悬架设计优化
- 格式:docx
- 大小:180.28 KB
- 文档页数:13
汽车悬架系统优化设计及性能分析一、介绍汽车悬架系统是车辆不可或缺的部分。
它主要负责车辆的支撑和减震工作,为行驶过程提供了舒适性和稳定性。
因此,汽车制造商在设计汽车悬架系统时非常重视性能和稳定性,尤其是在高速行驶和曲线驾驶方面。
在本文中,将探讨汽车悬架系统的优化设计和性能分析。
首先,我们将了解悬架系统的基本概念和组成部分。
接着,将讨论悬架系统的优化设计和性能分析方法,其中会包括液压悬挂系统和空气悬挂系统。
最后,我们将介绍一些常见的汽车悬架问题,并给出解决方案。
二、汽车悬架系统的基本概念和组成部分汽车悬架系统是由许多组成部分组成的。
基本上,悬架系统包括垂直弹簧、水平限制器、减震器、保持器和底盘等部件。
这些部分的设计和性能影响着车辆的轻重平衡、转向能力、制动力等。
垂直弹簧是悬架系统中最基本的部分之一。
其主要作用是支持车载负载和路面扭曲。
在一般情况下,垂直弹簧采用钢制线圈弹簧或橡胶制减震器。
水平限制器是悬挂系统中的一种保护设备。
其主要作用是控制车辆在水平和纵向方向上的运动。
减震器是悬架系统的关键部分。
它负责控制车辆在行驶过程中发生的震动。
减震器的作用是将垂直弹簧支持的能量转换成热能。
保持器主要是为了使车辆在转向时保持稳定。
在悬架系统中,保持器往往被视为弹簧与减震器之间的连接。
底盘是整个悬挂系统的核心部分。
它由上下两个零件组成。
下部通常由车身连接杆和悬架机构组成,而上部是用于固定悬架和与车体连接的结构。
底盘的作用是支撑整车负荷和稳定性。
三、悬架系统的优化设计和性能分析方法悬架系统的优化设计和性能分析一直是汽车工业中的重要问题。
优化设计方法的主要目标是减少悬架系统重量和体积,并增加车辆的稳定性和操纵性。
在性能分析方面,主要是采用试验、仿真和计算三种方法,以获得更准确的结果。
试验是最常用的分析方法之一。
它包括车辆实际测试、路试和底盘试验。
这种方法可以测量和分析悬架系统的各种性能参数,例如侧倾角、轮胎接地面、悬架行程、制动力等。
基于ADAMS的悬架系统动力学仿真分析与优化设计一、概述本文以悬架系统为研究对象,运用多体动力学理论和软件,从新车型开发中悬架系统优化选型的角度,对悬架系统进行了运动学动力学仿真,旨在研究悬架系统对整车操纵稳定性和平顺性的影响。
文章提出了建立悬架快速开发系统平台的构想,并以新车型开发中的悬架系统优化选型作为实例进行阐述。
简要介绍了汽车悬架系统的基本组成和设计要求。
概述了多体动力学理论,并介绍了利用ADAMS软件进行运动学、静力学、动力学分析的理论基础。
基于ADAMSCar模块,分别建立了麦弗逊式和双横臂式两种前悬架子系统,多连杆式和拖曳式两种后悬架子系统,以及建立整车模型所需要的转向系、轮胎、横向稳定杆等子系统,根据仿真要求装配不同方案的整车仿真模型。
通过仿真分析,研究了悬架系统在左右车轮上下跳动时的车轮定位参数和制动点头量、加速抬头量的变化规律,以及汽车侧倾运动时悬架刚度、侧倾刚度、侧倾中心高度等侧倾参数的变化规律,从而对前后悬架系统进行初步评估。
1. 悬架系统的重要性及其在车辆动力学中的作用悬架系统是车辆的重要组成部分,对车辆的整体性能有着至关重要的作用。
它负责连接车轮与车身,不仅支撑着车身的重量,还承受着来自路面的各种冲击和振动。
悬架系统的主要功能包括:提供稳定的乘坐舒适性,保持车轮与路面的良好接触,以确保轮胎的附着力,以及控制车辆的姿态和行驶稳定性。
在车辆动力学中,悬架系统扮演着调节和缓冲的角色。
当车辆行驶在不平坦的路面上时,悬架系统通过其内部的弹性元件和阻尼元件,吸收并减少来自路面的冲击和振动,从而保持车身的平稳,提高乘坐的舒适性。
同时,悬架系统还能够根据车辆的行驶状态和路面的变化,自动调节车轮与车身的相对位置,确保车轮始终与路面保持最佳的接触状态,以提供足够的附着力。
悬架系统还对车辆的操控性和稳定性有着直接的影响。
通过合理的悬架设计,可以有效地改善车辆的操控性能,使驾驶员能够更加准确地感受到车辆的行驶状态,从而做出更为精确的操控动作。
惯容悬架优化设计书本【原创版】目录1.惯容悬架的概述2.惯容悬架的优化设计3.惯容悬架在书本中的应用4.结论正文一、惯容悬架的概述惯容悬架是一种广泛应用于汽车、火车等机动车辆的悬挂系统。
它的主要作用是缓解车身在行驶过程中遇到的颠簸,提高行驶的平稳性,同时降低车辆在行驶中的噪音。
惯容悬架主要由弹簧、减震器和稳定杆等部件组成,通过对这些部件的设计和调整,可以实现对车辆悬挂系统的优化。
二、惯容悬架的优化设计1.弹簧的优化设计:弹簧是惯容悬架中最重要的部件之一,其性能直接影响着车辆的行驶性能。
通过选择合适的弹簧材料和形状,可以提高弹簧的耐久性和承载能力,从而提升车辆的行驶性能。
2.减震器的优化设计:减震器是惯容悬架中另一个关键部件,其作用是消除车身在行驶过程中遇到的颠簸。
通过优化减震器的结构和性能,可以提高减震器的吸能效果,从而降低车身的颠簸程度。
3.稳定杆的优化设计:稳定杆的作用是提高车辆的稳定性,防止车辆在高速行驶时出现侧翻等危险情况。
通过优化稳定杆的形状和位置,可以提高稳定杆的稳定性,从而提高车辆的行驶安全性。
三、惯容悬架在书本中的应用在实际的书本中,惯容悬架的应用非常广泛。
例如,在汽车工程学、车辆动力学等领域的教材中,都可以找到关于惯容悬架的详细讲解。
这些教材通常会从理论和实践两个方面介绍惯容悬架的设计和优化方法,帮助读者深入理解惯容悬架的工作原理和应用技巧。
四、结论惯容悬架作为一种重要的悬挂系统,其优化设计对于提高车辆的行驶性能和安全性具有重要意义。
通过对弹簧、减震器和稳定杆等部件的优化设计,可以实现对惯容悬架的性能提升,从而为车辆提供更好的行驶体验。
4.4.4主销内倾角的优化 (23)4.4.5轮距优化 (23)4.4.6各定位参数同时优化 (24)4.4.6.1前束优化后的图形 (25)4.4.6.2车轮外倾角优化后的图形 (25)4.4.6.3主销后倾角优化后的图形 (25)4.4.6.4主销内倾角优化后的图形 (25)4.4.6.5轮距变化优化后的图形 (26)4.4.6.6各参数优化前后的数值表 (26)4.4.6.7小结 (27)结论 (27)致谢 (27)参考文献 (27)引言汽车悬架是汽车一个非常重要的部件。
汽车悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。
另外,悬架系统能配合汽车的运动产生适当的反应,当汽车在不同路况作加速、制动、转向等运动时,能提供足够的安全性,保证操纵不失控。
所以,悬架是汽车底盘中最重要、也是汽车改型设计中经常需要进行重新设计的部件。
汽车行驶中路面的不平坦、凸起和凹坑使车身在车轮的垂直作用力下起伏波动,产生振动与冲击;加减速及制动和转弯使车身产生俯仰和侧倾振动。
这些振动与冲击会严重影响车辆的平顺性和操纵稳定性等重要性能。
悬架作为上述各种力和力矩的传动装置,其传递特性能的好坏是影响汽车行驶平顺性和操纵稳定性最重要、最直接的因素。
只有当汽车底盘配备了性能优良的悬架,才会得到整车性能优良的汽车。
悬架按照结构分大体可以分为独立式悬架和非独立式悬架。
非独立悬架具有结构简单、成本低、强度高、保养容易、行车中前轮定位变化小的优点,但由于其舒适性及操纵稳定性都较差,在现代轿车中基本上已不再使用,多用在货车和大客车上。
独立悬架是每一侧的车轮都是单独地通过弹性悬架悬挂在车架或车身下面的。
其优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。
车辆悬挂系统的优化设计车辆悬挂系统作为汽车重要的组成部分,直接关系到车辆行驶的平稳性、舒适性和安全性。
优化悬挂系统设计能够提高车辆性能和乘坐体验,本文将围绕车辆悬挂系统的优化设计展开论述。
一、悬挂系统的基本原理与作用车辆悬挂系统通过悬挂弹簧、减震器和悬挂支架等部件,连接车身和车轮,起到支撑和缓冲作用。
悬挂系统能够吸收路面不平,减少车身的颠簸,保证驾乘的舒适性和稳定性。
同时,悬挂系统还能够保护车身、发动机和传动系统等重要部件,延长其使用寿命。
二、悬挂系统的优化设计目标1. 提高车辆的行驶稳定性。
悬挂系统的优化设计需要考虑车辆在高速行驶、转弯、制动等情况下的稳定性,减少侧翻和摇晃。
2. 提升乘坐的舒适性。
通过减震器的优化设计,降低车辆受到的颠簸和震动,提供舒适的驾乘环境。
3. 提高悬挂系统的可靠性和耐久性。
悬挂系统需要在各种复杂的路况下保持良好的工作状况,提升其使用寿命和可靠性。
4. 降低车辆的燃油消耗。
通过优化悬挂系统的设计,减少不必要的能量损耗,提高车辆的燃油利用效率。
三、悬挂系统的优化设计方法1. 材料选择与强度分析。
选用高强度、耐疲劳的材料,同时进行强度分析和优化设计,确保悬挂系统在受力情况下不会发生变形或破裂。
2. 建立悬挂系统的数学模型。
通过建立悬挂系统的数学模型,包括弹簧刚度、减震器参数等,进行仿真分析和优化设计。
3. 减震器的优化设计。
减震器的合理设计能够有效抑制车身的振动,提供更好的驾乘体验。
优化设计减震器的阻尼特性和刚度,以满足车辆不同行驶状态下的需求。
4. 悬挂系统的悬架结构优化。
悬挂系统的悬架结构也会影响整个系统的性能。
通过优化悬挂支架等部件的结构,降低重量,提高刚度和强度,进一步改善悬挂系统的性能。
5. 考虑多种路况和行驶状态。
在悬挂系统的优化设计中,需要考虑不同的路况和行驶状态,如高速行驶、弯道行驶、起步和制动等情况,以确保悬挂系统在各种条件下都能提供最佳的性能和驾乘体验。
汽车底盘悬架系统的动力学建模与优化设计作为汽车底盘中重要的一部分,悬架系统承担着车身支撑以及减震的重要功能。
一个优秀的悬架系统可以提供良好的操控性和驾驶舒适性,对汽车的性能和安全性有着至关重要的影响。
本文将探讨汽车底盘悬架系统的动力学建模与优化设计,旨在提升汽车悬架系统的性能。
一、悬架系统动力学建模悬架系统的动力学建模是优化设计的基础。
动力学建模的目的是描述悬架系统在不同工况下的运动规律和力学特性。
常用的悬架系统动力学模型包括质点模型、弹簧-阻尼-质量模型以及多体动力学模型等。
质点模型是最简单的悬架系统动力学模型,它基于质点运动学和动力学原理来描述悬架系统的运动规律。
质点模型可以用来分析悬架系统的振动特性和悬架与车身的相对运动。
弹簧-阻尼-质量模型是一种常用的悬架系统动力学模型,它把悬架系统看作是由弹簧、减震器和质量单元组成的动力学系统。
这种模型能够更加准确地描述悬架系统的力学特性,包括悬架系统的减震性能和下垂量等。
多体动力学模型是最复杂的悬架系统动力学模型,它考虑了悬架系统的多个部件之间的相互作用。
多体动力学模型可以有效地预测悬架系统在复杂路况下的运动规律和力学响应。
二、悬架系统优化设计基于悬架系统的动力学模型,可以进行悬架系统的优化设计。
悬架系统的优化设计旨在提升汽车的操控性、驾驶舒适性和安全性。
1. 悬架系统刚度与减震器调校悬架系统刚度对汽车的操控性和驾驶舒适性有着重要的影响。
较高的悬架系统刚度可以提高车辆的操控性能,但对驾驶舒适性会产生不利影响。
因此,在悬架系统的优化设计中,需要根据车辆的使用环境和性能要求来选择合适的悬架系统刚度。
减震器是悬架系统中起到减震功能的重要部件。
通过对减震器的调校,可以改善车辆在不同路况下的驾驶舒适性和操控性能。
减震器调校需要考虑悬架系统的刚度、减震器特性以及车辆的动力学特性等因素。
2. 悬架系统动态特性与操控性优化悬架系统的动态特性对车辆的操控性能有着重要的影响。
《轮毂电机驱动电动汽车悬架分析与优化》篇一一、引言随着科技的发展,电动汽车逐渐成为现代交通的重要组成部分。
轮毂电机作为一种新型的驱动方式,因其高效、紧凑的结构特点,在电动汽车中得到了广泛应用。
然而,电动汽车的悬架系统对其行驶性能、乘坐舒适性及安全性有着至关重要的影响。
因此,对轮毂电机驱动电动汽车的悬架系统进行分析与优化,具有重要的研究价值。
二、轮毂电机驱动电动汽车悬架系统概述轮毂电机驱动电动汽车的悬架系统主要由弹性元件、减震器、导向机构等部分组成。
其中,弹性元件负责承受和传递垂直载荷,减震器则用于减小路面不平度引起的振动和冲击,导向机构则保证车轮按照设定的轨迹运动。
三、轮毂电机驱动电动汽车悬架系统问题分析1. 振动与噪声问题:由于轮毂电机的特殊性,其驱动系统与悬架系统的耦合性较高,容易产生振动和噪声,影响乘坐舒适性。
2. 悬架性能问题:在复杂的路况下,传统的悬架系统可能无法很好地适应轮毂电机驱动的电动汽车,导致行驶性能和安全性下降。
3. 结构优化问题:现有的悬架系统结构可能存在设计上的不足,如结构笨重、耗能大等,需要进行优化以提升整体性能。
四、轮毂电机驱动电动汽车悬架系统分析方法1. 理论分析:通过建立数学模型,对悬架系统的动力学特性进行分析,了解其工作原理及性能特点。
2. 仿真分析:利用计算机仿真软件,对不同路况下的悬架系统进行仿真分析,预测其性能表现。
3. 实验分析:通过实际道路实验,对理论分析和仿真分析的结果进行验证和修正。
五、轮毂电机驱动电动汽车悬架系统优化策略1. 优化振动与噪声问题:通过改进减震器设计、优化悬挂系统结构等方式,减小振动和噪声的产生。
同时,采用先进的材料和技术,提高悬架系统的刚度和阻尼性能。
2. 提升悬架性能:针对复杂路况,通过优化悬挂系统的参数设置,如弹簧刚度、减震器阻尼等,提高行驶性能和安全性。
同时,采用智能控制技术,实现悬架系统的自动调节和优化。
3. 结构优化:对现有的悬架系统结构进行轻量化设计,降低耗能。
重型载货汽车复合空气悬架导向臂支架优化设计重型载货汽车的复合空气悬架导向臂支架是该车型悬架系统的重要组成部分,其负责连接车轮与车身,支撑车轮承受路面不平所产生的负荷。
本文旨在探究如何优化该部件的设计以提高汽车的悬架系统性能和安全性。
1.材料选用复合空气悬架导向臂支架的材料选择对其性能和寿命有着极大的影响。
合适的材料应该既具有足够的强度和刚度,又要满足重量控制的要求,降低车辆的整车重量,同时还要具有较高的耐腐蚀性。
通过对不同材料的比较,最终选择了钛合金材料作为导向臂支架的主体材料,该材料具有较高的比强度和比刚度,同时具有优异的耐腐蚀性,可以有效延长导向臂支架的寿命。
2.结构优化导向臂支架的结构优化是提高其性能和安全性的关键。
通过对导向臂支架的结构进行优化,可以提高其强度和刚度,并在保证结构轻量化的基础上满足导向臂支架在不同工作条件下的要求。
本文选用有限元分析方法对导向臂支架进行分析,通过模拟不同载荷条件下的应力分布情况,确定了导向臂支架的最优结构。
该结构采用了双肋型结构设计,肋骨沿着载荷传导方向布置以提高其刚度,同时减少其重量,具有较高的抗弯强度和扭转刚度。
3.加工工艺控制复合空气悬架导向臂支架的加工工艺控制也是关键的一环,其正确的加工和焊接过程可以保证导向臂支架的质量和性能。
在选择材料和结构设计之后,必须按照规范制定加工工艺流程和标准,以确保导向臂支架的制造过程稳定可靠。
本文采用了先进的焊接工艺,通过TIG焊接和PLS(激光点焊)技术,确保了导向臂支架焊接过程中的稳定性和焊缝质量的高度一致性。
综上所述,对于重型载货汽车的复合空气悬架导向臂支架,材料、结构和加工工艺都是优化设计的关键。
本文通过材料选择、结构优化和加工工艺控制,有效提高了导向臂支架的性能和寿命,同时减轻了车辆的整车重量,提升了汽车悬架系统的安全性和稳定性,为行业的进一步发展提供了重要的技术支持。
除了材料、结构和加工工艺的优化,复合空气悬架导向臂支架的设计还需要考虑其他方面,以确保其可靠性和安全性。
重载交通工具悬架系统结构优化设计在我们的生活中,重载交通工具扮演了非常重要的角色,如大型货车、挖掘机、装载机等。
由于重载工况的特殊性,对于工业设计来说,设计这些交通工具的悬架系统是十分关键的环节。
在本文中,我们将详细探讨如何设计一个优化的重载交通工具悬架系统。
一、悬架系统的定义和作用首先,我们来了解一下悬架系统的定义和作用。
悬架系统是指汽车、铁路车辆、轮船、飞机等各种交通工具中支撑以及连接车身与悬挂轮胎或支撑轴的装置。
悬架系统的主要作用是提高交通工具的行驶平稳性、提升车辆的通过性以及保证车身和人员的安全性。
二、悬架系统的优化设计优化悬架系统设计意味着同时考虑悬架系统的几个关键要素:弹性元件、支撑结构和减震装置等。
弹性元件是用来分散路面不平造成的震动,让车身能够平稳行驶的关键。
支撑结构是用来分散车身重量并抵消车身变形所产生的应力、以及提升车辆通过性的关键。
减震装置是用来泄弱路面起的震动,并且保证车身与路面接触的关键。
综合考虑这几个关键要素,我们可以设计出一个优化的悬架系统。
首先,我们需要选择合适的材料。
根据车辆的使用场景、要求以及车辆本身的特性,选择合适的材料非常重要。
接着,我们需要确定悬挂类型。
常见的悬挂类型有独立悬架、非独立悬架、气垫悬架、液压悬架等。
需要根据车辆的使用场景和要求选择合适的悬挂类型。
悬挂类型对操作稳定性和悬挂寿命有非常重要的影响。
三、实现悬架系统的优化设计最后,实现悬架系统优化设计还需要以下需求:1.交通工具负载能力的提升交通工具的负载能力直接关系到悬架系统的设计。
在设计悬架时,需要注意车身重心的影响、轮胎结构的依赖性、弹簧设计的稳定性以及减震系统的适应性等问题。
在独立悬架系统设计方面,需要研究隆起变形和垮下变形的规律。
同样,在非独立悬架系统设计方面,需要研究轴和柔性桥的设计安排。
2.提高行驶稳定性在交通工具行驶过程中,需要调整车身的设计、车轮的位置和轴的位置,并通过削弱变形来提高行驶稳定性。
汽车悬架和转向系统设计1. 概述汽车悬架和转向系统是汽车中至关重要的部分,对汽车的操控性、行驶稳定性和乘坐舒适性有着重要的影响。
悬架系统负责支撑汽车车身,保证车轮与地面的接触,同时吸收来自路面的冲击力;而转向系统则负责使车辆按照驾驶员的指令实现转向操作。
在汽车设计中,悬架和转向系统的设计需要综合考虑多种因素,包括车辆的用途、性能需求、成本以及使用环境等。
本文将介绍汽车悬架和转向系统设计中的关键要点,并探讨一些常见的设计策略和优化方法。
2. 悬架系统设计2.1. 悬架类型常见的汽车悬架类型包括独立悬架和非独立悬架。
独立悬架指的是四个车轮各自独立悬挂,相互之间没有连接,可以独立运动。
非独立悬架指的是四个车轮之间通过悬架系统相连接,受到相互影响。
独立悬架相较于非独立悬架具有更好的悬挂效果,能够提供更好的操控性和乘坐舒适性。
常见的独立悬架类型包括麦弗逊悬架、多连杆悬架和双叉臂悬架等。
2.2. 悬架参数设计悬架系统的参数设计对于汽车的行驶稳定性、乘坐舒适性和操控性都有重要影响。
其中一些关键的参数包括减振器刚度、悬架弹簧刚度、悬架几何参数等。
减振器刚度决定了汽车在受到冲击力时的反应速度,过大或过小的减振器刚度都会影响汽车的乘坐舒适性。
悬架弹簧刚度则负责车身的支撑和回弹,也对乘坐舒适性有重要影响。
悬架几何参数则涉及到悬架的运动轨迹和相对位置,对悬架系统的整体性能起着决定性作用。
2.3. 悬架系统优化悬架系统的优化设计旨在提升汽车的行驶性能和乘坐舒适性。
在悬架系统设计中,常见的优化手段包括材料选择、刚度调整、阻尼控制和减重等。
材料选择是悬架系统设计中的一个重要环节。
采用合适的材料可以提高悬架系统的刚度,同时减轻悬架组件的重量。
刚度调整可以通过调整减振器和弹簧的硬度来实现,以获得更好的悬架效果。
阻尼控制则可以通过控制减振器的阻尼力来实现,以提升汽车的稳定性和乘坐舒适性。
减重是悬架系统设计中的一个重要目标,通过使用轻量化材料和结构设计优化来减轻悬架组件的重量,从而提高汽车的燃油经济性和操控性能。
CAD/CAE课程设计汽车前悬架优化设计姓名 _____________学号 _____________专业 _____________班级 _____________指导教师 _____________年月日CAE课程设计任务书第一组:参照ADAMS实例教程出版社:北京理工大学出社。
作者:李军等编。
建立第三章第二节汽车前悬架模型。
数据可以是参考书上(主销长度330mm,主销内倾角10°,主销后倾角2.5°,上横臂长350mm,上横臂在汽车横向平面内的倾角11°,上横臂轴水平斜置角-5°,下横臂长500mm,下横臂在汽车横向平面内的倾角9.5°,下横臂轴水平斜置角10°,车轮前束角0.2°)。
同时要测试、细化和优化前悬架模型(目标函数:车轮接地点侧向滑移量)。
目录一、基础资料 (4)1.软件简介 (4)2.悬架介绍 (5)3.汽车使用性能 (6)二、创建前悬架模型 (8)1.创建新模型 (8)2.创建设计点 (8)3.创建主销 (9)4.创建上横臂 (9)5.创建下横臂 (9)6.创建拉臂 (9)7.创建转向拉杆 (9)8.创建转向节 (10)9.创建车轮 (10)10.创建测试平台 (10)11.创建弹簧 (10)12.创建球副 (11)13.创建固定副 (11)14.创建旋转副 (12)15.创建移动副 (13)16.创建点—面约束副 (13)17.保存模型 (13)二.测量车轮接地点侧向滑移量 (14)1.添加驱动 (14)2.测量车轮接地点侧向滑移量 (16)三.细化前悬架模型 (17)1.创建设计变量 (17)2.将设计点参数化 (21)3.将物体参数化 (24)4.保存模型 (25)四.定制界面 (25)1.创建修改主销参数对话窗 (25)2.创建修改上横臂参数对话窗 (28)3.创建修改下横臂参数对话窗 (31)4.修改菜单栏 (33)五、优化前悬架模型 (35)1.定义目标函数 (35)2.优化模型 (36)3.察看优化结果 (41)4.优化结果分析 (42)七、设计体会 (43)八、参考文献 (44)一、基础资料1.软件简介ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。
汽车底盘悬挂系统的自适应调校与优化随着汽车工业的不断发展,汽车底盘悬挂系统的自适应调校与优化技术也日益成为了汽车制造业的研究热点之一。
底盘悬挂系统作为汽车的重要部件,直接影响着车辆的操控性、舒适性和安全性。
因此,如何通过自适应调校与优化技术,提升汽车底盘悬挂系统的性能,已经成为了制造商和研发人员共同关注的问题。
一、自适应调校技术自适应调校技术是指汽车底盘悬挂系统能够根据不同的驾驶条件和路况,自动调整悬挂系统的硬度、高度和阻尼等参数,以提升车辆的操控性和舒适性。
这种技术通过传感器实时监测车辆的运行状态,反馈给控制单元,从而实现底盘悬挂系统的智能调节。
1. 传感器监测底盘悬挂系统通过装配在车辆各处的传感器,可以实时获取车辆的速度、转向角、加速度等数据,为自适应调校提供准确的参数。
2. 控制单元反馈传感器采集到的信息会被送往底盘悬挂系统的控制单元,根据实时数据分析车辆的运行状况,并通过调节悬挂硬度、高度和阻尼等参数,实现系统的自适应调校。
二、优化设计除了自适应调校技术外,优化设计也是提升汽车底盘悬挂系统性能的关键。
通过合理的结构设计和材料选用,可以有效提升底盘悬挂系统的稳定性和耐久性。
1. 结构设计优化的结构设计可以提高悬挂系统的刚度和稳定性,使车辆在不同路况下具有更好的操控性和舒适性。
例如,采用多连杆独立悬架设计,可以有效减少车身侧倾,提升车辆的稳定性。
2. 材料选用选用高强度、轻量化的材料,可以减轻底盘悬挂系统的重量,提高车辆的燃油经济性和悬挂系统的响应速度。
同时,耐磨耐腐蚀的材料也能延长悬挂系统的使用寿命。
三、性能优势通过自适应调校和优化设计,汽车底盘悬挂系统能够获得以下性能优势:1. 良好的操控性底盘悬挂系统的自适应调校可以根据不同驾驶条件实时调整悬挂参数,提升车辆的操控性和悬挂系统的响应速度,使驾驶更加稳定舒适。
2. 较高的舒适性优化设计和自适应调校技术的结合,可以有效降低车辆通过颠簸路面时的震动和噪音,提高乘坐舒适度,为驾驶者和乘客带来更好的行车体验。
悬架K&C特性优化设计研究报告——杨益1、研究背景悬架系统的设计开发是车辆底盘开发的灵魂。
悬架系统性能是由悬架系统的运动学及弹性运动学(Kinematics and Compliance简称K&C)特性加以综合表现的。
运动学特性描述的是车轮上下跳动和转向时,车轮定位参数的变化;而弹性运动学特性则是描述悬架在承受外力及力矩作用下,车轮定位参数的一些变化特性。
悬架K&C特性是联系悬架机构设计与整车性能匹配的桥梁,对整车性能有至关重要的影响。
悬架系统设计因素包括悬架机构型式、悬架硬点布置、弹性元件及阻尼元件参数的选取等。
同时,悬架系统对于整车性能的影响又有诸多的表现型式,如悬架系统的运动学特性和弹性特性。
在传统的悬架设计开发中,更多的是依靠设计师的经验及相关数据库的支持来选择悬架系统的一些特性参数,即所谓的“Trial and Error”的方式。
在设计目标众多,约束条件众多的前提下,此方法的设计结果未必是最理想的。
悬架设计过程中的一个关键问题就是如何定量设计K&C 特性,使整车性能最优。
2、研究现状Kwon-Hee Suh[2]利用试验设计的方法对双横臂悬架在平行轮跳动时的特性做了优化;Taeoh Tak[3]等利用多体动力学方法建立了悬架模型并开发了悬架特性优化软件;Ju Seok Kang[4]等人对悬架系统进行弹性动力学分析并优化了悬架的C特性。
Fadel[5]等在车辆设计过程中采用多准则多工况的方法进行优化,分别采用蒙特卡洛方法、遗传算法及模拟退火算法对车辆的一些性能参数,主要包括尺寸及惯量特性参数,进行了优化。
J.Schuller,I.Haque和M.Eckel[6]在新车的开发过程中,以BMW参考车型为基准,利用遗传算法对底盘系统的一些关键性能参数进行了优化,包括轴距、质心位置、惯量参数、悬架刚度及阻尼特性、悬架系统K&C特性及轮胎力学特性等参数。
悬架参数优化设计概述悬架是车架与车轮之间的一切传力连接装置的总称,主要功能是改善车辆的动态表现,传递车轮和车架之间的一切力和力矩,缓和抑制路面对车身的冲击和振动,保证车轮在路面不平和载荷变化时有理想的运动特性。
汽车悬架的形式分为非独立悬架和独立悬架两种:非独立悬架的车轮装在一根整体车轴的两端,当一边车轮跳动时,影响另一侧车轮也作相应的跳动,使整个车身振动或倾斜,汽车的平稳性和舒适性较差,但由于构造较简单,承载力大,目前仍有部分轿车的后悬架采用这种型式。
独立悬架的车轴分成两段,每只车轮用螺旋弹簧独立地安装在车架(或车身)下面,当一边车轮发生跳动时,另一边车轮不受波及,汽车的平稳性和舒适性好。
但这种悬架构造较复杂,承载力小。
由于独立悬架具有比较好跳动性能,故赛车选用的悬架类型为独立悬架。
具体的独立悬架,有麦弗逊、双横臂和多连杆式三种主要类型。
双横臂式独立悬架由于其布置灵活,结构比较简单,其在FSAE赛车上应用比较广泛。
根据总体设计中赛车的布置方案和对悬架的要求,参考FSAE车队赛车悬架的方案,最终确定我们的方程式赛车采用双叉臂推杆导向式独立悬架。
前悬架的具体形式为四连杆式,后悬架为五连杆式。
性能要求“6.1 悬架6.1.1 赛车必须在前后轮装配有可以自由工作的、并有减震器的悬架,并且悬架在坐有车手的情况下可以在分别抬起和压下25.4mm。
如果赛车没有严谨的悬架运行表现,或不能表现出适合比赛的操控能力,检察官员保留有取消赛车参赛资格的权利。
6.1.2 悬架的所有的接合点必须可以被技术检查官员看到,无论是可以直接看到或是通过移除覆盖件来实现。
6.2 离地间隙必须有足够的离地间隙来防止赛车在行驶时的任何部分(除了轮胎)接触地面。
并且在乘坐有车手的时候,任何时候在全车底部最小必须有25.4mm(1英寸)的静态离地间隙。
6.3 车轮6.3.1 赛车的轮胎直径必须大于等于203.2mm(8.0英寸)。
6.3.2 任何只使用一个锁紧螺母的轮胎装配系统必须配有一个装置来固定和锁紧螺母和车轮,防止螺母松动。
6.4 轮胎6.4.1 赛车可装备如下两套轮胎:●干胎——在检查时安装在赛车上的轮胎定义为干胎。
干胎尺寸任意,型号任意。
他们可以是光头胎,也可是有纹的●雨胎——雨胎可以是如下规定的任何型号和尺寸的有花纹和沟槽的样式:1)花纹和沟槽的图案必须是由轮胎厂商塑造成型的,任何被刻制的花纹沟槽必须有文件证明它是符合比赛的相关规定的。
2)沟槽最浅为2.4mm(3/32英寸)。
备注:车队自己手刻的花纹和沟槽是特别禁止的。
6.4.2 每套轮胎在静态评定开始后,轮胎的成份和尺寸,或轮辋的型号和尺寸不能改变。
不能使用轮胎保暖器。
在静态评定开始后,任何牵引力提升方法都不准采用。
”设计任务悬架组的任务是设计一副可满足赛车使用性能的悬架,使赛车表现出正确的离地间隙,具有较好的行驶平顺性和良好的操纵稳定性,保证在赛车转弯和加减速时悬架拥有理想的运动特性。
FSAE赛车对悬架系统的设计要求:保证赛车具有正确的静态离地间隙和跳动行程;具有合适的衰减振动的能力;保证汽车具有良好的操控稳定性;汽车制动或加速时,保证车身稳定,减少车身纵倾,转弯时车身侧倾角要合适;结构紧凑,占用空间寸小;可靠地传递车身和车轮之间的各种力和力矩,在满足轻量化的同时,还要满足足够的强度;使汽车具有较好的行驶平顺性。
(四)赛车的整体参数根据赛车的整体规格初选轮距1300mm(前)、1250mm(后);轴距1600mm;前轴载荷122kg,后轴载荷149kg,重心高度300mm,制动力分配系数0.6。
销头中心距为240mm;后悬主销中心距为1030mm,销头中心距为240mm。
方案选型(一)导向机构的布置方案选型1、纵向平面内上、下横臂的布置方案上、下横臂轴抗前俯角的匹配对主销后倾角的变化有较大影响。
为提高汽车的制动稳定性和舒适性,一般希望主销后倾角的变化规律为:在悬架弹簧压缩时后倾角增大;在弹簧拉伸时后倾角减小,用以造成制动时因主销后倾角变大而在控制臂支架上产生防止制动前俯的力矩。
《汽车设计》(王望予)204页给出了六种不同匹配方案的主销后倾角随车轮跳动的变化曲线。
综合比较,第1、2、6方案是比较好的。
考虑悬架与车架的连接,下横臂水平布置有利于降低车身的重心。
前悬架我们选择第2种布置方案,如下图a所示;后悬架为了方便布置,采用如图b所示方案。
2、横臂平面内上、下横臂的布置方案常用的双横臂上下横臂在横臂平面的布置方案有如下三种:(1)(2)(3)不同的横臂平面内上、下横臂的布置方案所得的侧倾中心的位置不同。
根据我们的需要,我们前后悬架均选择第2种布置方案。
3、水平面内上、下横臂轴的布置方案上下横臂轴线在水平面内的布置方案主要影响车轮跳动时主销后倾角的变化。
为使主销后倾角在车轮上跳时增大,以达到车轮上跳时有向后退让的趋势,下横臂轴线往往与纵轴线的夹角取为正值。
在我们的赛车中,当上下横臂轴线与纵轴线的夹角取为正值时,将会使车架成为开口式形状,不利于布置,所以我们此值暂取为0°,再根据主销后倾角随车轮的变化情况决定是否需要调整。
4、上下横臂长度的确定双横臂式悬架上、下横臂的长度对车轮上、下跳动时的定位参数的影响很大。
为得到理想的悬架运动特性,现代乘用车所用的双横臂式前悬架,一般设计成上横臂短、下横臂长的形式。
设计悬架时,希望轮距变化要小,以减小轮胎磨损,提高使用寿命,一般应选择60.0/12=l l 附近;为保证汽车具有良好的操控稳定性,希望前轮定位参数的变化要小,这时应选择0.1/12=l l 附近。
综合以上分析,悬架的12/l l 应选在0.6—1.0范围内。
乘用车设计经验认为,在初选尺寸时,65.0/12=l l 为宜。
我们根据车架布置的具体要求,初选前后悬架8.0/12=l l 左右。
参数计算设计一、 导向机构的布置参数选取1、主销后倾角从侧面看车轮,转向主销向后倾倒,称为主销后倾角。
设置主销后倾角后,主销中心线的接地点与车轮中心的地面投影点之间产生距离(称作主销纵倾移距),使车轮的接地点位于转向主销延长线的后端,车轮就靠行驶中的滚动阻力被向后拉,使车轮的方向自然朝向行驶方向。
设定很大的主销后倾角可提高直线行驶性能,同时主销纵倾移距也增大。
主销纵倾移距过大,会使转向盘沉重,而且由于路面干扰而加剧车轮的前后颠簸。
初选前悬架主销后倾角为3°。
后悬架由于是非转向轮,故主销后倾角取为0°。
2、主销内倾角从车前后方向看轮胎时,主销轴向车身内侧倾斜,该角度称为主销内倾角。
当车轮以主销为中心回转时,车轮的最低点将陷入路面以下,但实际上车轮下边缘不可能陷入路面以下,而是将转向车轮连同整个汽车前部向上抬起一个相应的高度,这样汽车本身的重力有使转向车轮回复到原来中间位置的效应,因而方向盘复位容易。
此外,主销内倾角还使得主销轴线与路面交点到车轮中心平面与地面交线的距离减小,从而减小转向时驾驶员加在方向盘上的力,使转向操纵轻便,同时也可减少从转向轮传到方向盘上的冲击力。
但主销内倾角也不宜过大,否则加速了轮胎的磨损。
初选主销内倾角为3°。
为了便于upright的加工,且主销内倾角对悬架的跳动性能影响不大,后悬架可以采用与前悬架相同的主销内倾角,取为3°。
3、车轮外倾角前轮安装在车桥上时,其旋转平面上方略向外倾斜,这种现象称为车轮外倾。
在通过车轮轴线的垂直面内,车轮轴线与水平线之间所夹的锐角,也等于垂线与车轮中心平面所构成的锐角,叫前轮外倾角。
前轮外倾的作用是避免汽车重载时车轮产生负外倾,提高汽车行驶安全性。
如果空车时车轮正好垂直于路面,则满载时车轮将因承载变形而可能出现车轮内倾。
车轮内倾后,将加速汽车轮胎偏磨。
同时,地面对车轮的垂直反力便产生一个沿转向节轴向向外的分力。
此力使车轮外轴承及其锁紧螺母等零件负荷增大,寿命缩短,严重时使车轮脱出。
当安装车轮预留有外倾角时,就能防止车轮内倾。
同时,车轮外倾还可以与拱形路面相适应。
但随着高速公路的出现和车速的不断提高,车轮外倾角减小,有的还为负值。
因为高速转向时,离心力较大,车身的外倾加大,使轮胎产生更大的正外倾,轮胎外倾变形加剧。
采用前轮负外倾,使轮胎内外磨损均匀,提高了纯滚动转向性能和车身的横向稳定性。
由于赛车设计载荷不大,且由于发动机功率限制,赛车最大速度不是很高。
所以,赛车前后悬架车轮外倾角均初选为0°。
4、前轮前束前轮前束是指车身前进方向与前轮平面之间的夹角。
采用这种结构目的是修正上述前轮外倾角引起的车轮向外侧转动。
如前所述,由于有外倾,方向盘操作变得容易。
另一方面,由于车轮倾斜,左右前轮分别向外侧转动,为了修正这个问题,如果左右两轮带有向内的角度,则正负为零,左右两轮可保持直线行进,减少轮胎磨损。
由于车轮外倾角为0°,故前轮前束取为0°5、侧倾中心侧倾中心越高,则侧倾力矩越小;在一定的侧倾角刚度下的侧倾角越小,由弹簧及横向稳定杆传递的力越小,而由传力杆系所传递的力也就越大,反之亦然。
在汽车的设计中为了减小车身侧倾角,一般希望侧倾中心高一些。
但轿车的悬架(尤其是前悬架)一般采用独立悬架,过高的侧倾中心可能导致车轮跳动时过大的轮距变化,加剧轮胎磨损。
在确定侧倾中心高度时应综合考虑这些因素。
对于赛车,侧倾中心在地面之上时,赛车转弯,悬架压缩引起外侧车轮的正轮胎倾角增益,使其接地性降低。
如果侧倾中心位于地面之下,则赛车转弯时,轮胎侧向力对侧倾中心的力矩使悬架相对于底盘上升。
一般赛车设计时,为了减少由侧向力引起的悬架垂直运动,尽量使侧倾中心贴近地面。
在独立悬架中,汽车前部与后部侧倾中心的连线称为侧倾轴线,侧倾轴线应大致与地面平行。
平行是为了使得在曲线行驶时前、后轴上的轴荷变化接近相等,从而保证中型转向特性。
初选前悬架的侧倾中心高度为45mm ,后悬架55mm 。
6、抗前俯率与抗前俯角当汽车制动时,由于惯性力的作用,汽车会产生“点头”效果。
若将悬架上摆臂向后倾斜一定角度,而下摆臂保持守平或向后倾斜(也有少数向前倾斜的),当汽车制动时,上臂的摆动轴线有向后倾斜的倾角,该倾角能缓和车身在制动时的“点头”现象。
悬架的抗纵倾原理如下图所示:图6.2 悬架抗宗倾原理 当pLH fi f 1tan -==θθ时,前悬架在制动时完全不发生“点头”,具有理想的抗点头效果。
但在实际中,这种理想特性是无法实现的。
因为过高的C 点将导致车轮跳动时主销后倾角变化过大,且在布置上有一定难度,不便于转向杆系协调布置。
我们用f J 来表征实际抗点头效果,其中 fi f f pL H e h e L H F pFh J θθtan tan ===在大多数轿车中,f J 一般折中取为20%~25%,很少超过50%。