人工智能课程大纲课程体系:《自然语言处理》课程产品白皮书(2019V1.0)
- 格式:docx
- 大小:4.97 MB
- 文档页数:28
《人工智能》教学大纲一、课程概述1. 课程研究对象和研究内容人工智能是计算机与自动化学科的一门分支学科。
它研究如何用机器来模仿人脑所从事的推理、证明、识别、理解、学习、规划、诊断等智能活动。
人工智能是当前科学技术中正在迅速发展,新思想、新观点、新技术不断涌现的一个学科,也是一门涉及数学、计算机科学、控制论、信息论、心理学、哲学等学科的交叉和边缘学科。
《人工智能》(双语)课程的主要目标是为大学本科高年级学生提供有关人工智能理论以及应用所必需的知识和技能;掌握人工智能的基本原理;掌握设计开发智能系统的基本方法。
2. 课程在整个课程体系中的地位人工智能原理是计算机科学技术类专业的应用学科。
前修课程包括:离散数学、数据结构、算法分析与设计等,后续课程:专家系统,知识工程,该课程可以在大学三、四年级开设。
二、课程目标1.熟练掌握图搜索策略,熟练掌握回溯策略、图搜索策略的过程以及算法(BACKTRACK 以及A*算法),掌握一些典型问题的启发式函数。
2.掌握用命题逻辑、一阶逻辑表示知识的方法,并在此基础上进行推理,熟练掌握归结方法以及归结反驳过程,熟练掌握利用归结反驳方法进行推理。
3.掌握基于贝叶斯规则的不确定性推理,掌握条件概率、独立、条件独立及贝叶斯公式;掌握利用贝叶斯定理检测垃圾邮件的基本方法。
三、课程内容和要求这门学科的知识与技能要求分为知道、理解、掌握、学会四个层次。
这四个层次的一般涵义表述如下:知道———是指对这门学科和教学现象的认知。
理解———是指对这门学科涉及到的概念、原理、策略与技术的说明和解释,能提示所涉及到的教学现象演变过程的特征、形成原因以及教学要素之间的相互关系。
掌握———是指运用已理解的教学概念和原理说明、解释、类推同类教学事件和现象。
学会———是指能模仿或在教师指导下独立地完成某些教学知识和技能的操作任务,或能识别操作中的一般差错。
教学内容和要求表中的“√”号表示教学知识和技能的教学要求层次。
《机器视觉技术》产品白皮书目录1引言........................................................................ - 3 -2产品概述.................................................................... - 4 -2.1产品体系............................................................ - 4 -2.2产品资源............................................................ - 5 -3产品介绍.................................................................... - 8 -3.1机器视觉技术........................................................ - 8 -3.1.1课程说明........................................................ - 8 -3.1.2教学大纲....................................................... - 12 -3.1.3教学指导....................................................... - 16 -4配套产品................................................................... - 19 -4.1实验设备........................................................... - 19 -4.2软件平台........................................................... - 24 -5技术支持................................................................... - 28 -5.1.1升级服务....................................................... - 28 -5.1.2师资培训....................................................... - 28 -1引言中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。
《自然语言处理》课程教学大纲《自然语言处理》课程教学大纲一、课程基本信息1、课号:CS2292、课程名称(中/英文):自然语言处理/Natural Language Processing3、学时/学分:32/24、先修课程:程序设计语言5、面向对象:本科三\四年级(ACM班)7、教材、教学参考书:James Allen. Natural Language Understanding (The Second Ver.) TheBenjamin / Cummings Publishing Company, Inc., 1995.Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing. The MIT Press.Springer-Verlag, 1999二、本课程的性质和任务自然语言处理是计算机科学与技术专业的一门专业选修课。
它的主要任务是使学生了解自然语言处理的主要研究内容及关键技术,并介绍自然语言处理方面的研究成果,为学生从事自然语言处理研究和开发做准备。
此外,通过指导学生阅读计算语言学专业会议的论文,进行摘要和评价,并进行介绍、提问和讨论,使他们对所学课程的有关概念与目前的流行方法和技术的关系有更深入地了解。
在此基础上,要求学生完成一篇有关自然语言处理主题的课程项目,使他们能用所学的知识发挥自身的能力查找有关资料和概括某一研究领域的国内外最新理论和技术并最终加以实践。
三、本课程教学内容和基本要求1. Overview (4)1.1 History of Natural Language Processing (NLP)1.2 Different Levels of Language Analysis1.3 Applied Approaches in NLP Systems1.4 NLP Applications2.Lexicons and Lexical Analysis (8)2.1 Lexicon: A Language Resource2.2 A Lexicon for English Words: WordNet2.3 Generative Lexicon2.4 Finite State Models and Morphological Analysis2.5 Collocation2.6 Statistical n-gram language models3.Syntactic Processing (14)3.1 Basic English Syntax3.2 Grammars and Parsing3.3 Features and Augmented Grammars3.4 Grammars for Natural Language3.5 Toward Efficient Parsing3.6 Ambiguity Resolution: Statistical Methods4.Semantic Interpretation (10) 备选4.1 Semantics and Logical Form4.2 Linking Syntax and Semantics4.3 Ambiguity Resolution4.4 Other Strategies for Semantic Interpretation5. Learning Approaches for Natural language processing (8 lhs) 5.1 Main machine learning approachesMaximum entropyK-nearest neighborSupport vector machine5.2 Sequence labeling: HMM, Maximum Entropy Markov Model and CRFs 5.3 A Case Study: train a Part-of-speech taggerfrom labeled corpus6.An Introduction to Human Languages7.Student Workshop四、实验(上机)内容和基本要求1.阅读指定的有关自然语言处理的专业论文,培养学生阅读专业论文的能力;2.召开学生研讨会,请一部分学生对所读论文进行摘要和评价,并进行介绍、提问和讨论。
人工智能课程教学大纲一、课程的基本信息适应对象:信息工程专业。
课程代码:39E01126学时分配:42赋予学分:2先修课程:C语言程序设计、数据结构、面向对象程序设计后续课程:二、课程性质与任务本课程是信息工程专业的一门专业课程,具有较强的理论性和应用性。
本课程的任务是使学生掌握人工智能基本原理,理解人工智能程序设计的基本思路和方法。
培养学生的人工智能应用程序的编程能力和实践应用能力。
本课程的主要知识点包括面向知识表示、智能搜索、多智能体、推理技术、模糊逻辑、机器学习等。
三、教学目的与要求通过理论和实践教学,使学生掌握人工智能的基本思想和方法,培养学生的人工智能应用程序开发的基本能力,到达以下3个目标。
1.知识教学目标:理解和掌握人工智能的知识表达,推理和搜索技术,了解基于统计分析的机器学习方法。
2.能力教学目标:熟练使用prolog, matlab, visual C++等工具来开发人工智能应用程序3.思想教育目标:了解人工智能的最新进展和目前的开展思路.四、教学内容与安排(-)课时分配4照课程内容,分成5个教学单元,各单元的课时安排如下表所示:(-)教学内容安排51单元人工智能概述【教学内容】1.人工智能基本概念2.智能感知简介3.智能推理简介4.智能学习简介5.展望【教学重点及难点】教学重点:智能、感知、推理与学习。
教学难点:强、弱人工智能辨析。
【基本要求】•了解智能、感知、推理与学习的基本概念;•了解弱人工智能的常见范例。
【培养能力】了解、掌握人工智能基本知识。
第2单元知识表示与推理【教学内容】1.知识表示基本概念2.命题逻辑与谓词逻辑3.产生式系统4.其他知识表示方法5.基于知识的系统:专家系统【教学重点及难点】教学重点:谓词逻辑、产生式系统、专家系统。
教学难点:归结原理、语义网络、框架。
【基本要求】•了解一阶谓词逻辑,产生式,专家系统;•掌握归结推理;•掌握产生式规那么前后向推理;•了解其他知识表示方法。
《python自然语言处理》教学大纲《python自然语言处理》教学大纲课程名称:python自然语言处理适用专业:计算机科学与技术、软件工程、人工智能、大数据等专业先修课程:概率论与数理统计、Python程序设计语言总学时:56学时 授课学时:30学时实验(上机)学时:26学时一、课程简介本课程包括自然语言处理概述、Python语言简述、Python数据类型、Python流程控制、Python 函数、Python数据分析、Sklearn和NLTK、语料清洗、特征工程、中文分词、文本分类、文本聚类、指标评价、信息提取和情感分析。
二、课程内容及要求第1章 自然语言处理概述(2学时)主要内容:1人工智能发展历程2自然语言处理3 机器学习算法4 自然语言处理相关库5.语料库基本要求:了解人工智能发展历程、自然语言处理相关内容;机器学习算法相关概念;了解基于Python与自然语言处理的关系;了解语料库的相关概念。
重 点:自然语言处理相关内容、机器学习算法难 点:基于Python的相关库第2章Python语言简介(2学时)主要内容:1. python简介2. Python解释器3 python编辑器4 代码书写规则基本要求:了解 python简介、熟悉Python解释器、掌握python编辑器、了解代码书写规则 重 点:掌握python编辑器、了解代码书写规则难 点:掌握python编辑器第3章 Python数据类型(4学时)主要内容:1. 常量、变量和表达式2. 基本数据类型3. 运算符与表达式4. 列表5. 元组6. 字符串7. 字典8. 集合基本要求:理解数据类型的概念、作用以及Python语言的基本数据类型;掌握常量、变量基本概念;掌握Python语言各类运算符的含义、运算符的优先级和结合性、表达式的构成以及表达式的求解过程。
掌握序列基础知识;熟练掌握列表的定义、常用操作和常用函数;熟练掌握元组的定义和常用操作;熟练掌握字典的定义和常用操作;掌握字符串格式化、字符串截取的方法;理解与字符串相关的重要内置方法。
人工智能课程大纲一、课程简介人工智能作为一门前沿的学科,其应用范围广泛,影响深远。
本课程旨在引导学生全面了解人工智能的基本概念、方法和应用领域,培养学生运用人工智能技术解决实际问题的能力。
二、课程目标1. 理解人工智能的基本概念和原理;2. 熟悉人工智能的核心技术和算法;3. 掌握人工智能在各个领域的应用案例和发展趋势;4. 培养学生运用人工智能技术解决实际问题的能力;5. 培养学生的团队协作和创新能力。
三、教学内容1. 人工智能概述- 人工智能的定义与发展历程- 人工智能的应用领域和挑战2. 机器学习与数据挖掘- 监督学习、无监督学习和强化学习的基本概念- 常用的机器学习算法和数据挖掘技术- 数据预处理和特征工程3. 深度学习与神经网络- 神经网络的基本原理与结构- 深度学习算法及其应用场景- 深度学习框架的使用和模型优化方法4. 自然语言处理与人机对话- 语言模型与文本分类技术- 机器翻译和文本生成- 人机对话系统的设计与实现5. 计算机视觉与图像处理- 图像特征提取与图像分类- 目标检测和图像分割- 图像生成与风格转换6. 智能推荐与个性化推荐- 推荐系统的原理与算法- 协同过滤与内容推荐- 个性化推荐系统的构建与优化7. 人工智能伦理与社会影响- 人工智能的伦理问题与挑战- 人工智能在社会中的应用与风险- 人工智能的未来发展与应对策略四、教学方法与评价方式1. 教学方法- 讲授理论知识,结合案例分析和实例讲解 - 引导学生自主学习和独立思考- 设计实践项目,培养实际操作能力- 进行小组讨论和课堂展示2. 评价方式- 课堂参与和讨论表现- 作业和实践项目的完成情况- 期末考核和论文撰写成果五、参考书目1.《机器学习》- 周志华2.《深度学习》- 邱锡鹏3.《自然语言处理综论》- 陆海英4.《计算机视觉:算法与应用》- Richard Szeliski5.《推荐系统实践》- 王喆六、备注事项1. 课程期限为一学期,每周两次课程,每次两小时;2. 学生需要具备基本的数学和编程基础;3. 课程设置了实验室实践环节,学生需进行相关实验和项目设计。
《人工智能》课程大纲人工智能课程大纲一、引言A. 课程背景与目的B. 课程结构概述二、人工智能基础知识A. 人工智能概述1. 人工智能定义与发展历史2. 人工智能的应用领域3. 人工智能的挑战和前景B. 机器学习1. 机器学习的定义和原理2. 监督学习、无监督学习与强化学习3. 机器学习算法与实践案例C. 自然语言处理1. 自然语言处理的概念和挑战2. 语音识别与文本处理技术3. 自然语言生成与机器翻译三、人工智能技术与应用A. 图像与视觉处理1. 图像处理基础2. 特征提取和图像分类算法3. 计算机视觉的应用案例B. 智能决策与规划1. 搜索算法与规划方法2. 强化学习与决策树算法3. 智能系统在自动驾驶等领域的应用C. 人机交互与智能系统设计1. 人机界面设计原则2. 聊天机器人与语音助手开发3. 智能系统的用户体验与评估四、人工智能的伦理与社会影响A. 人工智能的道德与伦理问题1. 个人隐私与数据安全2. 人工智能的道德准则与规范3. 机器人与人类社会的互动关系B. 人工智能对社会经济的影响1. 自动化对就业市场的改变2. 人工智能在医疗、金融等行业的应用3. 人工智能与可持续发展的关系五、课程实践与项目A. 人工智能编程与实践1. 基于Python的机器学习实践2. TensorFlow与深度学习编程B. 人工智能应用设计与实现1. 智能推荐系统开发2. 人工智能在游戏开发中的应用六、评估方式与学习资源A. 课程作业与考核方式B. 推荐教材与学习资源C. 学习支持与讨论平台七、总结与展望A. 课程回顾与学习成果B. 人工智能领域的未来发展方向本课程旨在帮助学生深入了解人工智能的基本概念、技术和应用,培养学生人工智能思维和创新能力。
通过课程的学习,学生将能够掌握人工智能基础知识,了解机器学习、自然语言处理、图像与视觉处理等核心技术。
同时,课程将注重伦理与社会影响的讨论,帮助学生思考人工智能的科技伦理问题和社会责任。
附件1广东财经大学华商学院课程教学大纲模板人工智能》课程教学大纲一、课程简介人工智能是计算机与自动化学科的一门分支学科。
它研究如何用机器来模仿人脑所从事的推理、证明、识别、理解、学习、规划、诊断等智能活动。
人工智能是当前科学技术中正在迅速发展,新思想、新观点、新技术不断涌现的一个学科,也是一门涉及数学、计算机科学、控制论、信息论、心理学、哲学等学科的交叉和边缘学科。
人工智能原理是计算机科学技术类专业的应用学科。
前修课程包括:离散数学、数据结构、算法分析与设计等,后续课程:专家系统,知识工程。
二、教学目标(1)熟练掌握图搜索策略,熟练掌握回溯策略、图搜索策略的过程以及算法(BACKTRACK 以及AI算法),掌握一些典型问题的启发式函数;(2)掌握用命题逻辑、一阶逻辑表示知识的方法,并在此基础上进行推理,熟练掌握归结方法以及归结反驳过程,熟练掌握利用归结反驳方法进行推理。
(3)掌握基于贝叶斯规则的不确定性推理,掌握条件概率、独立、条件独立及贝叶斯公式;掌握利用贝叶斯定理检测垃圾邮件的基本方法。
三、主要教学模式和教学手段1.本课程的教学包括课堂讲授、课外作业、辅导答疑、上机实验和期末考试等教学环节。
2.课堂教学采用启发式教学方法,理例结合,多媒体并用,引导学生加深对课程内容的理解,提高学生的学习兴趣和效果。
3.理论联系实际,通过本课程的教学,力争使学生在理解和掌握大纲所要求的知识内容的基础上,能正确地运用这些知识解决有关实际问题。
四、教学内容(要求编写所有章节的主要内容)第一章人工智能概述基本内容和要求:1.人工智能的概念与目标;2.人工智能的研究内容与方法;3.人工智能的分支领域;4.人工智能的发展概况。
第二章逻辑程序设计语言Prolog基本内容和要求:1.掌握Prolog语言的语句特点、程序结构和运行机理;2.能编写简单的Prolog程序,能读懂一般的Prolog程序。
教学重点:Prolog程序设计。
人工智能课程教学大纲课程名称:人工智能教学大纲课程目标:本课程旨在帮助学生了解人工智能的基本概念、原理和技术,并培养学生在人工智能领域的批判性思维和问题解决能力。
通过学习本课程,学生将能够理解人工智能的背景、应用和发展趋势,并能够独立设计和实现简单的人工智能系统。
课程内容:1. 人工智能概述- 人工智能的定义与应用领域- 人工智能的历史与发展- 人工智能与机器学习的关系2. 机器学习基础- 监督学习、无监督学习和强化学习的基本概念- 常用机器学习算法及其原理- 机器学习的评估方法和误差分析3. 深度学习- 神经网络的基本原理与结构- 卷积神经网络与循环神经网络的应用- 深度学习的训练与优化方法4. 自然语言处理- 语言的表示与处理方法- 文本分类、语义分析和机器翻译的基本原理- 自然语言生成与对话系统的应用5. 计算机视觉- 图像处理与特征提取- 目标检测、图像分类和图像生成的基本原理- 视觉感知与智能交互的应用6. 人工智能伦理与社会影响- 人工智能的道德与伦理问题- 人工智能在社会中的挑战与机遇- 人工智能的未来发展趋势课程教学方法:本课程采用讲授、案例分析和实践项目结合的教学方法。
通过理论讲解、实例分析和实践操作,帮助学生理解和应用人工智能的基本原理和技术。
学生将完成实践项目,设计和实现一个简单的人工智能系统,并对其性能进行评估和优化。
课程评估方式:- 平时作业和课堂表现:占总成绩的30%- 实践项目报告:占总成绩的40%- 期末考试:占总成绩的30%参考教材:- Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning [M]. MIT Press, 2016.- Sebastian Raschka, Vahid Mirjalili. Python Machine Learning [M]. Packt Publishing, 2017.- Dan Jurafsky, James H. Martin. Speech and Language Processing [M]. Pearson, 2019.备注:该人工智能课程教学大纲仅作参考,实际课程内容和安排可能会根据教师和学校要求进行调整。
《人工智能》课程教学大纲课程代码:H0404X课程名称:人工智能适用专业:计算机科学与技术专业及有关专业课程性质:本科生专业基础课﹙学位课﹚主讲教师:中南大学信息科学与工程学院智能系统与智能软件研究所蔡自兴教授总学时:40学时﹙课堂讲授36学时,实验教学4学时﹚课程学分:2学分预修课程:离散数学,数据结构一.教学目的和要求:通过本课程学习,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。
人工智能涉及自主智能系统的设计和分析,与软件系统、物理机器、传感器和驱动器有关,常以机器人或自主飞行器作为例子加以介绍。
一个智能系统必须感知它的环境,与其它Agent和人类交互作用,并作用于环境,以完成指定的任务。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。
这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
此外,人工智能还提供一套工具以解决那些用其它方法难以解决甚至无法解决的问题。
这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。
通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。
二.课程内容简介人工智能的主要讲授内容如下:1.叙述人工智能和智能系统的概况,列举出人工智能的研究与应用领域。
2.研究传统人工智能的知识表示方法和搜索推理技术,包括状态空间法、问题归约法谓词逻辑法、语义网络法、盲目搜索、启发式搜索、规则演绎算法和产生式系统等。
3.讨论高级知识推理,涉及非单调推理、时序推理、和各种不确定推理方法。
4.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经计算、模糊计算、进化计算和人工生命诸内容。
《自然语言处理》产品白皮书目录1引言........................................................................ - 3 -2产品概述.................................................................... - 4 -2.1产品体系............................................................ - 4 -2.2产品资源............................................................ - 5 -3产品介绍.................................................................... - 8 -3.1自然语言处理........................................................ - 8 -3.1.1课程说明........................................................ - 8 -3.1.2教学大纲....................................................... - 11 -3.1.3教学指导....................................................... - 16 -4配套产品................................................................... - 21 -4.1实验设备........................................................... - 21 -4.2软件平台........................................................... - 24 -5技术支持................................................................... - 27 -5.1.1升级服务....................................................... - 27 -5.1.2师资培训....................................................... - 27 -1引言中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。
预计到2020年,中国人工智能产业规模将超过1500亿元,带动相关产业规模超过1万亿元。
2017年全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。
但全球人工智能人才储备,中国却只有5%左右,人工智能的人才缺口超过500万。
人工智能是新兴产业,虽然技术和产业发展迅猛,但专业技术人才,以及兼顾人工智能与传统产业的跨界人才不充足,限制了产业发展以及与实体经济的深度融合发展。
从人才数量和质量角度而言,我国人工智能领域专业技术人才数量不充足、经验不丰富。
截至2017年6月,中国共有592家人工智能公司,拥有员工约39200名。
相比之下,美国共有1078家人工智能公司,共有约78000名员工,数量达到我国的2倍。
我国从业经验10年以上的人工智能人才比例不足40%,而美国的这一比例则超过70%。
从人才培养角度而言,我国高校人工智能领域的学科建设、人才培养相对滞后。
人工智能涉及领域宽泛,相关领域学科资源分散,未能形成合力,培养人才的数量、质量有待提升。
目前,国内开设人工智能专业的高校数量较少、时间较短,学科实力不强。
美国国家科技委员会发布的2017年人工智能全球大学排名中前50名均位于欧美地区,我国大学无一上榜。
此外,国内缺乏人工智能与传统行业的跨界人才,不利于人工智能在各垂直行业的应用推广。
在此前提条件下,人工智能专业系列课程,注重课程内容的改革,及时将新知识、新技术、新产品引进课堂。
根据专业特点及社会需要,进行课程综合化改革,打破单一课程体系,增加实用性强的内容。
课程以大量真实项目情景,企业级开发流程为基础,对人工智能项目案例进行深入分析,全程引导式学习开发,培养学生项目式开发能力与思维,打造成为培养高技术应用型人才的精品课程。
2产品概述2.1产品体系人工智能专业作为教育部新设立专业,教育教学资源缺乏,各开设院校普遍面临着缺教材、缺设备、缺师资现象。
人工智能专业系列课程将产业和技术的最新发展、行业对人才培养的最新要求引入教学过程,更新教学内容和课程体系,建成满足行业发展需要的课程和教材资源,打通“最后一学里”。
推动将研究成果及时转化为教学内容,向学生介绍学科研究新成果、实践发展新经验,积极探索综合性课程、问题导向课程、交叉学科研讨课程,提高课程兴趣度。
促进学生的全面发展,把握培养具有创新能力的高技能应用型人才的核心素养,强化学生的家国情怀、全球视野、法治意识和生态意识,培养设计思维、工程思维,提升创新创业、跨学科交叉融合、沟通协商能力和工程领导力。
人工智能专业系列课程表:2.2产品资源人工智能教学资源库从整个学科人才培养和课程体系出发,提供一系列互相耦合的课程资源,包括:培养方案、课程大纲、教学指导、课程讲义、课程视频、教学课件、实验手册(教师版/学生版)、实验资源、实验视频、课程题库、岗位模型、评测系统等。
整个教学资源包提供线上和线下双架构模式,让老师教学更容易,让学生学习更轻松。
人工智能教学资源库按照核心课程、专业课程、实践课程分类,全部采用项目驱动式教学方法,内容包含:项目介绍、项目场景、项目知识、模块分解、任务项、任务步骤、项目小结、项目思考等。
人工智能教学资源库严格按照优质特色校验收标准和网络课程视频教学资源建设要求进行设计,提供的素材包括教师资源、学生资源、线上资源,具体如下:3产品介绍3.1自然语言处理3.1.1课程说明《自然语言处理》是人工智能专业的核心基础课程,可作为信息科学、计算机科学、计算机应用、信号与信息处理、通信与信息系统、电子与通信工程、模式识别与智能系统等学科的专业基础课教材。
从人工智能技术架构来看,属于技术层的核心技术。
《自然语言处理》课程要求具备Python语言知识基础与数学基础,侧重于应用开发。
《自然语言处理》●课程简介本课程以全景式的视角,提供自然语言处理领域的基础理论算法知识,以及实际的行业应用案例,使学生能够熟悉自然语言处理领域的最新进展,同时掌握自然语言处理领域的应用技术,培养学生在人工智能应用领域的工程实践能力。
●课程目标课程知识目标:了解自然语言处理技术框架,掌握中文分词、词性标注、句法分析、语义分析、语音识别、语音合成等自然语言处理技术原理,掌握文本分类、文本检索和信息提取、文本排重、文本摘要、文本主题分析、文本情感分析等自然语言处理应用,熟悉智能问答、聊天机器人的深度学习应用,了解百度自然语言处理云服务文本处理接口,掌握自然语言处理综合案例开发。
课程技能目标:通过本课程的学习可以使学生掌握自然语言处理技术原理,掌握自然语言处理应用技术,掌握自然语言深度学习应用,掌握深度学习应用百度自然语言处理云服务文本处理接口的使用。
掌握自然语言处理综合案例开发,使学生具备自然语言工程应用实践能力。
●课程特色课程系统地介绍了自然语言处理的基本原理、典型方法和实用技术,内容包括中文分词、词性标注、句法分析、语义分析、语音识别、语音合成、文本分类、文本检索和信息提取、文本排重、文本摘要、文本主题分析、文本情感分析、深度学习应用、自然语言处理云服务、各类自然语言处理综合案例、智能+产业应用。
●阅读对象定位讲师、教务人员、教学管理人员。
●考核安排笔试50%+平时成绩20%+限时机试30%(实验课评分)。
●教学实施安排2+2模式,总学时64节,其中理论课32节,实践课32节;两节理论课后安排上机或者间隔几天安排上机;本课程保障了每个章节都有对应的上机实验,请参照大纲排课。
●能力导图学习自然语言处理课程,通过自然语言概述、自然语言处理技术、自然语言处理应用、深度学习应用、自然语言处理云服务、自然语言处理综合应用几个方面的能力考核来评测学习效果。
3.1.2教学大纲人工智能专业学科课程白皮书3.1.3教学指导《自然语言处理》从自然语言处理的概念认知进行介绍,然后对自然语言处理技术比如:词法、句法、语义分析等基础语言知识有一定了解后,完成相应的案例开发,加深自然语言处理技术的应用。
在有一定开发基础后进入深入学习应用,通过具体案例,掌握深度学习神经网络框架以及实现。
介绍了百度自然语言处理云服务接口与应用,最后通过自然语言与物联网技术的集成,完成相关综合案例的综合训练。
教学内容包含一下部分:●自然语言处理概述:熟悉自然语言处理技术概述、自然语言处理库介绍与安装,机器语言软件运行环境以及自然语言处理的各种工具包的安装。
●自然语言处理技术:通过自然语言处理技术理论以及项目讲解,逐步了解语言学中的相关基础,熟悉词法、句法、语义分析和语音识别等相关算法。
●自然语言处理应用:通过文本关键词提取技术原理、文本相似度技术原理、文本自动摘要技术原理、文本主题分析技术原理、中文情感分析的技术原理、智能问答系统的基本技术原理等的介绍,熟悉自然语言处理相关应用实现操作过程。
●深度学习应用:通过对深度学习的相关神经网络知识的掌握,熟悉深度聊天机器人、智能写诗应用实现操作过程。
●自然语言处理云服务:熟百度AI云服务的基本情况,讲解百度AI云服务相关接口调用方式,掌握基于百度云AI云服务接口应用实现。
●自然处理综合应用:了解物联网技术与自然语言处理的集成,通过语音控制智能家居、声纹识别开启闸机、语音控制智能小车等综合应用实训开发。
4配套产品4.1实验设备AI机器视觉/语言教学平台(AI-HNP)是中智讯公司开发的一款面向人工智能相关专业的综合型实验设备,是基于人工智能等新工科技术改革与高素质技能型人才培养而设计的实验平台。
AI机器视觉/语言教学平台打破了传统以硬件平台来定义实验的困局,创新性的从专业学科建设角度来重新定义产品,让课程来定义实验,让实验来定义设备,能够配合专业教材完成全部的专业核心课程实验。
AI机器视觉/语言教学平台,主要满足:Python应用技术、机器视觉、机器语言、嵌入式Linux系统、边缘计算、人工智能中间件、智能+产业实践等课程的实验和实训,是基于新工科和工程教育思维和专业改革而设计的实验平台。