常微分方程习题答案 蔡燧林 第二版 浙江大学出版社
- 格式:pdf
- 大小:6.53 MB
- 文档页数:40
第六章 线性微分方程组、习题6-11.求出齐次线性微分方程组y t A dt dy)(=的通解,其中分别为:)(t A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎩⎨⎧==⎩⎨⎧==⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎩⎨⎧=⇒==⇒=⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛≠⎪⎪⎭⎫ ⎝⎛=t C t C C C t t C t t y y y t t ty y y t y t C t C y y y tC y t C y y y y y dt d t t t y t dy t y dt dy t t t t 212121212121212211211121110000.00,0,0.,00;0,00)(A .12211或通解为则方程组的基解矩阵为或取故通解为解:由)( .0.0)(,,0.,1011,1011)(A .2212112221212121C e te e y e te e t ey te y y e y eC y y y y y y y y dt d t t t t t tt t t t t dt dy dt dy ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=⎩⎨⎧==⎩⎨⎧==⎩⎨⎧=⇒=+=⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=或通解为则方程组的基解矩阵为取解:由)(φCt t t t y t t t t t ty t y t y t y C y y dy y dy y y y dy dy y y y y y y dt d t dt dy dt dy ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-⎩⎨⎧-==⎩⎨⎧====+⇒=+⇒-=⇒⎩⎨⎧-==⇒⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-=sin cos cos sin .sin cos cos sin )(,sin cos ,cos sin ,1.C 0.,0110;0110)(A .3212122212211122112212121故通解为则方程组的奇解矩阵为并令取解:由)(φ.0000.021000,,1,0,0,,0C ()()(..)()(,001010100,001010100)(A .4321212121313123212223213311133111223321⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛≠=-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛====⎩⎨⎧-==⎩⎨⎧==±=⇒=⇒=+=⇒=⇒=⇒⎭⎬⎫⎪⎩⎪⎨⎧---==⇒=---=⇒⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=----------t t t t t t t t t t t t t t ttt t t tttt t t t t t t ttt t t dt dy tdt dy dtdy e e e C e e C e e C y e e e e e e e e e e e e e e e e e e e e e e e y C y C e y e y e y e y y y y y C y y dy y dy y y y dy dy b a b y eC y y a y y dt dy t 故通解为线性无关即为方程祖的三个解。
1 / 16习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解: 1.0)12()13(2=++-dy x dx x解:13),(2-=x y x P , 12),(+=x y x Q ,则0=∂∂y P ,2=∂∂xQ, 所以 x Q y P ∂∂≠∂∂ 即 原方程不是恰当方程. 2.0)2()2(=+++dy y x dx y x 解:,2),(y x y x P +=,2),(y x y x Q -=则,2=∂∂y P ,2=∂∂xQ所以x Q y P ∂∂=∂∂,即 原方程为恰当方程 则,0)22(=-++ydy xdy ydx xdx两边积分得:.22222C y xy x =-+ 3.0)()(=+++dy cy bx dx by ax 〔a,b 和c 为常数〕. 解:,),(by ax y x P +=,),(cy bx y x Q +=则,b y P =∂∂,b xQ =∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程 则,0=+++cydy bxdy bydx axdx两边积分得:.2222C cy bxy ax =++ 4.)0(0)()(≠=-+-b dy cy bx dx by ax解:,),(by ax y x P -=,),(cy bx y x Q -=则,b y P -=∂∂,b xQ=∂∂ 因为 0≠b , 所以x Q y P ∂∂≠∂∂,即 原方程不为恰当方程5.0sin 2cos )1(2=++udt t udu t解:,cos )1(),(2u t u t P +=u t u t Q sin 2),(=则,cos 2u t t P =∂∂,cos 2u t xQ=∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程则,0cos )sin 2cos (2=++udu udt t udu t2 / 16两边积分得:.sin )1(2C u t =+ 6.0)2()2(2=++++dy xy e dx y e ye xxx解: xy e y x Q y e ye y x P xxx2),(,2,(2+=++=,则,2y e y P x +=∂∂,2y e xQx +=∂∂ 所以x Q y P ∂∂=∂∂,即 原方程为恰当方程则,0])2()[(22=++++dy xy e dx y ye dx e xxx两边积分得:.)2(2C xy e y x=++7.0)2(ln )(2=-++dy y x dx x xy解:,2ln ),(),(2y x y x Q x xy y x P -=+=则,1x y P =∂∂,1x x Q =∂∂ 所以xQy P ∂∂=∂∂,即 原方程为恰当方程 则02)ln (2=-++ydy dx x xdy dx x y两边积分得:23ln 3y x y x -+.C = 8.),(0)(22为常数和c b a cxydy dx by ax =++解:,),(,),(22cxy y x Q by ax y x P =+=则,2by y P =∂∂,cy xQ =∂∂ 所以 当x Q y P ∂∂=∂∂,即 c b =2时, 原方程为恰当方程则0)(22=++cxydy dx by dx ax两边积分得:233bxy ax +.C = 而当c b ≠2时原方程不是恰当方程.9.01222=-+-dt ts s ds t s 解:,),(,12),(22ts s s t Q t s s t P -=-= 则,212t s t P -=∂∂,212tss Q -=∂∂ 所以x Q y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:C ts s =-2.3 / 1610.,0)()(2222=+++dy y x yf dx y x xf 其中)(⋅f 是连续的可微函数.解:),(),(),(),(2222y x yf y x Q y x xf y x P +=+=则,2f xy y P '=∂∂,2f xy xQ '=∂∂ 所以x Q y P ∂∂=∂∂, 即原方程为恰当方程,两边积分得:22()f xy dx C +=⎰,即原方程的解为C y x F =+)(22<其中F 为f 的原积分>.习题2-2. 1. 求解下列微分方程,并指出这些方程在平面上的有意义 的区域::〔1〕yx dx dy 2= 解:原方程即为:dx x ydy 2= 两边积分得:0,2332≠=-y C x y .〔2〕)1(32x y x dx dy += 解:原方程即为:dx xx ydy 321+=4 / 16两边积分得:1,0,1ln 2332-≠≠=+-x y C x y .〔3〕0sin 2=+x y dxdy解: 当0≠y 时原方程为:0sin 2=+xdx y dy两边积分得:0)cos (1=++y x c .又y=0也是方程的解,包含在通解中,则方程的通解为0)cos (1=++y x c .〔4〕221xy y x dx dy +++=;解:原方程即为:2(1)1dyx dx y =++ 两边积分得:c x x arctgy ++=22, 即 )2(2c x x tg y ++=. 〔5〕2)2cos (cos y x dxdy= 解:①当02cos ≠y 时原方程即为:dx x y dy 22)(cos )2(cos = 两边积分得:2222sin 2tg y x x c --=. ②y 2cos =0,即42ππ+=k y 也是方程的解. 〔N k ∈〕 〔6〕21y dxdyx-= 解:①当1±≠y 时 原方程即为:xdx y dy =-21 两边积分得:c x y =-ln arcsin . ②1±=y 也是方程的解.〔7〕.yxe y e x dx dy +-=- 解.原方程即为:dx ex dy e y xy)()(--=+5 / 16两边积分得:c e x e y x y++=+-2222, 原方程的解为:c ee x y xy=-+--)(222.2. 解下列微分方程的初值问题. 〔1〕,03cos 2sin =+ydy xdx 3)2(ππ=y ;解:两边积分得:c yx =+-33sin 22cos , 即c x y =-2cos 33sin 2因为 3)2(ππ=y , 所以 3=c .所以原方程满足初值问题的解为:32cos 33sin 2=-x y . 〔2〕.0=+-dy ye xdx x, 1)0(=y ; 解:原方程即为:0=+ydy dx xe x,两边积分得:c dy y dx e x x=+-2)1(2, 因为1)0(=y , 所以21-=c , 所以原方程满足初值问题的解为:01)1(22=++-dy y dx e x x.〔3〕.r d dr=θ, 2)0(=r ; 解:原方程即为:θd rdr=,两边积分得:c r =-θln ,因为2)0(=r , 所以2ln =c ,所以原方程满足初值问题的解为:2ln ln =-θr 即θe r 2=.〔4〕.,1ln 2yx dx dy+=0)1(=y ; 解:原方程即为:dx x dy y ln )1(2=+,两边积分得:3ln 3y y x x x c ++-=, 因为0)1(=y , 所以1=c ,所以原方程满足初值为:3ln 13y y x x x ++-=6 / 16〔5〕.321xy dxdyx=+, 1)0(=y ; 解:原方程即为:dx xx y dy 231+=, 两边积分得:c x y ++=--22121, 因为1)0(=y , 所以23-=c ,所以原方程满足初值问题的解为:311222=++yx .1. 解下列微分方程,并作出相应积分曲线的简图. 〔1〕.x dxdycos = 解:两边积分得:c x y +=sin . 积分曲线的简图如下:〔2〕.ay dxdy=, 〔常数0≠a 〕; 解:①当0≠y 时,原方程即为:dx ay dy = 积分得:c x y a +=ln 1, 即 )0(>=c cey ax②0=y 也是方程的解. 积分曲线的简图如下:7 / 16〔3〕.21y dxdy-=; 解:①当1±≠y 时,原方程即为:dx y dy =-)1(2 积分得:c x yy+=-+211ln ,即 1122+-=x x ce ce y .②1±=y 也是方程的解.积分曲线的简图如下:〔4〕.n y dx dy =, )2,1,31(=n ; 解:①当0≠y 时, ⅰ〕2,31=n 时,原方程即为 dx y dy n =,积分得:c y n x n=-+-111.8 / 16ⅱ〕1=n 时,原方程即为dx ydy= 积分得:c x y +=ln ,即 )0(>=c ce y x.②0=y 也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某9 / 16B 从点开始跟踪A,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为)(x y y =,由题意与导数的几何意义,则有22yb ydx dy --=,所以求B 的运动轨迹即是求此微分方程满足b y =)0(的解.解之得:222222ln21y b y b b y b b b x ----++=. 5. 设微分方程)(y f dxdy=〔2.27〕,其中f<y> 在a y =的某邻域〔例如,区间ε<-a y 〕内连续,而且a y y f =⇔=0)(,则在直线a y =上的每一点,方程〔2.27〕的解局部唯一,当且仅当瑕积分∞=⎰±εa ay f dy)(〔发散〕. 证明:〔⇒〕首先经过域1R :,+∞<<∞-x a y a <≤-ε 和域2R :,+∞<<∞-x ε+≤<a y a内任一点〔00,y x 〕恰有方程〔2.13〕的一条积分曲线, 它由下式确定00)(x x y f dyyy-=⎰. 〔*〕 这些积分曲线彼此不相交. 其次,域1R 〔2R 〕内的所有 积分曲线c x y f dy +=⎰)(都可由其中一条,比如0)(c x y f dy+=⎰ 沿着 x 轴的方向平移而得到。
习题2.3解:卫j ,赳=1 ..y;x则 W =ex所以此方程是恰当方程。
凑微分,x 2dx -2ydy (ydx xdy)二 0得:1 x 3 xy _ y 2 二 C3(y 「3x 2)dx 「(4y 「x)dy 二 0.:MN ._ 1 , — 1._y ;x则如」cy ex所以此方程为恰当方程。
凑微分,ydx xdy - 3x 2dx - 4ydy = 0得 x 3 -xy 2y 2 二 C型 二 2x(x-y)2-2x 2(x-y) _ 2xy:x(x_y)4 (x_y)31、 验证下列方程是恰当方程,并求出方程的解。
1. 2(x y)dx (x - 2y)dy = 02.解:3.y 21 1 x 2EYdx [「E ]dy,解:.:M 2y(x-y)2-2y 2(x-y)(-1) 2xy3-y(x-y)4「 (x - y)(x-y)4则也=卫ex cy1 x 2y (x-y)2因此此方程是恰当方程。
2.:u y 1 2 _.x (x-y) x2.:u 1 x■7(x-y)2(2)(1) 做x 的积分,1u2dx dx (y)-In x 「(y)(3) 做y 的积分,孔-(-1)y 2 (x-y)2y d (y):y(x-y)2dy=-2xy y 2 d(y)(x-y)2dydy (y)二y2 - 2xy 1 X2 -2xy y2 y (x - y)2(x - y)2(x-y)24、i(1)dy=l ny_y yy u 二- 一- In x In y - y =In x—y x 故此方程的通解为In 1二C2(3xy2 2x3)dx 3(2x2y y2)dy = 0 解:.:M :N12xy ,12xy .:M :N■:y :x则此方程为恰当方程。
凑微分,6xy 2dx 4x 3dx 6x 2ydy 3y 2dy = 03d(x 2y 2) d(x 4) d(x 3) = 0得:x 43x 2y 2y 3= Cd(-cos x)+d (sin- )+dx+d(- 1)=0yx y所以,d(sin y -cos- +x -1 )=0 xy y 故所求的解为sin$ -cos- +x -- =Cx y y求下列方程的解:2 26. 2x(y e x -1)dx+ e x dy=0解:迴二 2x e x2, 岂=2x e"cyex所以,迴二型,故原方程为恰当方程2 2又 2xy e x dx-2xdx+ e x dy=0解:sin x yyM=y 12cos 丄cos* -冷 xy sin y x 1 、+ r )dy=0ycos y+1xcos yxcM 鋼 _ 1 2y sin xy cN1x2sin;:x yy 所以=cN :x 因为 1 . sin xdx-cos yxcos y +-y3sin$x x x,故原方程为恰当方程yy1 y x2cos 丄 dx+dx+ — cos- dy-sin xdy+丄 dy=0y yyyxx 13 cos------------- 2yy xy xcy ex所以,d(ye"-x2)=0故所求的解为ye"-x2=C7.(e x+3y2)dx+2xydy=0解:e x dx+3y2dx+2xydy=0e x x2dx+3x2y2dx+2x3ydy=0所以,d e x( x2-2x+2)+d( x 3y2)=0即 d [e x( X2-2X+2)+ x3y2]=0故方程的解为e x( x2-2X+2)+ x3y2=C8.2xydx+( x2+1)dy=0解:2xydx+ x2dy+dy=Od( x2y)+dy=0即d(x2y+y)=0故方程的解为x2y+y=C9、ydx -xdy = x2 y2 dx解:两边同除以x2 y2得yd x ~ x d y -dxx + yf 、即,d arctg — = dx< y丿故方程的通解为argtg - =x + c ly丿10、ydx - X y3 dy =0解:方程可化为:ydx了叽ydyy/ \即, d — = ydyly丿故方程的通解为:-=-^2c 即:2x=yy 2cy 2同时,y=0也是方程的解。
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
习题2.1 1.dxdy =2xy,并满足初始条件:x=0,y=1的特解。
解:ydy =2xdx 两边积分有:ln|y|=x 2+cy=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2ydy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dxdy =yx xy y321++解:原方程为:dx dy =yy 21+31xx +yy 21+dy=31xx +dx两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:yy -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
5.(y+x )dy+(x-y)dx=0 解:原方程为:dxdy =-yx y x +-令xy =u 则dx dy =u+x dxdu 代入有:-112++uu du=x1dxln(u 2+1)x=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy .6. xdxdy -y+22y x -=0解:原方程为:dx dy =xy +x x ||-2)(1xy -则令xy =u dxdy =u+ xdxdu211u- du=sgnx x1dxarcsinxy =sgnx ln|x|+c7. tgydx-ctgxdy=0 解:原方程为:tgydy =ctgxdx两边积分:ln|siny|=-ln|cosx|-ln|c| siny=xc cos 1=xc cos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c. 8dxdy +yexy 32+=0解:原方程为:dxdy =yey2e x 32 ex3-3e2y-=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =xy lnx y令xy =u ,则dxdy =u+ xdxduu+ xdxdu =ulnuln(lnu-1)=-ln|cx| 1+lnxy =cy.10.dxdy =e y x -解:原方程为:dxdy =e x e y -e y =ce x11dxdy =(x+y)2解:令x+y=u,则dxdy =dxdu -1dxdu -1=u 2211u+du=dxarctgu=x+c arctg(x+y)=x+c12.dxdy =2)(1y x +解:令x+y=u,则dxdy =dxdu -1dxdu -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dxdy =1212+-+-y x y x解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14: dxdy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 dxy-d(21y 2+2y)-d(21x 2+5x)=0y 2+4y+x 2+10x-2xy=c. 15:dxdy =(x+1) 2+(4y+1) 2+8xy 1+解:原方程为:dx dy=(x+4y )2+3 令x+4y=u 则dxdy=41dxdu -4141dx du -41=u 2+3dxdu =4 u 2+13u=23tg(6x+c)-1tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy =f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程:1) y(1+x 2y 2)dx=xdy2) y x dxdy =2222x -2 y x 2y+证明: 令xy=u,则x dxdy +y=dxdu则dxdy =x 1dxdu -2xu ,有:u x dxdu =f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
习题2.31、验证下列方程是恰当方程,并求出方程的解。
1. 0)2()(2=-++dy y x dx y x 解: 1=∂∂yM,x N ∂∂=1 . 则xNy M ∂∂=∂∂ 所以此方程是恰当方程。
凑微分,0)(22=++-xdy ydx ydy dx x 得 :C y xy x =-+23312. 0)4()3(2=---dy x y dx x y解: 1=∂∂yM,1=∂∂x N . 则xNy M ∂∂=∂∂ . 所以此方程为恰当方程。
凑微分,0432=--+ydy dx x xdy ydx 得 C y xy x =+-2323. 0])(1[]1)([2222=--+--dy y x x y dx xy x y解: 3422)(2)()1)((2)(2y x xyy x y x y y x y y M -=-----=∂∂ 3422)(2)()(2)(2y x xyy x y x x y x x x N -=-----=∂∂ 则yNx M ∂∂=∂∂ .因此此方程是恰当方程。
x y x y x u 1)(22--=∂∂ (1) 22)(1y x x y y u --=∂∂ (2) 对(1)做x 的积分,则)(1)(22y dx x dx y x y u ϕ+--=⎰⎰ =---yx y 2)(ln y x ϕ+ (3) 对(3)做y 的积分,则dy y d y x y y x y y u )()(2)()1(22ϕ+--+---=∂∂ =dy y d y x y xy )()(222ϕ+-+- =22)(1y x x y -- 则11)(21)(2)(1)(2222222-=-+--=-----=y y x y xy x y y x xy y y x x y dy y d ϕ y y dy yy -=-=⎰ln )11()(ϕyx xyx y y x y xy y x y y y x y x y u --=--+-=-+---=ln ln ln ln 222 故此方程的通解为C yx xyx y =-+ln 4、 0)2(3)23(22232=+++dy y y x dx x xy解:xy yM12=∂∂,xy x N 12=∂∂ . xNy M ∂∂=∂∂ . 则此方程为恰当方程。
习 题 6-11. 求出齐次线性微分方程组 y t A dtdy )(=的通解,其中A (t )分别为: (1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫ ⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
(1)方程组的分量形式为:211y y dt dy += ,22y dtdy = 从后一式容易求出2y 的通解为 t ke y =2 ,其中K 为任意常数,可分别取02=y 和 t e y =2,代入前一式得到两个相应的特解,t e y =1和 t te y =2这样就求得方程组的一个解矩阵为()0tt t e te t e ⎛⎫Φ= ⎪⎝⎭又 2det ()0t t e Φ=≠ 。
因此,)(t Φ是方程组的一个基解矩阵,根据定理6.1 ,方程的通解为⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛t t t e te c e c y y 21210(2)方程的分量形式为 ⎪⎩⎪⎨⎧-==1221y dtdy y dt dy 由①、②可和 21120d y y dt += 由观察法知,t y cos 1=,t y sin 1=为此方程的两个特解,将其代入②式可得两个相应的特解,将其代入②式可得两个相应的特解:2sin y t =-,2cos y t =。
这样就求得方程组的一个解矩阵为 cos int ()int cos t s t s t ⎛⎫Φ= ⎪-⎝⎭又 []01)(det ≠=Φ=t ,因此)(t Φ中方程组的一个基解矩阵。
故方程组的通解为1122cos int int cos y t s c c y s t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ ① ②(3)程组的分量形式为:⎪⎩⎪⎨⎧='='='132231y y y y y y 解 ①+③得3131)(y y y y dtd +=+ 解 ①-③得 1313()d y y y y dt -=- 解之得 131132 t t y y ke y y k e --+=-=由④、⑤可得 ()()⎪⎩⎪⎨⎧-=-=+=+=----tt t t t t t t e c e c e k e k y e c e c e k e k y 312.133******** 又由②得 t e c y 22=由此可求得方程组的一个解矩阵⎪⎪⎪⎭⎫ ⎝⎛-=Φ--t t t t te e e e e t 0000)( 显然,[]0)(det ≠-=Φt ze t ,因此)(t Φ是方程组的一个基解矩阵,故方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--t t t e t e e c e c e e c y y y 00003213213.试证向量函数组 ⎪⎪⎪⎭⎫ ⎝⎛001 ,⎪⎪⎪⎭⎫ ⎝⎛00x ,⎪⎪⎪⎭⎫ ⎝⎛002x 在任意区间 b x a <<上线性相关,则存在不全为零的三个常数 321,,c c c 使得,000000012321=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛x c x c c 即 b x a x c x c c <<=++02321①而①式之左端是一个不高于二次的多项式,它最多只可能有二个零点,同此这与①式在b x a <<上恒等于零矛盾,从而得证。
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( )2.微分方程的通解中包含了它所有的解。
( )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( )4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21(C 为任意常数)。
() 6.y y sin ='是一阶线性微分方程。
( )7.xy y x y +='33不是一阶线性微分方程。
( )8.052=+'-''y y y 的特征方程为0522=+-r r 。
( )9.221xy y x dx dy+++=是可分离变量的微分方程。
( )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是 。
②()()022=-++dy y x y dx x xy 是 。
③x yy dx dyx ln ⋅=是 。
④x x y y x sin 2+='是 。
⑤02=-'+''y y y 是 。
2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。
3.x e y 2-=''的通解是 。
4.x x y cos 2sin -=''的通解是 。
5.124322+=+'+'''x y x y x y x 是 阶微分方程。
6.微分方程()06='-''⋅y y y 是 阶微分方程。
7.xy 1=所满足的微分方程是 。
8.x y y 2='的通解为 。
9.0=+xdy y dx 的通解为 。
10.()25112+=+-x x y dx dy ,其对应的齐次方程的通解为 。
常微分方程第二版答案第三章习题3—11.判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='.解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=xy x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则<-->=??,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ??),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2.求初值问题=--=,0)1(,22y y x dxdy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解设22),(y x y x f -=,则4),(max ),(==∈y x f M Ry x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ?是方程的解,)(2x ?是第二次近似解,则0)1()(0=-=y x ?,3131)0(0)(3121-=-+=?-x dx x x x,4211931863])3131([0)(34712322+-+--=--+=?-x x x x dx x x x x.在区间411≤+x 上,)(2x ?与)(x ?的误差为322)!12()()(h ML x x +≤-??. 取22),(max max ),(),(=-=??=∈∈y y y x f L Ry x R y x ,故241)41()!12(24)()(322=+?≤-x x ??.3.讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解设3123),(y y x f =,则3221-=??y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ??),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x . 所以通过点)0,0(O 的一切解为0=y 及,,, )(,023C x C x C x y >≤-=.,,)(,023C x C x C x y >≤--=如图. 4.试求初值问题1++=y x dxdy,0)0(=y ,的毕卡序列,并由此取极限求解.解按初值问题取零次近似为0)(0=x y ,一次近似为2121)10()(x x ds s x y x+=++=?,二次近似为 3220261]1)21([)(x x x ds s s s x y x ++=+++=?, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x+++=++++=, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+?+++=,五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--+++++++=++n x x n x x x x x n n ,所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5.设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy=,00)(y x y =的右侧解是唯一的. 证设)(1x y ?=,)(2x y ?=是初值问题的两个解,令)()()(21x x x -=,则有0)(000=-=y y x ?.下面要证明的是当0x x ≥时,有0)(≡x ?.用反证法.假设当0x x ≥时,)(x ?不恒等于0,即存在01x x ≥,使得0)(1≠x ?,不妨设0)(1>x ?,由)(x ?的连续性及0)(0=x ?,必有100x x x <≤,使得0)(0=x ?,0)(>x ?,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==??,?+=xx dxx x f y x 0)](,[)(101??,+=xx dx x x f y x 0)](,[)(202??,则有)()()(21x x x -=?-=xx dx x x f x x f 0)]}(,[)](,[{21??,10x x x ≤<.由0)()()(21>-=x x x (10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ?.从而证明方程的右侧解是唯一的.习题3—31.利用定理5证明:线性微分方程)()(x b y x a dxdy+= (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2.讨论下列微分方程解的存在区间: 1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为xCey -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<="" 为渐近线,当+∞→x="" 时,以0="y" 时,以1="y" ,则方程满足00)(y="">ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ?=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ?=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图().2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C .3.设初值问题)(E :2)(2)32(y x e y y dxdy+--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明因2)(2)32(),(y x ey y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<="" 的下方,积分曲线γ是单调上升的,并且它在向右延伸时不可能从直线1-="y" 的右行解的延伸定理,得出)(e="" 的解γ可以延伸到2r="" 的边界.另一方面,直线1-="y" 穿越到上方.因此它必可向右延伸到区间+∞<类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4.设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdyx -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x-=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡xxe x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ?=,在平面内延伸)(x y ?=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ?β.下证后一种情形不可能出现.事实上,若不然,则必存在β)(.不妨设βe x >)(.于是必存在),(00βx x ∈,使0()x x e ?=,x e x <)(?(00x x x <≤).此时必有0)(00'>=≥x x x x e dxde x ?,但0),())(,()(00000'===x x e x F x x F x ??,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ?=(00)(y x y =)必可延拓到+∞<≤x x 0.。
习题2-41.求解下列微分方程:(1)yx xy y --='22;解:令ux y =,则原方程化为uu u dx du x --=+212,即x dxdu u u =--122,积分得:c x u u u +=--+-ln 1ln 2111ln2 还原变量并化简得:3)()(y x c x y +=-(2)4252--+-='y x x y y ;解:由⎩⎨⎧=--=+-042052y x x y 得 ⎩⎨⎧-==21y x令2,1+=-=y v x u , 则有vu u v du dv --=22,由第一题的结果知此方程解为3)()(v u c u v +=-, 还原变量并化简得:.)1(33++=+-y x c x y(3)14212-+++='y x y x y ;解:令y x v 2+=, 则1212121-++=+=v v dx dy dx dv , 即1214-+=v v dx dv ,此方程为变量分离方程, 分离变量并积分得:c x v v +=+-14ln 8321,还原变量并化简得:c y x x y =++--184ln 348. (4)xy y x y -='33.解:①当0≠y 时,方程两边同时乘以32--y ,则233222--+-='-xy x y y , 令2-=y z , 则322x xz dxdz-=, 此方程为一阶线性方程,由公式得:122++=x ce z x还原变量得:122)1(2-++=x ce y x . ②0=y 也是方程的解.2. 利用适当的变换,求解下列方程: (1))cos(y x y -=';解:令y x u -=,则u dx dy dx du cos 11-=-=, ①当1cos ≠u 时,有dx udu =-cos 1, 即 dx u du=2sin 22,两边积分得:c x uctg +=221还原变量化简得:2sin 2sin 22cos yx c y x x y x -+-=-. ②当1cos =u 时,即πk x y 2+=)(Z k ∈也是方程的解. (2)0)()3(22=+++dv uv u du v uv ; 解:方程两边同时乘以u 则原方程化为:0)()3(2322=+++dv v u u du uv v u ,即 0)()3(2232=+++vdv u du uv dv u vdu u 此方程为全微分方程,则原方程的解为:c v u v u =+22321. (3))2(2)3(222yx y x dx dy y x -=++;解:原方程即为324222222++-=y x x y xdx ydy ,令u y v x ==22,,则324++-=v u vu dv du ,由⎩⎨⎧=++=-03024v u v u 得⎩⎨⎧-=-=21v u , 令⎩⎨⎧+=+=21v n u m ,则有n m n m dn dm +-=24令z n m=,则zn m =, 124+-=+=z z z n dn dz dn dm , 则有1)2)(1(+--=z z z n dn dz ,此方程为变量分离方程, 分离变量并积分得:n c zz ln 2)1(ln32+=--,还原变量并化简得:322222)32()1(-+-=+-y x c y x .(4)yy y x xxy x dx dy 8237323223-+-+=. 解:原方程即为823732222222-+-+=y x y x xdx ydy ,令22,x v y u ==,则823732-+-+=u v u v dv du ,由⎩⎨⎧=++=-+08230732u v u v ⎩⎨⎧==⇒21v u , 令⎩⎨⎧-=-=21v n u m , 则m n m n dn dm 2332++=,令z n m=,可将方程化为变量分离形方程, n dn dz zz =-+)2223(2,两边积分得:c n z z z +=---+ln 1ln 2111ln 432, 还原变量并化简得:)3()1(22522-+=--y x c y x .3. 求解下列微分方程: (1).2241xy y --='; 解:令xy z =, 则原方程可化为:)41(12-+-=z z x dx dz , ①当21≠z 时,即21≠xy 时方程为x dxdz z =--2)21(1 ,此方程为变量分离方程, 两边积分得:c x z +=-ln 211还原变量并化简得:cxx x x y ++=ln 121; ②当21=z 时,xy 21=是方程的特解. (2).1222++='xy y x y x ; 解:原方程即为:221x x y y y ++=', 令xy z =,则2)1(1+=z xdx dz ,此方程为变量分离方程, 分离变量积分得:c x z +=+-ln 11, 还原变量并化简得:cxx x x y +--=ln 11. 4. 试把二阶微分方程0)()(=+'+''y x q y x p y 化为一个黎卡提方程. 解:令⎰=udxe y , 则⎰='udxue y ,+⎰=''udxe u y 2⎰'udxe u ,代入原方程可得:=+'+''y x q y x p y )()(+⎰udxe u 2⎰'udxe u +)()(x q ue x p udx+⎰⎰udxe =0,即有:0)()(2=++'+x q u x p u u ,此方程为一个黎卡提方程.5. 求一曲线,使得过这一曲线上任一点的切线与该点向径的夹角等于45.解:设此曲线为)(x y y =,由题意得:1451==+-tg xy dx dy x y dx dy ,化简得:y x y x dx dy -+=, 此方程为齐次方程,解之得:c y x x y arctg =+-)ln(2122.6. 探照灯的反光镜(旋转面)应具有何种形状,才能使点光源发射的光束反射成平行线束?解:取点光源所在处为坐标原点,而x 轴平行于光的反射方向,建立三维坐标系.设所求曲面由曲线⎩⎨⎧==0)(z x f y 绕x 轴旋转而成,则求反射镜面问题归结为求 xy 平面上的曲线y=f(x)的问题.由题意及光的反射定律,可得到函数)(x f y =所应满足的微分方程式:22yx x ydx dy ++=,此方程为齐次方程, 解之得:)2(2x c c y +=,(其中c 为任意正常数).)2(2x c c y +=就是所求的平面曲线,它是抛物线,因此反射镜面的形状为旋转抛物面)2(22x c c z y +=+.习题2-51.求解下列微分方程:(1).0)()23(2232=++++dy y x dx y xy y x ;解:方程两边同乘xe33, 则)33()369(233323323=++++dy y e dx y e dy x e xydx e ydx x e x x x x x ,此方程为全微分方程,即 c y e y x e x x =+33233. (2).0)2(2=-+-dy e xy ydx y ;解:方程两边同乘y e y 21, 则 0)12(22=-+dy yxe dx e y y即01)2(22=-+dy ydy xe dx e yy 此方程为全微分方程,即有 c y xe y =-ln 2 .(3).0)3()63(2=+++dy xyy x dx y x ;解:方程两边同乘 xy , 则0)3()63(232=+++dy y x dx x y x即 0)36()3(232=+++dy y xdx dy x ydx x 此方程为全微分方程,即有c x y y x =++2333 .(4).22()0ydx x y x dy -++=; 解:方程两边同乘221y x +, 则 022=-+-dy yx xdyydx , 此方程为全微分方程,即 c y yxarctg=- (5).0)1(2223=-+dy y x dx xy ;解:方程两边同乘21y , 则0)1(222=-+dy y x xydx , 此方程为全微分方程,即c y x y=+21. (6).0)1(=-+xd y dx xy y ;解:方程两边同乘21y , 则0)1(2=-+dy y xdx y xdx , 此方程为全微分方程,即c x y x =+221. (7)0)(2223=-+dy xy x dx y ;解:方程两边同乘y x 21, 则 02)2(22=+-dy y dy x y dx x y , 此方程为全微分方程,即 c y xy =+-ln 22(8).0)c o s2(=++dy y y ctgy e dx e xx解:方程两边同乘y sin , 则02sin )cos sin (=++ydy yc ydy e ydx e x x ,此方程为全微分方程,即 11cos cos 2sin 224xe y y y y c -+=. 2. 证明方程(5.1)有形如)),((y x φμμ=的积分因子的充要条件是)),((y x f yP P x Q Q xQy P φ=∂∂-∂∂∂∂-∂∂,并写出这个积分因子。
常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。
习题 2.4求解下列方程1、y y x '+='13 解:令t p y dx dy 1=='=,则23311t t t t x +=⎪⎭⎫ ⎝⎛+=, 从而()()c t t c dt t c t t d t c pdx y ++=++=++=+=⎰⎰⎰223231223,于是求得方程参数形式得通解为⎪⎩⎪⎨⎧++=+=c t t y t t x 223223. 2、()0133='--'y x y 解:令tx p y dx dy =='=,则()()0133=--tx x tx ,即tt t t x 1123-=-=, 从而c t t d t t t c pdx y +⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=+=⎰⎰1122 ()c dt t t t +⎪⎭⎫ ⎝⎛+-=⎰23121 c dt t t t +⎪⎭⎫ ⎝⎛--=⎰2412 c t t t ++-=1215225, 于是求得方程参数形式得通解为⎪⎪⎩⎪⎪⎨⎧++-=-=c t t t y t t x 121521252. 3、y e y y ''=2 解:令p y dxdy ='=,则p e p y 2=, 从而()c e p d px p +=⎰21()c dp e p pe pp p ++=⎰221 =()⎰++c dp pe e p p 2()c e p p ++=1,于是求得方程参数形式的通解为()⎪⎩⎪⎨⎧=++=p p ey y c e p x 21, 另外,y=0也是方程的解.4、()a y y 212='+, a 为常数 解:令ϕtg y dx dy ='=,则ϕϕϕ222cos 2sec 212a a tg a y ==+=, 从而()c ad tg c dy p x +=+=⎰⎰ϕϕ2cos 211c a cd a ++-=+-=⎰⎰22cos 14cos 42ϕϕϕ ()c a ++-=ϕϕ2sin 2, 于是求得方程参数形式的通解为()⎩⎨⎧=++-=ϕϕϕ2cos 22sin 2a y c a x . 5、='+22y x 1 解:令t p y dxdy cos =='=,则t t x sin cos 12=-=, 从而()c t td y +=⎰sin cosc dt t c tdt ++=+=⎰⎰22cos 1cos 2 c t t ++=2sin 4121, 于是求得方程参数形式的通解为⎪⎩⎪⎨⎧++==c t t y t x 2sin 4121sin . 6、()()2221y y y '-=-'解:令yt y ='-2,则11-='-yt y ,得t t y 1+=, 所以()()dt t dt t t t t dt t t t t t t d yt dy y dy dx 222222*********-=--=--=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=-='=-, 从而c tc dt t x +=+⎪⎭⎫ ⎝⎛-=⎰112, 于是求得方程参数形式的通解为⎪⎪⎩⎪⎪⎨⎧+=+=t t y c t x 11,下面是诗情画意的句子欣赏,不需要的朋友可以编辑删除!!谢谢1. 染火枫林,琼壶歌月,长歌倚楼。
习题4.21. 解下列方程 (1)045)4(=+''-x x x解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=t t t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(='''-x x 解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=- (4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5)0=+'+''x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t e c t e c x t t 23sin 23cos 212211--+= (6)12+=-''t s a s解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1 故通解为x=t t t te c e c e c 3221++-4-t (8)322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- 取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B故通解为t t t e c t e c t e c x 321221123sin 23cos ++=--)sin (cos 21t t +- (10)t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B故通解为x=t t e c e c 221-+t t 2sin 562cos 52--(11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--=λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t++, 当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21, =λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t te c e c 521--++te 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1 不是特征方程的根,取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos 21+=+t e t t --)sin 414cos 415((15)t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+''t B t A x 2sin 2cos ~+=代入原方程解得 A=31 B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=tt cos 21-t 2cos 31+。
习题 3.4(一)、解下列方程,并求奇解(如果存在的话):1、422⎪⎭⎫ ⎝⎛+=dx dy x dx dyx y解:令p dxdy =,则422p x xp y +=,两边对x 求导,得dxdp px xpdxdp xp p 3244222+++=()02213=⎪⎭⎫⎝⎛++p dx dpxxp 从0213=+xp 得 0≠p 时,2343,21py px -=-=;从02=+p dxdp x得 222,c pc y pc x +==,0≠p 为参数,0≠c 为任意常数.经检验得⎪⎪⎩⎪⎪⎨⎧+==222c p c y p c x ,(0≠p )是方程奇解.2、2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy =,则2p x y +=,两边对x 求导,得dxdp p p 21+=pp dxdp 21-=,解之得 ()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2,且y=x+1也是方程的解,但不是奇解. 3、21⎪⎭⎫ ⎝⎛++=dx dy dxdy xy解:这是克莱洛方程,因此它的通解为21c cx y ++=,从⎪⎩⎪⎨⎧=+-++=01122c cx c cx y 中消去c, 得到奇解21x y -=.4、02=-+⎪⎭⎫⎝⎛y dx dy x dx dy 解:这是克莱洛方程,因此它的通解为 2c cx y +=,从⎩⎨⎧=++=022c x c cx y 中消去c, 得到奇解 042=+y y . 5、022=-+⎪⎭⎫⎝⎛y dx dy xdx dy 解:令p dxdy =,则22p xp y +=,两边对x 求导,得 dxdp pdxdp xp p 222++=22--=x pdpdx ,解之得 232-+-=cpp x ,所以 1231-+-=cpp y ,可知此方程没有奇解. 6、0123=-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛dx dy y dx dy x解:原方21⎪⎭⎫⎝⎛-=dx dy dxdy xy ,这是克莱罗方程,因此其通解为21ccx y -=,从⎪⎩⎪⎨⎧=+-=-02132c x c cx y 中消去c ,得奇解042732=+y x .7、21⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=dx dy dx dy x y解:令p dxdy =,则()21p p x y =+=,两边对x 求导,得 22+-=-p ce x p , 所以 ()212+-+=-p e p c y p , 可知此方程没有奇解. 8、()022=--⎪⎭⎫ ⎝⎛a x dx dy x解:()xa x dx dy 22-=⎪⎭⎫ ⎝⎛xa x dxdy -±=dx x a x dy ⎪⎪⎭⎫⎝⎛-±= ⎪⎪⎭⎫ ⎝⎛-±=2123232axx y ()()22349a x x c y -=+可知此方程没有奇解. 9、3312⎪⎭⎫⎝⎛-+=dx dy dx dyx y解:令p dxdy =,则3312p p x y -+=, 两边对x 求导,得 dxdp pdxdp p 22-+=212pp dxdp --=解之得 ()c p p x +--+-=2ln 3222,所以 c p p p p y +------=2ln 6433123, 且 322-=x y 也是方程的解,但不是方程的奇解.10、()012=-++⎪⎭⎫⎝⎛y dx dy x dx dy 解:2⎪⎭⎫⎝⎛++=dx dy dx dydx dyx y这是克莱罗方程,因此方程的通解为2c c cx y ++=, 从⎩⎨⎧++++=cx c c cx y 212中消去c, 得方程的奇解()0412=++y x .(二)求下列曲线族的包络. 1、2c cx y +=解:对c 求导,得 x+2c=0, 2x c -=, 代入原方程得,442222xxxy -=+-=,经检验得,42xy -=是原方程的包络.2、0122=-+cx y c解:对c 求导,得 yxc x yc 2,0222-==+,代入原方程得0124424=--yxy yx,即044=+y x ,经检验得044=+y x 是原方程的包络. 3、()()422=-+-c y c x解:对c 求导,得 –2(x-c)-2(y-c)=0, 2y x c +=,代入原方程得()82=-y x .经检验,得 ()82=-y x 是原方程的包络.4、()c y c x 422=+-解:对c 求导,得 -2(x-c)=4, c=x+2,代入原方程得()2442+=+x y ,()142+=x y , 经检验,得()142+=x y 是原方程的包络.(三) 求一曲线,使它上面的每一点的切线截割坐标轴使两截距之和等于常数c.解:设所求曲线方程为y=y(x),以X 、Y 表坐标系,则曲线上任一点(x,y(x))的切线方程为()()()()x X x y x y Y -'=-,它与X 轴、Y 轴的截距分别为y y x X '-=,y x y Y '-=,按条件有 a y x y y y x ='-+'-,化简得y y a y x y '-'-'=1,这是克莱洛方程,它的通解为一族直线cac cx y --=1,它的包络是()⎪⎪⎩⎪⎪⎨⎧----=--=21101c acc a x c ac cx y ,消去c 后得我们所求的曲线()24a y x ax +-=.(四) 试证:就克莱洛方程来说,p-判别曲线和方程通解的c-判别曲线同样是方程通解的包络,从而为方程的奇解.证:克莱洛方程 y=xp+f(p)的p-判别曲线就是用p-消去法,从()()⎩⎨⎧'+=+=c f x c f cx y 0 中消去p 后而得的曲线;c-判别曲线就是用c-消去法,从通解及它对求导的所得的方程()()⎩⎨⎧'+=+=c f x c f cx y 0中消去c 而得的曲线, 显然它们的结果是一致的,是一单因式,因此p-判别曲线是通解的包络,也是方程的通解. 习题4.11. 设()t x 和()t y 是区间b t a ≤≤上的连续函数,证明:如果在区间b t a ≤≤上有()()≠t y t x 常数或()()t x t y 常数,则()t x 和()t y 在区间b t a ≤≤上线形无关。
第十四章 常微分方程典型习题解答与提示习 题 14-11.(1)一阶; (2)二阶; (3)三阶; (4)一阶。
2.(1)2xy y '=,25y x =,因10y x '=,将y 及y '代入微分方程有 21025x x x ⨯=⨯恒成立,则函数25y x =是微分方程2xy y '=的解;(2)0y y ''+=,3sin 4cos y x x =-,因3cos 4sin y x x '=+,3sin 4cos y x x ''=-+, 将y 及y ''代入微分方程(3sin 4cos )(3sin 4cos )0x x x x -++-=恒成立, 则函数3sin 4cos y x x =-是微分方程0y y ''+=的解;(3)20y y y '''-+=,2x y x e =,因22x xy xe x e '=+,224xxxy e xe x e ''=++,将y ,y ',y ''代入微分方程222(24)2(2)20xxxxxxxe xe x e xe x e x e e ++-++=≠ 方程不成立,则函数2xy x e =不是微分方程20y y y '''-+=的解; (4)1212()0y y y λλλλ'''-++=,1212xx y c ec e λλ=+,因121122x x y c e c e λλλλ'=+,12221122xx y c ec e λλλλ''=+,将y ,y ',y ''代入微分方程,有1212122211221211221212()()()()0x x x x x x c e c e c e c e c e c e λλλλλλλλλλλλλλ+-++++=恒成立,则函数1212xx y c ec e λλ=+是微分方程1212()0y y y λλλλ'''-++=的解。