 1作A 1D ⊥CB 延长线于D .∵∠A 1BA =60°(由旋转可知),∴∠A 1BD =30°.∵A 1B =4,∴A 1D =2,BD =2√3∴CD =4+2√3;在Rt △A 1DC 中,A 1C =√A 1D 2+DC 2=√22+(4+2√3)2=2√2+2√6.题型8 关于原点对称的点的坐标解答此类题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.例题8 在平面直角坐标系中,若点M (m ,n )与点Q (﹣2,3)关于原点对称,则点P (m ﹣n ,n )所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】∵点M (m ,n )与点Q (﹣2,3)关于原点对称,∴m =2,n =﹣3,∴m ﹣n =2﹣(﹣3)=5, 则点P (m ﹣n ,n )为(5,﹣3),故P 点所在象限是:第四象限.选D .变式22 已知点P (2a +1,a ﹣1)关于原点对称的点在第一象限,则a 的取值范围是( )A .a <−12或a >1B .a <−12C .−12<a <1D .a >1【分析】直接利用关于原点对称点的性质分析得出答案.【解析】点P (2a +1,a ﹣1)关于原点对称的点(﹣2a ﹣1,﹣a +1)在第一象限,则{−2a −1>0−a +1>0,解得:a <−12.选B .变式23 在平面直角坐标系中,若点A (x +1,2y +1)与点A '(y ﹣2,x )关于原点O 对称,则代数式x 2﹣y 2的值为 .【分析】直接利用关于原点对称点的性质得出关于x ,y 的方程组进而得出x ,y 的值,即可得出答案.【解析】∵点A (x +1,2y +1)与点A '(y ﹣2,x )关于原点O 对称,∴{x +1+y −2=02y +1+x =0,解得:{x =3y =−2,故x 2﹣y 2=9﹣4=5. 变式24 直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为 .【解析】作点A 关于y 轴的对称点为A 1,是(﹣3,2);作点A 1关于原点的对称点为A 2,是(3,﹣2);作点A 2关于x 轴的对称点为A 3,是(3,2).显然此为一循环,按此规律,2019÷3=673,则点A 2019的坐标是(3,2),题型9 中心对称的性质例题9 如图,在矩形ABCD 中,把∠A 沿DF 折叠,点A 恰好落在矩形的对称中心E 处,则∠ADF 的度数为( )A .15°B .20°C .25°D .30°【解析】如图,连接AE ,∵把∠A 沿DF 折叠,点A 恰好落在矩形的对称中心E 处,∴AD =ED =AE ,∠ADF =∠EDF =12∠ADE ,∴△DAE 的等边三角形,∴∠ADE =60°,∴∠ADF =30°,选D .变式25 如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF =12AB ;G 、H 是BC 边上的点,且GH =13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是( )A .S 1S 2=23 B .S 1S 2=32 C .S 1S 2=21 D .S 1S 2=12【解析】如图,连接OA ,OB ,OC .设平行四边形的面积为4s .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =s ,∵EF =12AB ,GH =13BC ,∴S 1=12s ,S 2=13s ,∴S 1S 2=12s 13s =32,选B . 变式26 如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12B .√5−12C .√33D .√32【分析】连接DB ,利用对称得出OE =EB ,进而利用全等三角形的判定和性质得出OC =BC ,进而解答.【解析】连接DB ,AC ,OE ,∵四边形ABCD 是矩形,∴AC =DB ,∠ABC =90°,OC =OA =OB =OD , ∵点B 与点O 关于CE 对称,∴OE =EB ,∠OEC =∠BEC ,在△COE 与△CBE 中,{OE =BE∠OEC =∠BEC CE =CE,∴△COE ≌△CBE (SAS ),∴OC =CB ,∴AC =2BC ,∵∠ABC =90°,∴AB =√3CB ,即CB :AB =√33,选C .变式27 如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O ′分别是两个正方形的对称中心,连接OO ′.若AB =3,CE =1,则OO ′= .【分析】如图,过点O 作OH ⊥BC 于H ,O ′T ⊥OH 于T ,利用勾股定理即可解决问题.【解析】如图,过点O作OH⊥BC于H,O′T⊥OH于T.由题意在Rt△O′OT中,OT=32−12=1,O′T=32+12=2,∴OO′=√OT2+O′T2=√12+22=√5,故答案为√5旋转问题巩固练习1.下列图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解析】A、不是轴对称图形,也不是中心对称图形.故本选项不合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、不是轴对称图形,是中心对称图形.故本选项不合题意;D、既是轴对称图形又是中心对称图形.故本选项符合题意.选D.2.已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A.x=﹣1,y=2B.x=﹣1,y=8C.x=﹣1,y=﹣2D.x=1,y=8【解析】∵点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,y﹣5=﹣3,解得:x=﹣1,y=2,选A.3.下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组【分析】分析两个图形是否中心对称,主要把一个图形绕一个点旋转180°,观察是否能和另一个图形重合【解析】根据中心对称的概念,知②③④都是中心对称.选C.【小结】考查中心对称定义.如果一个图形沿着一条直线对折后两部分完全重合,叫做轴对称图形,直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,叫做中心对称图形,点叫做对称中心.4.如图,该图形在绕点O按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【解析】该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,因而A、C、D选项都与自身重合,不能与其自身重合的是B选项.选B.5.如图,已知点A(2,1),B(0,2),将线段AB绕点M逆时针旋转到A1B1,点A与A1是对应点,则点M的坐标是()A.(0,﹣2)B.(1,﹣1)C.(0,0)D.(﹣1,﹣1)【解析】如图,点M的坐标是(1,﹣1),选B.6. 如图P是正方形ABCD内一点,△ABP经过旋转后到达△CBQ的位置,连结PQ,则∠BQP的度数为()A.90°B.60°C.45°D.30°【分析】由旋转的性质可得BP=BQ,∠ABC=∠PBQ=90°,由等腰三角形的性质可得∠BQP=45°.【解析】∵△ABP经过旋转后到达△CBQ的位置,∴BP=BQ,∠ABC=∠PBQ=90°,∴∠BQP=45°,选C.7.如图,在4×4的网格纸中,△ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将△ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q【解析】观察图象可知,点P.点N满足条件.选C.8.如图,线段OA,OB分别从与x轴和y轴重合的位置出发,绕着原点O顺时针转动,已知OA每秒转动45°,OB的转动速度是每秒转动30°,则第2020秒时,OA与OB之间的夹角的度数为()A.90°B.145°C.150°D.165°【分析】首先求出第一次相遇的时间,再求出第二次相遇所用的时间,探究规律利用规律解决问题即可.【解析】设t秒第一次相遇.由题意:270+30t=45t,解得t=18,相遇后设m秒第二次相遇,则有45t﹣30t=360,解得t=24,以后每过24秒相遇一次,(2020﹣18)÷24=83…10,∴2020秒时,10×45°﹣10×30°=150°,选C.【小结】本题考查坐标与图形的变化﹣旋转,解题的关键是理解题意,灵活运用所学知识解决问题.9.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B 为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3B.5C.4或5D.3或51【分析】应该分情况讨论,因为不知道在三角形中哪一个是作为斜边存在的.所以有三种情况,即:①若AC为斜边,则32=x2+(9﹣x)2,即x2﹣9x+36=0,方程无解;②若AB为斜边,则x2=(9﹣x)2+32,且满3<x<6,③若BC为斜边,则(9﹣x)2=32+x2,且满足3<x<6.【解析】∵在△ABC中,AC=AM=3,设AB=x,BC=9﹣x.由三角形两边之和大于第三边得到下列不等式组:{3+x>9−x3+9−x>x,解得3<x<6;①AC为斜边,则32=x2+(9﹣x)2,即x2﹣9x+36=0,方程无解,即AC为斜边不成立.②若AB为斜边,则x2=(9﹣x)2+32,解得x=5,满足3<x<6,③若BC为斜边,则(9﹣x)2=32+x2,解得x=4,满足3<x<6,∴x=5或x=4;选C.【小结】本题考查了旋转的性质.解此题的关键是进行全方面分析,注意一题多解.难易程度适中.10.已知等边△ABC的边长为8,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.2√2B.4C.2√3D.不能确定【分析】根据旋转的性质,即可得到∠BCQ=120°,当DQ⊥CQ时,DQ的长最小,再根据勾股定理,即可得到DQ的最小值.【解析】如图,由旋转可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵点D是AC边的中点,∴CD=4,当DQ⊥CQ时,DQ的长最小,此时,∠CDQ=30°,∴CQ=12CD=2,∴DQ=√42−22=2√3,∴DQ的最小值是2√3,选C.11.如图,将△OAB绕点O顺时针旋转70°到△OCD位置,若∠AOB=40°,则∠AOD的大小为30度.【解析】∵将△OAB绕点O顺时针旋转70°到△OCD,∴∠DOB=70°,∵∠AOB=40°,∴∠AOD=∠BOD﹣∠AOB=30°12.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为(4,2).【分析】画出平面直角坐标系,作出线段AC,BD的垂直平分线的交点P,点P即为旋转中心.【解析】平面直角坐标系如图所示,旋转中心是P点,P(4,2).故答案为(4,2).【小结】考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.13.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是③.【解析】当正方形放在③的位置,即是中心对称图形.故答案为:③.14.如图,正方形ABCD的边长为a,对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F,正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积为14a2(用含a的代数式表示)【解析】在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°,∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.在△AOE和△BOF中{∠OAE=∠OBFOA=OB∠AOE=∠BOF,∴△AOE≌△BOF(ASA),∴S△AOE=S△BOF,∴重叠部分的面积=S△AOB=14S正方形ABCD=14a2,故答案为:14a2.15.在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A′B′C′,点M是BC的中点,点P是A′B′的中点,连接PM.若BC=2,∠A=30°,线段PM长度的最大值是3.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.。
旋转问题必考题型梳理题型1 旋转的概念旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.例题1下面是4个能完全重合的正六边形,请仔细观察A、B、C、D四个图案,其中与所给图形不相同的是()A.B.C.D.【解析】观察图形可知,只有选项B中的图形旋转后与图中的正六边形不相同.选B.变式1如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.144°B.90°C.72°D.60°【解析】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.选C.变式2如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.点N C.点P D.点Q【解析】∵△ABC经过旋转后得到△EFD,∴点A与点E为对应点,点B和点F为对应点,∴旋转中心在AE的垂直平分线上,也在BF的垂直平分线上,作AE的垂直平分线和BF的垂直平分线,它们的交点为N点,如图,即旋转中心为N点.选B.变式3规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0 B.1 C.2 D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【解析】(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:题型2 利用旋转求角度解决此类问题的关键是掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.例题2如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°【解析】∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC 绕点B 逆时针旋转得到△A ′BC ′,使点C 的对应点C ′恰好落在边AB 上,∴∠A ′BA =∠ABC =40°,A ′B =AB ,∴∠BAA ′=∠BA ′A =12(180°﹣40°)=70°,∴∠CAA '=∠CAB +∠BAA ′=50°+70°=120°.选D .变式4 如图,将△OAB 绕点O 逆时针旋转70°,得到△OCD ,若∠A =2∠D =100°,则∠a 的度数是( )A .50°B .60°C .40°D .30°【解析】∵将△OAB 绕点O 逆时针旋转70°,∴∠A =∠C ,∠AOC =70°,∴∠DOC =70°﹣α, ∵∠A =2∠D =100°,∴∠D =50°,∵∠C +∠D +∠DOC =180°,∴100°+50°+70°﹣α=180°,解得α=40°,选C .变式5 如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( )A .α2B .23αC .αD .180°﹣α【解析】∵∠ABC =∠ADE ,∠ABC +∠ABE =180°,∴∠ABE +∠ADE =180°,∴∠BAD +∠BED =180°, ∵∠BAD =α,∴∠BED =180°﹣α.选D .变式6 Rt △ABC ,已知∠C =90,∠B =50°,点D 在边BC 上,BD =2CD (如图).把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m =( )A .80B .80或120C .60或120D .80或100【分析】分类讨论:当把△ABC 绕着点D 逆时针旋转m (0<m <180)度后,点B 恰好落在AB 边上的B ′点位置,如图1,根据旋转性质得∠BDB′=m,DB′=DB,则∠1=∠B=50°,然后根据三角形内角和定理计算出m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点,如图2,根据旋转性质得∠BDB′=m,DB′=DB,由BD=2CD得到DB′=2CD,利用含30度直角三角形三边关系得∠CB′D=30°,则∠B′DC=60°,所以∠BDB′=120°,即m=120°.【解析】当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AB边上的B′点,如图1,∴∠BDB′=m,DB′=DB,∴∠1=∠B=50°,∴∠BDB′=180°﹣∠1﹣∠B=80°,即m=80°;当把△ABC绕着点D逆时针旋转m(0<m<180)度后,点B恰好落在AC边上的B′点位置,如图2,∴∠BDB′=m,DB′=DB,∵BD=2CD,∴DB′=2CD,∴∠CB′D=30°,则∠B′DC=60°,∴∠BDB′=180°﹣∠B′DC=120°,即m=120°,综上所述,m的值为80°或120°.选B.题型3 旋转作图(坐标系)例题3在如图所示平面直角坐标系中(每个小方格都是边长为1个单位长度的正方形),解答下列问题:(1)画出与△ABC关于y轴对称的△A1B1C1;(2)画出以C1为旋转中心,将△A1B1C1顺时针旋转90°后的△A2B2C1;(3)连接A1A2,则△C1A1A2是三角形,并直接写出△C1A1A2的面积.【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A1、B1的对应点A2、B2即可;(3)利用勾股定理的逆定理可判断△C1A1A2是等腰直角三角形,然后根据三角形面积公式计算它的面积.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)∵C1A12=12+22=5,C1A22=12+22=5,A1A22=12+32=10,∴C1A12+C1A22=A1A22,∴△C1A1A2是直角三角形,而C1A1=C1A2,∴△C1A1A2是等腰直角三角形,它的面积=12×√5×√5=52.故答案为等腰直角.变式7在平面直角坐标系中,△ABC的点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.【分析】(1)依据点(0,0)为旋转中心,将△ABC顺时针转动90°,即可得到△A1B1C1;(2)依据旋转前后坐标的变化规律,即可得到对应点P1的坐标;(3)依据中心对称的性质,即可得到△ABC关于点O的中心对称图形△A2B2C2.【解析】(1)如图所示,△A1B1C1即为所求,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)若△ABC上有一点P(m,n),则对应点P1的坐标为(n,﹣m).(3)如图所示,△A2B2C2即为所求.变式8如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,坐标分别为A(2,2),B(1,0),C(3,1).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出将△ABC绕原点O顺时针旋转90°所得的△A2B2C2;(3)△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,直接写出对称中心的坐标.【解析】(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)△A1B1C1与△A2B2C2成中心对称图形,对称中心的坐标为(−12,−12).【小结】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.变式9如图,在平面直角坐标系中,A(1,1).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1,并写出点B1的坐标;(2)点C绕O点逆时针方向旋转90°后所对应点C2的坐标为;(3)在x轴上存在一点P,且满足点P到点B1和点C1距离之和最小,请直接写出PB1+PC1的最小值.【解析】(1)如图,△A1B1C1即为所求,点B1的坐标为(﹣4,﹣4);(2)点C2的坐标为(﹣1,5);(3)点P即为所求,PB1+PC1的最小值为√26:题型4 与旋转有关的点的坐标例题4如图,在平面直角坐标系中,A(1,0),B(﹣2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是()A.(4,3)B.(4,4)C.(5,3)D.(5,4)【解析】如图,过点B作BE⊥x轴于E,过点C作CF⊥x轴于F.∵A(1,0),B(﹣2,4),∴OA=1,BE=4,OE=2,AE=3,∵∠AEB=∠AFC=∠BAC=90°,∴∠B+∠BAE=90°,∠BAE+∠CAF=90°,∴∠B=∠CAF,∵AB=AC,∴△BEA≌△AFC(AAS),∴CF=AE=3,AF=BE=4,OF=1+4=5,∴C(5,3),选C.变式10如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针旋转90°,则旋转后点A的对应点A'的坐标是()A.(﹣1,√3)B.(√3,﹣1)C.(−√3,1)D.(﹣2,1)【解析】如图,过点A作AE⊥OB于E,过点A′作A′H⊥x轴于H.∵B(2,0),△AOB是等边三角形,∴OA=OB=AB=2,∵AE⊥OB,∴OE=EB=1,∴AE=2−OE2√22−12=√3,∵A′H⊥OH,∴∠A′HO=∠AEO=∠AOA′=90°,∴∠A′OH+∠AOE=90°,∠AOE+∠OAE=90°,∴∠A′OH=∠OAE,∴△A′OH≌△OAE(AAS),∴A′H=OE=1,OH=AE=√3,∴A′(−√3,1),选C.变式11如图,在平面直角坐标系中,△AOB的顶点B在第一象限,点A在y轴的正半轴上,AO=AB=2,∠OAB=120°,将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A.(﹣2−√32,√3)B.(﹣2−√32,2−√32)C.(﹣3,2−√32)D.(﹣3,√3)【解析】作B′H⊥x轴于H.由题意:OA′=A′B′=2,∠B′A′H=60°,∴∠A′B′H=30°,∴AH′=12A′B′=1,B′H=√3,∴OH=3,∴B′(﹣3,√3),选D.变式12 如图,在平面直角坐标系中,长方形ABCD 的顶点B 在坐标原点,顶点A 、C 分别在y 轴、x 轴的负半轴上,其中A (0,﹣4),C (﹣2,0),将矩形ABCD 绕点D 逆时针旋转得到矩形A 'B 'C 'D ,点B '恰好落在x 轴上,线段B 'A '与CD 交于点E 的坐标为( )A .(﹣2,−32)B .(﹣2,−34)C .(﹣2,﹣2)D .(﹣2,−54) 【解析】如图,连接BD ,B 'D ,∵矩形ABCD 绕点D 逆时针旋转得到矩形A 'B 'C 'D ,∴BD =B 'D , 又∵DC ⊥BB ',A (0,﹣4),C (﹣2,0),∴BC =B 'C =2=A 'D ,又∵∠B 'CE =∠DA 'E =90°,∠B 'EC =∠DEA ',∴△B 'EC ≌△DEA ',∴B 'E =DE ,设CE =x ,则B 'E =DE =4﹣x ,∵Rt △B 'EC 中,CE 2+B 'C 2=B 'E 2,∴x 2+22=(4﹣x )2,解得x =32,∴E (﹣2,−32),选A .题型5 与旋转有关的点的坐标(周期规律)例题5 如图,Rt △AOB 中,∠AOB =90°,OA =3,OB =4,将△AOB 沿x 轴依次以三角形三个顶点为旋转中心顺时针旋转,分别得图②,图③,则旋转到图⑩时直角顶点的坐标是( )A .(28,4)B .(36,0)C .(39,0)D .(912,32√3)【解析】∵∠AOB =90°,OA =3,OB =4,∴AB =√OA 2+OB 2=√32+42=5,根据图形,每3个图形为一个循环组,3+5+4=12,所以,图⑨的直角顶点在x 轴上,横坐标为12×3=36,所以,图⑨的顶点坐标为(36,0),又∵图⑩的直角顶点与图⑨的直角顶点重合,∴图⑩的直角顶点的坐标为(36,0).选B .变式13 如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,依此方式,绕点O 连续旋转2020次得到正方形OA 2020B 2020C 2020,如果点A 的坐标为(1,0),那么点B 2020的坐标为( )A .(﹣1,1)B .(−√2,0)C .(﹣1,﹣1)D .(0,−√2)【解析】∵四边形OABC 是正方形,且OA =1,∴B (1,1),连接OB ,由勾股定理得:OB =√2, 由旋转得:OB =OB 1=OB 2=OB 3=⋯=√2,∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,依次得到∠AOB =∠BOB 1=∠B 1OB 2=…=45°, ∴B 1(0,√2),B 2(﹣1,1),B 3(−√2,0),B (﹣1,﹣1),…,发现是8次一循环,所以2020÷8=252…4,∴点B 2020的坐标为(﹣1,﹣1),选C .变式14 如图,在平面直角坐标系中,点P 1的坐标为(√22,√22),将线段OP 1绕点O 按顺时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP 2;又将线段OP 2绕点O 按顺时针方向旋转45°,长度伸长为OP 2的2倍,得到线段OP 3;如此下去,得到线段OP 4,OP 5,…,OP (n 为正整数),则点P 2020的坐标是 .【解析】∵点P 1的坐标为(√22,√22),将线段OP 1绕点O 按逆时针方向旋转45°,再将其长度伸长为OP 1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).变式15如图,在平面直角坐标系中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为.【解析】∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2020÷4=505,∴点B2020与B同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2020(22020,22020).题型6 与旋转有关的最值问题例题6如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,D为AC中点,P为AB上的动点,将P绕点D逆时针旋转90°得到P1,连CP1的最小值为()A.1.6B.2.4C.2D.2√2【解析】如图,过点P′作P′E⊥AC于点E,则∠A=∠P′ED=90°,由旋转可知:DP=DP′,∠PDP′=90°,∴∠ADP=∠EP′D,∴△DAP≌△P′ED(AAS)∴P ′E =AD =2,∴当AP =DE =2时,DE =DC ,即点E 与点C 重合,此时CP ′=EP ′=2,∴线段CP ′的最小值为2.选C .变式16 如图,△ABC 是等边三角形,AB =4,E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D 运动时,则AF 的最小值为( )A .2B .2√3C .√3D .√3+1 【解析】作DM ⊥AC 于M ,FN ⊥AC 于N ,如图,设DM =x , 在Rt △CDM 中,CM =√33DM =√33x ,而EM +√33x =2,∴EM =−√33x +2,∵线段ED 绕点E 逆时针旋转90°,得到线段EF ,∴ED =EF ,∠DEF =90°,易得△EDM ≌△FEN , 当D 在BC 上时,∴DM =EN =x ,EM =NF =−√33x +2,在Rt △AFN 中,AF 2=(−√33x +2)2+(2+x )2=43(x +3−√32)2+4+2√3,此时AF 2没有最小值, 当D 在BC 的延长线上时,∴DM =EN =x ,EM =NF =√33x +2,在Rt △AFN 中,AF 2=(√33x +2)2+(2﹣x )2=43(x −√33)2+4+2√3, 当x =3−√32时,AF 2有最小值4+2√3,∴AF 的最小值为√4+2√3=√3+1.选D . 变式17 如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,DF 的最小值是 .【解析】取线段AC 的中点G ,连接EG ,如图所示.∵△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD =CG =12AB =6,∠ACD =60°,∵∠ECF =60°,∴∠FCD =∠ECG .在△FCD 和△ECG 中,{FC =EC∠FCD =∠ECG DC =GC ,∴△FCD ≌△ECG (SAS ),∴DF =GE .当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=12CD=14BC=3.变式18如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,则点D在运动过程中ME的最小值为.【解析】如图,连接BE,过点M作MG⊥BE的延长线于点G,过点A作AK⊥AB交BD的延长线于点K,∵等腰直角△ABC中,∠ACB=90°,∴∠B=45°,∴∠K=45°,∴△AKB是等腰直角三角形.∵线段AD绕点A逆时针旋转90°得到线段AE,∴△ADE是等腰直角三角形,∴∠KAD+∠DAB=∠BAE+∠DAB=90°,∴∠KAD=∠BAE,在△ADK和△AEB中,{AD=AE∠KAD=∠BAE AK=AB∴△ADK≌△AEB(SAS),∴∠ABE=∠K=45°,∴△BMG是等腰直角三角形,∵AC=BC=4,∴AB=4√2,∵M为AB中点,∴BM=2√2,∴MG=BG=2,∠G=90°,∴BM>MG,∴当ME=MG时,ME的值最小,∴ME=BE=2.题型7 旋转综合变换例题7已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAB绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请写出你的猜想,并加以证明.【解析】(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,{AE=AN∠EAM=∠NAMAM=AM,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵{AD=AB∠ADQ=∠ABMDQ=MB,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,{AQ=AM∠QAN=∠MANAN=AN,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.变式19在△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC,DC=EC.(1)如图1,点D在BC上,求证:AD=BE,AD⊥BE.(2)将图1中的△DCE绕点C按逆时针方向旋转到图2所示的位置,旋转角为α(α为锐角),线段DE,AE,BD的中点分别为P,M,N,连接PM,PN.①请直接写出线段PM,PN之间的关系,不需证明;②若AE=2PM,求α.【分析】(1)证明△ACD≌△BCE(SAS),可得AD=BE,∠CAD=∠CBE.根据直角三角形两锐角互余可得:∠AFB=90°,所以AD⊥BE;(2)①先证明△ACD ≌△BCE (SAS ),得AD =BE ,∠CAD =∠OBQ ,再证明AD ⊥BE ,根据三角形的中位线定理得:PM =12AD ,PM ∥AD ,PN =12BE ,PN ∥BE ,所以PM =PN ,PM ⊥PN ;②证明△ACE ≌△BCE .得∠ACE =∠BCE . 根据周角定义和直角可得α的值.【解答】(1)证明:如图1,延长AD 交BE 于F .在△ACD 和△BCE 中,{AC =BC∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ).∴AD =BE ,∠CAD =∠CBE .∵∠ACB =90°,∴∠CEB +∠CBE =∠ACB =90°,∴∠AFB =∠CEB +∠CAD =∠CEB +∠CBE =90°,∴AD ⊥BE .(2)①PM =PN ,PM ⊥PN .理由是:如图2,连接BE ,AD ,交于点Q ,∵∠ACB =∠ECD =90°,∴∠ACB +∠BCD =∠BCD +∠ECD ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,∵{AC =BC∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ),∴AD =BE ,∠CAD =∠OBQ ,∵∠AOC =∠BOQ ,∴∠BQO =∠ACO =90°,∴AD ⊥BE ,∵M 是AE 的中点,P 是ED 的中点,∴PM =12AD ,PM ∥AD ,同理得:PN =12BE ,PN ∥BE ,∴PM =PN ,PM ⊥PN .②由①知PM =PN ,又∵AE =2PM ,∴AE =BE .在△ACE 和△BCE 中,{AC =BCAE =BE CE =CE,∴△ACE ≌△BCE (SSS ),∴∠ACE =∠BCE .∵∠ACB =∠DCE =90°,∴∠ACE =∠BCE =(360°﹣∠ACB )÷2=135°,∴α=∠BCD =∠BCE ﹣∠DCE =135°﹣90°=45°.变式20阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP 逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).(1)请你回答:AP的最大值是.(2)参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP最小值长解题思路.提示:要解决AP+BP+CP最小值问题,可仿照题目给出做法.把△ABP绕B点逆时针旋转60,得到△A′BP′①请画出旋转后的图形②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).【解析】(1)∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;(2)①旋转后的图形如图1;②如图2,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A1P1B.则A1B=AB=BC=4,P A=P1A1,PB=P1B,∴P A+PB+PC=P1A1+P1B+PC.∵当A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,∴A 1C =P A +PB +PC ,∴A 1C 长度即为所求.过A 1作A 1D ⊥CB 延长线于D .∵∠A 1BA =60°(由旋转可知),∴∠A 1BD =30°.∵A 1B =4,∴A 1D =2,BD =2√3∴CD =4+2√3; 在Rt △A 1DC 中,A 1C =√A 1D 2+DC 2=√22+(4+2√3)2=2√2+2√6.题型8 关于原点对称的点的坐标解答此类题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.例题8 在平面直角坐标系中,若点M (m ,n )与点Q (﹣2,3)关于原点对称,则点P (m ﹣n ,n )所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】直接利用关于原点对称点的性质得出m ,n 的值,进而得出m ﹣n 的值,即可判断所在象限.【解析】∵点M (m ,n )与点Q (﹣2,3)关于原点对称,∴m =2,n =﹣3,∴m ﹣n =2﹣(﹣3)=5,则点P (m ﹣n ,n )为(5,﹣3),故P 点所在象限是:第四象限.选D .【小结】此题主要考查了关于原点对称点的性质,正确得出m ,n 的值是解题关键.变式21 已知点P (2a +1,a ﹣1)关于原点对称的点在第一象限,则a 的取值范围是( )A .a <−12或a >1B .a <−12C .−12<a <1D .a >1【分析】直接利用关于原点对称点的性质分析得出答案.【解析】点P (2a +1,a ﹣1)关于原点对称的点(﹣2a ﹣1,﹣a +1)在第一象限,则{−2a −1>0−a +1>0,解得:a <−12.选B . 【小结】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.变式22 在平面直角坐标系中,若点A (x +1,2y +1)与点A '(y ﹣2,x )关于原点O 对称,则代数式x 2﹣y 2的值为 .【分析】直接利用关于原点对称点的性质得出关于x ,y 的方程组进而得出x ,y 的值,即可得出答案.【解析】∵点A (x +1,2y +1)与点A '(y ﹣2,x )关于原点O 对称,∴{x +1+y −2=02y +1+x =0,解得:{x =3y =−2,故x 2﹣y 2=9﹣4=5. 【小结】此题主要考查了关于原点对称点的性质,正确得出x ,y 的值是解题关键.变式23 直角坐标系中,已知A (3,2),作点A 关于y 轴对称点A 1,点A 1关于原点对称点A 2,点A 2关于x 轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为 . 【解析】作点A 关于y 轴的对称点为A 1,是(﹣3,2); 作点A 1关于原点的对称点为A 2,是(3,﹣2); 作点A 2关于x 轴的对称点为A 3,是(3,2). 显然此为一循环,按此规律,2019÷3=673, 则点A 2019的坐标是(3,2),题型9 中心对称的性质例题9 如图,在矩形ABCD 中,把∠A 沿DF 折叠,点A 恰好落在矩形的对称中心E 处,则∠ADF 的度数为( )A .15°B .20°C .25°D .30°【解析】如图,连接AE ,∵把∠A 沿DF 折叠,点A 恰好落在矩形的对称中心E 处,∴AD =ED =AE ,∠ADF =∠EDF =12∠ADE ,∴△DAE 的等边三角形, ∴∠ADE =60°,∴∠ADF =30°,选D .变式24 如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF =12AB ;G 、H 是BC 边上的点,且GH =13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是( )A .S 1S 2=23B .S 1S 2=32C .S 1S 2=21D .S 1S 2=12【分析】如图,连接OA ,OB ,OC .设平行四边形的面积为4s .求出S 1,S 2(用s 表示)即可解决问题.【解析】如图,连接OA ,OB ,OC .设平行四边形的面积为4s .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =s ,∵EF =12AB ,GH =13BC ,∴S 1=12s ,S 2=13s ,∴S 1S 2=12s 13s =32,选B .变式25 如图,点O 是矩形ABCD 的对称中心,点E 在AB 边上,连接CE .若点B 与点O 关于CE 对称,则CB :AB 为( )A .12B .√5−12C .√33D .√32【解析】连接DB ,AC ,OE ,∵四边形ABCD 是矩形,∴AC =DB ,∠ABC =90°,OC =OA =OB =OD , ∵点B 与点O 关于CE 对称,∴OE =EB ,∠OEC =∠BEC ,在△COE 与△CBE 中,{OE =BE∠OEC =∠BEC CE =CE ,∴△COE ≌△CBE (SAS ),∴OC =CB ,∴AC =2BC ,∵∠ABC =90°,∴AB =√3CB ,即CB :AB =√33,选C .变式26 如图,点E 在正方形ABCD 的边CD 上,以CE 为边向正方形ABCD 外部作正方形CEFG ,O 、O ′分别是两个正方形的对称中心,连接OO ′.若AB =3,CE =1,则OO ′= .【分析】如图,过点O 作OH ⊥BC 于H ,O ′T ⊥OH 于T ,利用勾股定理即可解决问题.【解析】如图,过点O作OH⊥BC于H,O′T⊥OH于T.由题意在Rt△O′OT中,OT=32−12=1,O′T=32+12=2,∴OO′=√OT2+O′T2=√12+22=√5,故答案为√5。
74
F
三:解答题
26.如图,四边形ABCD 的∠BAD=∠C=90º,AB=AD,AE ⊥BC 于E,BEA ∆旋转后能与DFA ∆重
合。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5㎝,求四边形AECF 的面积。
27、如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将OAB ∆绕点O 沿逆时针方
向旋转90︒得到11OA B ∆.
(1)线段1OA 的长是 ,
1AOB ∠的度数是 ; (2)连结1AA ,求证:四边形11OAA B 是平行四边形; (3)求四边形11OAA B 的面积.
28.已知⊿ABC 在平面直角坐标系中的位置如图5所示.
(1)分别写出图中点A 和点C 的坐标; (2)画出⊿ABC 绕点C 按顺时针方向旋转90A B C '''°后的△;
(3)求点A 旋转到点A`所经过的路线长(结果保留π).
29、四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,
求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?
30、下面是三个圆。
请按要求在各图中分别添加4个点。
使之满足各自要求.
(1)既是中心对称图形。
(2)只是中心对称图形。
(3)只是轴对称图形。
又是轴对称图形. 不是轴对称图形. 不是中心对称图形.
图5
31.如图,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段
OP ′,(1)在图中画出线段OP ′;(2)求P ′的坐标和PP ′的长度.
32.在等腰直角△ABC 中,∠C=900,BC=2cm ,如果以
AC 的中点O 为旋转中心,将这个三角形旋转1800,点B 落在点B ′处,求BB ′的长度.
33.认真观察图(23.1)的4个图中阴影部分构成的图案,回答下列问题:
(1)请写出这四个图案都具有的两个共同特征.
特征1:_________________________________________________;
特征2:_________________________________________________.
(2)请在图(23.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征
B
图(23.1)
图(23.2)
34.如图是44 正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.
35.如图,把△ABC 向右平移5
个方格,再绕点B 顺时针方向旋转90°。
(1)画出平移和旋转后的图形,并标明对应字母;
(2)能否把两次变换合成一种变换,如果能,说出变换过程(可适当在图形中标记);如
果不能,说明理由。
19.(1)如图
(2)能,将△
ABC 绕CB 、C //B //延长线的交点顺时针旋转90度。
36.已知平面直角坐标系上的三个点O (0,0),A (-1,1),B (-1,0),将△ABO 绕点O
按顺时针方向旋转135°,点A 、B 的对应点为A l ,B l ,求点A l ,B l 的坐标。
37.把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).
(1)试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.
(2)若正方形的边长为2cm ,重叠部分(四边形ABHG )2,求旋转的角度. C B A C"B"A''C'B'A'C B A
38.一位同学拿了两块45°三角尺△MNK ,△ACB 做了一个探究活动:将△MNK 的直角顶点M 放在△ACB 的斜边AB 的中点处,设AC=BC=4.
(1)如图(1),两三角尺的重叠部分为△ACM ,则重叠部分的面积为 ,周长为 .
(2)将图(1)中的△MNK 绕顶点M 逆时针旋转45°,得到图26(2),此时重叠部分的面积为 ,周长为 .
(3)如果将△MNK 绕M 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为 .
(4)在图(3)情况下,若AD=1,求出重叠部分图形的周长. D C A B G H F E (第24题)
B 图(1)
N 图(2)
N 图(3) 第38题图。