生物质油重整制氢
- 格式:pdf
- 大小:752.10 KB
- 文档页数:5
生物柴油加氢工艺流程全文共四篇示例,供读者参考第一篇示例:生物柴油是一种由植物油或动物油转化而来的燃料,被广泛应用于交通运输和工业生产中。
在生物柴油生产过程中,加氢工艺是一种重要的技术手段,可以提高生物柴油的品质和性能。
下面我们将介绍生物柴油加氢工艺流程及其原理。
一、生物柴油加氢工艺简介生物柴油加氢是一种通过催化剂作用将生物柴油中的不饱和化合物和杂质转化为饱和烃的过程。
这种工艺可以有效降低生物柴油的凝固点、改善燃烧性能和减少废气排放。
一般来说,生物柴油加氢包括催化裂化、沉淀脱硫、氢解等步骤。
1. 催化裂化催化裂化是生物柴油加氢的第一步,通过将原料与催化剂接触,在高温高压条件下,将大分子链的生物柴油分解为较小的碳氢化合物。
这个过程可以有效减少不饱和烃和杂质的含量,提高生物柴油的质量。
2. 沉淀脱硫沉淀脱硫是生物柴油加氢工艺的第二步,用于去除生物柴油中的硫化物。
硫化物是生物柴油中的一种有害物质,容易损坏催化剂和污染环境。
通过将生物柴油与脱硫剂反应,可以将硫化物转化为不溶于油中的硫酸盐或硫代硼酸盐,然后通过沉淀分离的方式将其去除。
3. 氢解1. 提高生物柴油的品质和性能,减少废气排放。
2. 可以降低生物柴油的凝固点,提高其在低温条件下的流动性。
3. 减少生物柴油的不饱和烃和杂质含量,减少燃料的积炭和系统堵塞。
4. 延长动力系统和催化转化器的使用寿命,降低维护成本。
生物柴油加氢工艺是一种有效的技术手段,可以提高生物柴油的品质和性能,减少废气排放,符合现代工业生产和环境保护的要求。
未来随着生物能源技术的不断发展,生物柴油加氢工艺将在全球范围内得到更广泛的应用。
第二篇示例:生物柴油是一种由植物油或动物油经过一系列化学反应加工而成的燃料,与传统石油燃料相比,生物柴油具有低碳排放、可再生资源等优点,因此备受关注。
而加氢工艺是生物柴油生产过程中的关键环节,通过加氢反应可以改善生物柴油的质量,提高其燃烧效率,减少有害物质排放。
生物质能源热解制氢技术研究近年来,随着环保理念的不断普及和能源资源的日益匮乏,生物质能源作为一种替代传统化石能源的新型清洁能源备受关注。
而生物质能源的热解制氢技术,作为一种具备广泛应用前景的新兴领域,也越来越引起了研究者们的重视。
生物质能源热解制氢技术是指通过对生物质进行高温分解,转换为氢气、焦油和其他化合物的过程。
这种技术具有适用范围广、原料可再生、产品清洁高效等优点,所以在实际应用中具有很大的潜力。
首先,生物质热解制氢技术的应用范围非常广泛。
与传统的燃料相比,生物质能源可以来源于农业生产、森林伐木、城市废弃物等多种渠道,具有更加丰富的供应来源,从生产的角度来说,其能源潜力是足够充分的。
同时,生物质热解制氢技术可应用于制氢、焦油和酸气等多个方面,产生的多种有价值的化学物质可以广泛应用于不同的领域。
其次,生物质热解制氢技术的优点在于其可再生性。
传统的化石能源一旦消耗完毕,就再也无法获取,而生物质热解制氢技术所使用的生物质源具有很强的再生能力,无需过多考虑其后续开发。
此外,生物质热解制氢技术所产生的化学物质在短时间内可以大量再生,而且其成本相对较低,因此具有一定的竞争优势。
最后,生物质热解制氢技术可带来高效、清洁的能源转化。
由于其具备高能量密度和排放不会造成重大环境污染等特点,这种技术可以视作传统化石能源的有效替代。
同时,生物质能源的使用对于减少化石燃料想带来的环境压力和CO2排放具有很强的意义。
总的来说,生物质能源热解制氢技术正处于快速开发阶段,为了更好地实现其应用与转化,相关研究还需不断推进。
当前,主要的研究进展集中在技术改良、能量变化机制等方面。
其中前者通过改善生产工艺和热解设备的设计条款,为更加高效、稳定的生物质热解制氢提供了有益尝试;后者运用先进的实验手段和理论模型构建对生物质热解制氢的能量转化机制和多相反应过程进行深入研究,从而揭示了热解制氢的基本原理和机理,并有望在未来推进技术的应用和推广。
生物质制氢成本
(实用版)
目录
1.生物质制氢方法的概述
2.生物质制氢的优点
3.生物质制氢的成本分析
4.生物质制氢的发展前景
正文
一、生物质制氢方法的概述
生物质制氢是一种利用生物质资源生产氢气的方法,主要包括气化和微生物催化脱氧两种途径。
其中,气化过程是通过气化剂对生物质原料进行气化,去除氮、水等不可燃成分,最终转化为富氢燃料。
微生物催化脱氧则是利用微生物分解生物质,产生氢气。
二、生物质制氢的优点
1.资源丰富:生物质资源包括能源作物、农业废弃残留物、林业废弃残留物和工业城市废弃残留物等,我国每年可利用生物质资源约为 35 亿吨,资源丰富。
2.环保效益:与化石燃料相比,生物质中硫、氮含量低,因此生物质制氢法具有优秀的环保效益。
3.促进能源结构多样化:生物质制氢法能够降解生物质,减少温室气体的排放,促进国家能源结构多样化发展。
三、生物质制氢的成本分析
生物质制氢的成本主要取决于生物质原料的收集、处理和转化等环节。
目前,生物质制氢技术尚未大规模推广,主要原因是生产成本较高。
但是,
随着技术的发展和规模化应用,生物质制氢的成本有望降低。
四、生物质制氢的发展前景
随着氢能在我国能源体系中的地位日益重要,生物质制氢作为一种环保、可持续的氢气来源,其发展前景广阔。
生物质催化制氢技术的研究和应用随着环保意识的不断提高,人们对新能源的需求也越来越大。
而氢能作为一种清洁的能源形式,逐渐受到世界各地能源研究者的青睐,并且在实际应用中也取得了一些重要的成果。
其中,生物质催化制氢技术是一项广受关注的技术,其独特的制氢方法和清洁的制氢过程使得其被认为是未来氢能产业发展的重要方向之一。
一、生物质催化制氢技术的基本原理生物质催化制氢技术是一种以生物质为原料,在生物催化剂作用下,将生物质分解为氢、二氧化碳和一些有机物的一种技术。
其基本原理是利用一些生物质的分解产物,特别是生物质的可发酵性有机物,通过微生物的作用和生物质催化剂的辅助,在较低的温度、压力条件下实现氢的分离和纯化。
该技术的反应式为:C6H12O6 → 2CO2 + 2H2其中,C6H12O6代表生物质成分,2CO2代表产生的二氧化碳,2H2代表产生的氢气。
这种反应过程需要在一定的温度和压力条件下完成,一般在微生物的作用下,反应温度为30-60℃,压力为1-5atm。
二、生物质催化制氢技术的优势生物质催化制氢技术具有以下优势:1.清洁、环保生物质催化制氢技术生产的氢气产生的二氧化碳比传统火力发电和石化化工少,有助于降低大气污染,对环境友好。
2.资源丰富生物质催化制氢技术以生物质为原料,可利用农业废弃物、食品废品、城市垃圾等丰富的资源,有助于解决能源危机和降低生活垃圾处理成本。
3.部署灵活生物质催化制氢技术可在地域性较高的地区进行部署,有助于降低能源损失和提高能源的分布效率。
三、生物质催化制氢技术的研究进展目前,生物质催化制氢技术已经得到了广泛的研究和应用,在催化剂的选择、反应器的设计和构建等方面取得了一些重要成果。
1.催化剂的选择生物质催化制氢技术的成功与否,与催化剂的选择存在很大的关系。
当前主要的催化剂包括纳米催化剂、光催化剂、微生物等。
其中,纳米催化剂具有比表面积大、反应活性高、操作方便等优点,是目前研究的热点之一。
生物质制氢技术在可再生能源领域的应用随着全球能源需求的不断增长,对清洁、可再生能源的需求也越来越高。
生物质作为一种可再生能源,其利用价值得到了越来越广泛的认可和应用。
在生物质能源的研究领域中,生物质制氢技术是其中重要的一个分支,也是广受关注的研究领域之一。
本文将介绍生物质制氢技术在可再生能源领域的应用现状和前景。
一、生物质制氢技术的原理生物质制氢技术是指通过生物质颗粒、液体或气体作为原料,利用生物发酵、生化反应等技术,产生氢气的一种方法。
生物质制氢的原理与生物质能的原理相同,都是利用生物质中的碳水化合物和有机物质,在不断的代谢过程中,释放出氢气。
目前主要的生物质制氢技术有生物法制氢和热化学法制氢两种。
生物法制氢是指利用生物细菌进行发酵反应,产生氢气的一种方法。
在这种方法中,生物细菌可以利用生物质中的有机物质,通过发酵反应产生氢气,并将有机物质转化为水和二氧化碳等化合物。
这种方法不仅可以利用廉价的生物质作为原料,而且产生的氢气还可以用于能源领域和工业领域等其他用途。
热化学法制氢是指利用高温高压条件下,将生物质或其衍生物转化为气体,然后以气体的形式,产生氢气的一种方法。
这种方法的原理主要是利用生物质在高温高压条件下,会经历一系列化学反应,产生气体,其中就包含大量的氢气。
这种方法的优点是可以利用各种类型的生物质作为原料,而且产出的氢气质量高,利用效率也比较高。
二、生物质制氢技术的应用现状目前生物质制氢技术已经被广泛应用在能源领域和工业领域等多个领域中。
其中,能源领域的应用是其主要的应用领域之一。
生物质制氢技术能够将廉价的生物质转化为高品质的氢气能源,因此在氢能源领域中具有广泛的应用前景。
生物质制氢技术在能源领域中主要的应用形式包括:生物质气化制氢、厌氧发酵法制氢、光合作用产氢等。
其中,生物质气化制氢是一种非常成熟的技术,被广泛应用于氢能源领域中。
这种方法可以利用各种类型的生物质作为原料,通过气化反应,将生物质转化为氢气能源。
生物质制氢的研究与应用随着环保意识的不断提高和氢能作为全球清洁能源的重要组成部分的发展,生物质制氢成为了近年来备受关注的研究领域。
生物质制氢的概念生物质制氢,是利用微生物或者化学方法将生物质经过分解、转化等处理后制取氢气的一种生产方式。
生物质可以是各种有机废弃物或者部分植物,包括但不限于麻酥、秸秆、木屑、生物污泥、食品废弃物等。
通过生物质制氢的方式,不仅可以解决垃圾、废物等环境问题,还可以将有机废弃物转化为可用的清洁能源——氢气。
生物质制氢的原理生物质制氢的具体原理和过程,取决于使用的方法和微生物。
其中,化学方法的原理,是通过热解或反应,将生物质高温裂解生成一系列有机化合物,然后再进行分解等物理和化学反应制取氢气。
而微生物方法的原理,是利用微生物将有机物分解为二氧化碳和氢气。
生物质制氢的优势生物质制氢相比于其他氢气生产方式,有以下几个优势:1. 环保:生物质制氢的过程中不会产生有害气体,例如二氧化碳、甲烷和氧化氮等废气。
相对于传统的燃烧过程,生物质制氢的氢气生产过程更环保、更绿色。
2. 循环利用:生物质制氢的原料来自生产和生活中的废弃物,如厨余垃圾、植物废弃物、农业废物等,可以实现废物资源化,回收再利用,避免对环境的污染。
3. 将生物质转化为氢气,能够给村庄、乡村等地方带去便捷的能源,促进农村地区经济的发展。
4. 应用广泛:生物质制氢不仅可以生成燃料气体,而且可以用作氢燃料电池的燃料,广泛应用于汽车和一些移动设备等领域。
生物质制氢的现状目前,生物质制氢研究已经取得了不小的进展,国内外多家企业和研究机构对其进行了不同层面的研究,并实现了一些实验室或小规模生产的成果。
生物质制氢的研究方法主要包括:化学法、微生物发酵法和光催化法。
这些方法各有优缺点,例如化学法含酸、含碱、含高温,产生废弃物多,需要能源消耗较大;微生物方法造成的环境影响较小,但微生物本身和能转化的有机质种类有限,对温度、pH等条件的要求较高;光催化法可实现大规模氢气产出,但技术还处于探索初级阶段。
生物质制氢技术及其研究进展张晖;刘昕昕;付时雨【摘要】在制浆造纸、生物炼制以及农业生产过程中,会产生许多生物质下脚料或废弃物,通过制氢技术可将这些废弃物转化再利用.以生物质为原料来制取氢气具有节能、环保、来源丰富的优点,主要包括化学法与生物法.化学法又细分为气化法、热解重整法、超临界水转化法以及其他化学转化方法.生物法可细分为光解水制氢、光发酵制氢、暗发酵制氢以及光暗耦合发酵制氢.本文对多种生物质制氢方法及原理进行总结,对各种方法的优缺点进行对比,介绍了近年来生物质制氢技术的研究进展,最后对生物质制氢的发展提出展望.【期刊名称】《中国造纸》【年(卷),期】2019(038)007【总页数】7页(P68-74)【关键词】氢气;生物质;气化;热解;发酵【作者】张晖;刘昕昕;付时雨【作者单位】华南理工大学制浆造纸工程国家重点实验室,广东广州,510640;华南理工大学制浆造纸工程国家重点实验室,广东广州,510640;华南理工大学制浆造纸工程国家重点实验室,广东广州,510640【正文语种】中文【中图分类】TS79;TQ51随着制浆造纸、生物炼制产能的提高,工农废弃物排放量逐渐增加。
在制浆造纸中,这些废弃物包括制浆备料废渣、碎浆筛浆排渣、机械分切下脚料以及污水处理产生的富含有机质的造纸污泥[1]。
在农业生产、城市绿化及生物炼制中,同样存在着大量生物质剩余废弃物[2]。
生活中,以木质纤维为原料的用品种类繁多,如纸杯、纸盘、纸基包装等。
这类废弃物虽具备环境友好的特点,但是降解需要时间,将其废弃会对环境产生影响,并造成生物质资源的浪费[3]。
如何将这些废弃物资源化利用是亟待解决的问题。
近年来,以生物质为基础的制氢技术逐步发展,为生物质废弃物的转化利用提供了新途径。
1 氢气及生物质制氢氢气无毒、质轻、燃烧性良好,在传统燃料中热值最高,是公认的清洁能源,其开发利用有助于解决能源危机与环境污染问题,受到研究者们广泛关注[4]。
生物质制氢技术在能源领域的应用前景分析近年来,越来越多的人开始意识到能源问题的严重性,尤其是化石能源的不可持续性。
因此,寻找新的清洁能源替代品已成为当前各国都在努力追求的目标。
而生物质制氢技术则是一个备受关注的领域,被认为是未来可持续能源的重要方向之一。
一、生物质制氢技术的原理与优势生物质制氢技术是指将天然的有机材料,如植物和动物的生物质,通过生物化学反应转化为氢气的过程。
生物制氢技术的优势在于其原材料来源广泛,可以利用农业、林业、畜牧业和城市生活垃圾等废弃物,避免了传统燃料的依赖性和环境压力。
同时,生物制氢技术的副产品也是一种有机肥料,可以帮助提高农业生产效率。
二、生物质制氢技术的应用前景1. 食物作物工业化和食品加工生物质制氢技术可以利用废弃的植物、果皮等有机废弃物来生产氢气,同时生产的肥料也可以用于种植新的作物。
这种生产方式的可持续性比传统的农业生产方式更高,并且还可以减少有机废物对环境的污染,为环保事业贡献力量。
2. 能源生产生物质制氢技术可以将废弃物转化为燃料,从而产生能源。
这种能源的质量和效果与传统的化石燃料相当,但是生物质制氢技术产生的氢气是一种可再生能源,不会像化石燃料一样引起环境问题,其产生的废弃物也是对环境友好的。
3. 汽车工业生物质制氢技术是汽车工业最有前途的技术之一,因为氢燃料电池汽车所使用的氢气可以通过生物制氢技术来生产,而且使用氢气作为燃料的汽车不仅能为环境做出贡献,还可以拓展汽车产业的市场前景。
值得一提的是,今年中国政府提出了“氢能源汽车”发展战略,更是为生物质制氢技术在汽车工业的应用提供新的机遇。
三、生物质制氢技术的局限与挑战与其优势相比,生物质制氢技术的局限性也十分明显,如生产成本较高、生产设施占地面积大等。
此外,还有技术难题,如如何提高产氢微生物的生产能力、如何提高氢气产率、如何完善装置设计等。
为了克服这些挑战,目前许多国家都曾涉足生物质制氢技术的研究与探索,如澳大利亚、印度、美国等,应用实践中展现出了良好的效果。
一、引言在当前全球能源形势严峻的背景下,生物质制氢技术作为一种可持续发展的新型能源技术备受关注。
本文将对生物质制氢技术的研究现状和展望进行深入探讨,帮助读者全面了解这一领域的进展。
二、生物质制氢技术概述生物质是指植物在生长过程中固定的光能,可以通过热化学和生物化学方法转化为燃料、化学品等有机化合物。
生物质制氢技术是利用生物质资源生产氢燃料的技术,其优势在于可再生、低碳排放和资源广泛。
随着能源危机和环境污染问题的日益突出,生物质制氢技术受到了广泛关注。
三、生物质制氢技术的研究现状1. 生物质气化制氢技术生物质气化是将生物质物质在高温条件下进行分解,生成一氧化碳、氢气等气体。
通过气化反应,可将生物质转化为合成气,再通过水煤气变换反应制备氢气。
目前,生物质气化制氢技术在实验室和工业化生产中取得了一定进展。
2. 微生物发酵制氢技术生物质可通过微生物发酵产生氢气,这是一种相对环保的生产方法。
随着生物技术的发展,一些特殊菌株的应用使得生物质发酵制氢技术逐渐成熟。
生物质发酵制氢技术在实验室阶段已取得了较好的效果,但在工业化应用中还存在一定的技术难题。
3. 生物质光解制氢技术生物质光解制氢技术利用太阳能作为能源,将生物质中的水分子分解为氢气和氧气。
这是一种潜在的清洁能源制备方式,其研究目前处于实验室阶段,尚未进行工业化应用。
四、生物质制氢技术的展望生物质制氢技术具有巨大的发展潜力,但在实际应用中仍然存在许多挑战。
首先是生物质资源的可持续供应问题,需要建立可持续的生物质供应链;其次是高效的氢气生产技术,需要进一步提高生产效率和降低成本;最后是氢气的应用技术,需要配套发展氢燃料电池等技术。
个人观点与理解生物质制氢技术是未来能源发展的重要方向,具有可持续发展和环境友好的特点。
我认为,在今后的研究中,应当优先考虑改进氢气生产技术,并加大对生物质资源可持续利用和环境友好性的研究。
需要政府、企业和科研机构的共同努力,推动生物质制氢技术的实际应用和商业化。
生物质制氢的工艺流程主要包括以下步骤:
生物质原料的准备:将生物质原料进行破碎、干燥、脱硫等预处理,以便后续的转化过程。
生物质的热解:将预处理后的生物质放入热解反应器中进行热解,得到生物油、气体和生物炭。
生物油的提纯和加工:将热解得到的生物油进行提纯和加工,得到高品质的生物燃料或化学品。
气体的处理和提纯:将热解得到的气体进行净化、提纯和催化转化,得到高纯度的氢气。
生物炭的利用:将热解得到的生物炭进行进一步的处理和利用,如制备活性炭、炭黑等。
需要注意的是,生物质制氢工艺流程中的每一步都需要严格的温度、压力、时间等控制条件,以确保最终产品的品质和产率。
此外,生物质制氢技术也需要与其他能源技术、化工技术等进行集成和优化,以实现能源的高效利用和减少对环境的影响。
Energy Fuels2010,24,3251–3255:DOI:10.1021/ef1000634Published on Web04/26/2010Upgrading of Bio-oil by Catalytic Esterification and Determination of Acid Number forEvaluating Esterification DegreeJin-Jiang Wang,Jie Chang,*and Juan FanSouth China University of Technology,No.381Wushan Road,Guangzhou510641,People’s Republic of ChinaReceived January20,2010.Revised Manuscript Received April11,2010Bio-oil was upgraded by catalytic esterification over the selected catalysts of732-and NKC-9-type ion-exchange resins.The determination of the acid number by potentiometric titration was recommended bythe authors to quantify the total content of organic acids in bio-oil and also to evaluate the esterificationdegree of bio-oil in the process of upgrading.We analyzed the measurement precision and calibrated themethod of potentiometric titration.It was proven that this method is accurate for measuring the content oforganic acids in bio-oil.After bio-oil was upgraded over732and NKC-9,acid numbers of bio-oil werelowered by88.54and85.95%,respectively,which represents the conversion of organic acids to neutralesters,the heating values increased by32.26and31.64%,and the moisture contents decreased by27.74and30.87%,respectively.The accelerated aging test and aluminum strip corrosion test showed improvement ofstability and corrosion property of bio-oil after upgrading,respectively.1.IntroductionBio-oil,a liquid product from biomass fast pyrolysis,by virtue of its environmental friendliness and energy indepen-dence,is regarded as a promising energy source and receives more and more attention.1,2Nonetheless,the drawbacks, including high acidity,low heating value,high corrosiveness, high viscosity,and poor stability of bio-oil,limit its usage as a high-grade/transportation fuel.3-5Consequently,upgrad-ing of bio-oil before use is desirable to give a liquid product that can be used in a wider variety of applications.Catalytic esterification is widely studied for this anic acids(formic acid,acetic acid,propionic acid,etc.)in bio-oils can be converted to their corresponding esters,and the quality of bio-oil will be greatly improved.Solid acid cata-lysts,solid base catalysts,6ionic liquid catalysts,7HZSM-5, and aluminum silicate catalysts8,9were investigated for esterification of bio-oils.Not only the liquid bio-oil but also the uncondensed bio-oil vapor can be esterified,and good results can be obtained.10Esterification was proven to occur by gas chromatography-mass spectrometry(GC-MS)or Fourier transform infrared(FITR)analysis.A GC-MS chromatogram or FITR spectrum can be used for qualitative analysis of the original and upgraded bio-oils;however, there is no quantitative method proposed for evaluating the esterification degree of bio-oils.Gas chromatography can be used to quantify the organic acids in bio-oils11-13 and to evaluate the esterification degree;however,the overlapping chromatographic peaks are difficult to discri-minate,and complicated pretreatment operations are often required.In this paper,we conducted the experiments of upgrading bio-oil by catalytic esterification over selected catalysts: 732-and NKC-9-type ion-exchange resins.Moreover,we developed a rapid method of acid number determination by potentiometric titration,which can be used to quantify the total amount of the organic weak acids in bio-oils and also to evaluate the esterification degree in the process of bio-oil upgrading.The acid number,which is expressed as milli-grams of sodium hydroxide per gram of sample in this paper (mg of NaOH/g),refers to the quantity of base required to titrate a sample in a specified solvent to a specified end point.We investigated the precision and accuracy of the method for quantifying the organic acids in bio-oils.The acid number was used as an important index for evalua-ting the follow-up upgrading process.The stability and*To whom correspondence should be addressed.Telephone:þ86-20-87112448.Fax:þ86-20-87112448.E-mail:changjie@. (1)Czernik,S.;Bridgwater,A.V.Overview of applications of bio-mass fast pyrolysis oil.Energy Fuels2004,18,590–598.(2)Huber,G.W.;Iborra,S.;Corma,A.Synthesis of transportationfuels from biomass:Chemistry,catalysts,and engineering.Chem.Rev. 2006,106,4044–4098.(3)Bridgwater,A.V.;Peacocke,G.V.C.Fast pyrolysis processes for biomass.Renewable Sustainable Energy Rev.2000,4,1–73.(4)Mohan,D.;Pittman,C.U.;Steele,P.H.Pyrolysis of wood/ biomass for bio-oil:A critical review.Energy Fuels2006,20,848–889.(5)Oasmaa,A.;Czernik,S.Fuel oil quality of biomass pyrolysisoils;State of the art for the end user.Energy Fuels1999,13,914–921.(6)Zhang,Q.;Chang,J.;Wang,T.J.;Xu,Y.Upgrading bio-oil over different solid catalysts.Energy Fuels2006,20,2717–2720.(7)Xiong,W.M.;Zhu,M.Z.;Deng,L.;Fu,Y.;Guo,Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels2009,23,2278–2283.(8)Peng,J.;Chen,P.;Lou,H.;Zheng,X.Catalytic upgrading of bio-oil by HZSM-5in sub-and super-critical ethanol.Bioresour.Technol. 2009,100,3415–3418.(9)Peng,J.;Chen,P.;Lou,H.;Zheng,X.M.Upgrading of bio-oil over aluminum silicate in supercritical ethanol.Energy Fuels2008,22, 3489–3492.(10)Hilten,R.N.;Bibens,B.P.;Kastner,J.R.;Das,K.C.In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality. Energy Fuels2010,24,673–682.(11)Branca,C.;Giudicianni,P.;Di Blasi,C.GC/MS characterization of liquids generated from low-temperature pyrolysis of wood.Ind.Eng. Chem.Res.2003,42,3190–3202.(12)Oasmaa,A.;Meier,D.Norms and standards for fast pyrolysis liquids;1.Round robin test.J.Anal.Appl.Pyrolysis2005,73,323–334.(13)Sipila,K.;Kuoppala,E.;Fagernas,L.;Oasmaa,A.Character-ization of biomass-based flash pyrolysis oils.Biomass Bioenergy1998, 14,103–113.corrosiveness of bio-oil before and after upgrading were also studied.2.Experimental Section2.1.Materials and Chemicals.The original bio-oil produced by pyrolysis of wood chips in a circulating fluidized-bed unit was provided by the Devotion Group(Guangzhou,China).The capacity is3000tons/year,and the yield of bio-oil is close to 70%.Methanol,ethanol,and acetic acid(AR grade)were commercially available and used without further purification. The732resin(reference standard:Amberlite IR-120)and NKC-9resin(reference standard:Amberlyst15)were also com-mercially available and used as catalysts for the esterification of bio-oil.2.2.Acid Number Determination.Bio-oil is usually a black or dark brown liquid,and therefore,it is difficult to choose a suitable visual indicator to signal the end point of the titration.A potentiometric method identifies the end point by monitoring the greatest slope in the titration curve at the equivalence point, which is especially suitable for the titration of turbid or colored solutions.Metrohm888Titrando and its internal template method of dynamic pH titration were used for the rapid determination of acid numbers of bio-oil.This template method will dynamically control the titration rate by monitoring the changes of the titration curve to optimize the density distribu-tion of the measurements.For the optimized collection of data, the end point can be acutely observed.2.2.1.Analysis on Measurement Precision.Different bio-oil samples(0.4,0.65,and1.0g)were dissolved in methanol or ethanol and were titrated by the standard aqueous solutions ofsodium hydroxide(0.045,0.1,and0.165mol/L).Each sample was analyzed3times,and relative standard deviations of the measurements were calculated.Avoiding the potential esterifi-cation,the measurement should be carried out as soon aspossible.2.2.2.Calibration.The experiments of adding a standard sample into bio-oil were conducted to calibrate the method. Acetic acid,0.06-0.08g(precision,(0.0001g),was used as a standard sample and was added into bio-oil,and the mixed sample was titrated.The measurement error of the added standard sample was employed to check the accuracy of the method.The theoretical acid number of the standard sample was calculated by the definition of the acid number,and the measured values were worked out by the formula:measured acid number=(M m-M b)/M s,where M m is the mass of NaOH consumed by the mixed sample(mg),M b is the mass of NaOH consumed by bio-oil(mg),and M s is the mass of the standard sample(g).2.3.Experiment of Upgrading Bio-oil by Catalytic Esterifica-tion.2.3.1.Activity Evaluation of Resin Catalysts.The model reaction of esterification with methanol and acetic acid was employed to evaluate the catalytic activity of732resin and NKC-9resin.A total of81.5mL of methanol and58.5mL of acetic acid(molar ratio=2:1)were added into a three-neck flask equipped with a thermometer,reflux condenser,and magnetic stirrer.A total of5g of resin catalyst was used.A total of0.5mL of reaction solution was sampled at a20min interval and measured quantitively by NaOH standard solution titration. From the titration method,the acetic acid conversion was calculated by the equation:conversion=(1-V/V0)Â100%, in which V and V0are the volumes of the standard NaOH solution consumed in neutralizing the0.5mL solution sampled in the process and at the beginning of the reaction,respectively.2.3.2.Esterification of Bio-oil.Bio-oil and methanol were mixed in a volume ratio of1:2and were added to the three-neck flask equipped with a thermometer,reflux condenser,and stirrer.A schematic diagram of the reaction experiment is shown in Figure1.The experiments were carried out at the tempera-ture of50°C for5h,and the catalyst was used by10wt%of the bio-oil.After completion of the reaction,the catalysts were filtrated and removed from the mixture.Acid numbers of bio-oil were determined at every1h interval by the method previously proposed in this paper.Other physical properties were determined by the proposed methods in the round robin test.122.3.3.Aging Test.The aging properties were determined using the accelerated aging test method.12Original,diluted,and upgraded bio-oils were placed in small sealed vials and heated at80°C.Kinematic viscosity was measured at40°C at specific intervals.2.3.4.Aluminum Strip Corrosion Test.The aluminum strips were machined into3cmÂ3.5cmÂ0.1mm.The strips were cleaned and polished by silicon carbide paper,weighed,and then immersed in60mL vials containing30mL oil samples.After that,the vials were sealed and placed at50°C.At specific intervals,the strips were taken out of the vials and washed in ethanol.The strips were weighed and then taken back to the vials until the next weight measurement time.3.Results and Discussion3.1.Potentiometric Titration for Acid Number Determina-tion.3.1.1.Influence of Solvents on Measurement Precision. Bio-oil is composed of both water-soluble and water-inso-luble fractions and is miscible with polar solvents,such as methanol,ethanol,etc.4,13Therefore,the aqueous solution of NaOH was selected as a titrant,and methanol or ethanol was used as a solvent for titration.We found that methanol was more suitable than ethanol for the increasing insolubility of bio-oil in ethanol with the addition of titrant.Precipita-tion of bio-oil and adherence to the pH electrode were observed,and especially,a large amount of titrant was needed.3.1.2.Influence of the Concentration of Titrant and the Sample Size on Measurement Precision.Curves for0.65g of bio-oil titrated by different concentrations of NaOH were shown in Figure2.ERC is the abbreviation for equivalence point recognition criterion,and its value is a function of the derivative of the titration curve.The value of ERC at theend Figure1.Schematic diagram of the experiment.point (EP)increases with the concentration of titrant.The higher the concentration of titrant,the more obvious the end point of titration.However,the measurement precision was not better when a higher concentration of titrant was used from the results in Table 1.The deviation of acid numbers determined with 0.165mol/L NaOH is larger than with 0.1mol/L NaOH because of the fact that a smaller amount of titrant was used.Because the slope in the titration curve with 0.045mol/L is smaller,the measurement precision is worse.Acid numbers of 0.400,0.650,and 1.000g of bio-oil determined with 0.1mol/L NaOH were shown in Table 2.A better precision was obtained when a larger sample size of bio-oil was used.The acid numbers determined with differ-ent masses of bio-oil are close,and the relative standard deviation is only 0.52%.3.1.3.Accuracy.A standard sample is often used for calibration to check the accuracy of the method.Acetic acid exists in most bio-oils,and we used pure acetic acid as a standard sample for calibration.A determined amount ofpure acetic acid was added in bio-oil,and acid numbers were measured to check if the added pure acetic acid could be accurately quantified.The measurement deviation and the error between the measured and theoretical values were listed in Table 3.From the small error of only 0.02%between theoretical and measured acid numbers,we can conclude that the potentiometric titration for acid number determina-tion is an accurate method for measuring the content of organic acids in bio-oil,especially for acetic acid and the like.Because of the accuracy to quantify the content of organic acids,acid number determination is used for evaluating the follow-up bio-oil upgrading process.3.2.Esterification of Bio-oil.3.2.1.Catalytic Activity of 732Resin and NKC-9Resin on the Esterification of the Model Compound.The conversion of acetic acid over 732resin and NKC-9resin under 50or 70°C was shown in Figure 3.Both 732resin and NKC-9resin exhibited high activities for esterification of acetic acid.At 70°C,732resin converted 84.72%acetic acid in 120min,with no significant increase in conversion after 60min.The NKC-9resin presented slightly lower activity than 732resin,and acetic acid conversion rose with time remarkably and reached 79.74%in 120min at 70°C.Figure 2.Curves for 0.065g of bio-oil titrated with (I)0.165mol/L NaOH,(II)0.100mol/L NaOH,and (III)0.045mol/L NaOH.Table 1.Acid Numbers of Bio-oil Determined by Different Concentrations of NaOH and Relative Standard Deviationsof the Measurementsconcentration of NaOH (mol/L)acid number (mg of NaOH/g)relative standard deviation (%)0.16554.480.940.10054.160.450.04554.761.23Table 2.Acid Numbers of Bio-oil Determined with Different Sample Sizes by 0.1mol/L NaOH and Relative StandardDeviations of the Measurementsamount of bio-oil (g)acid number (mg of NaOH/g)relative standard deviation (%)0.40053.860.920.65054.160.451.00054.440.26Table 3.Measured Acid Numbers of the Standard Sample and Errorof Measurements123measured acid number (mg of NaOH/g)666.15662.89668.83relative standard deviation (%)0.45theoretical acid number (mg of NaOH/g)666.11relative error (%)0.02Figure 3.Conversion of acetic acid over 732resin and NKC-9resin under different reaction temperatures.3.2.2.Upgrading of Bio-oil.The large quantities of car-boxylic acids found in bio-oil would lead to the high acidity and corrosiveness of bio-oil.Besides,the acids would react with other components,and H þions generated by ionization of acids would catalyze the potential condensation and polymerization reaction,which causes the instability of bio-oil.Fischer esterification is proposed to be the reaction pathway in conversion of carboxylic acid to esters.The esterification reaction follows the equation:RCOOH þC n H 2n þ1OH T RCOOC n H 2n þ1þH 2O,leading to the for-mation of water and ester.The neutral ester products are less active and corrosive than the acids,and the bio-oil is expected to be improved.The properties of original bio-oil,diluted bio-oil,and upgraded bio-oil were shown in Table 4.Diluted bio-oil refers to the mixed bio-oil with methanol before reaction.The acid number and the moisture content of the bio-oil were both lowered after bio-oil diluted with a large amount of methanol.In comparison to original bio-oil,acid numbers of up-graded bio-oil on 732resin and NKC-9resin were lowered by 88.54and 85.95%,respectively,which represents the con-version of organic acids to neutral esters,the moisture contents decreased by 27.74and 30.87%,respectively,the heating values increased by 32.26and 31.64%,respectiv-ely,the densities were both lowered by 21.77%,and the viscosities fell by 97%approximately.In comparison to thediluted bio-oil that was not esterified,the moisture of upgraded bio-oil was increased.This is logical because esterification would produce water.However,the pH value showed inconformity with the acid numbers and became ambiguous.The pH value corresponds to the concentration (activity,in fact)of H þions in a solution.Studies reveal that bio-oil is not a highly dispersed system and is a mixture of multiphase structures.14The pH value may not reflect the true content of acids in such a complex system,and the complexity of bio-oil will lead to uncertainties during the measurements.Zhang et al.6also found that the pH value was lowered while the carboxy-lic acids in bio-oil were converted to their corresponding neutral esters.From these points of view,acid number determination is a more suitable indicator for organic acids transformation to neural esters during the bio-oil upgrading process.The changes of acid numbers with time during bio-oil upgrading were studied and shown in Figure 4.Acid num-bers decreased dramatically in the first 3h,and about 68%of acids were converted.Acid numbers changed slightly with time in the last paratively,the acid number of the diluted bio-oil that had been stored without catalysts at room temperature for 90days decreased only from 26.28to 19.57mg of NaOH/g.These data showed that the catalyst has a high activity for the conversion of acids.3.2.3.Stability.It is recommended to determine the stabi-lity of bio-oils by measuring the variations of viscosity under accelerated aging conditions.12The kinematic viscosity of original,diluted,and upgraded bio-oils aging at 80°C wasTable 4.Characteristics of Original,Diluted,and Upgraded Bio-oilupgraded bio-oilcharacteristicsoriginal bio-oildiluted bio-oil a732NKC-9acid number (mg of NaOH/g)53.8626.28 6.177.57pH2.513.65 1.98 2.70density (kg/m 3)1.240.970.970.97H 2O content (wt %)16.628.0812.0111.49caloric value (MJ/kg)15.0119.8519.76kinematic viscosity (at 40°C)(mm 2/s)81.272.482.462.45aDiluted bio-oil refers to the mixed bio-oil with methanol but not yetreacted.Figure 4.Changes of acid numbers with time during bio-oilupgrading.Figure 5.Variations of viscosity of original and upgraded bio-oils aging at 80°C.described in Figure 5.Heating the original bio-oil to 80°C totally altered its properties,and the viscosity dramatically increased with time.A serious phase separation was ob-served when heated for 36h,and the lower layer of spongy materials gradually increased with time.The upgraded bio-oil did not show significant changes,and the viscosity varied between 1.91and 1.98mm 2/s.The viscosity of diluted bio-oil was also steady going when aging,according to Figure 5.Dilution with small amounts of alcohol is known to stabilize bio-oil,and because of the dilution effect by double volumes of methanol,the stability did not change significantly after esterification.3.2.4.Corrosion Property.According to the weight loss in Figure 6,upgraded bio-oil was less corrosive than the original bio-oil.We confirm that the property of uniform surface corrosion of bio-oil was improved after upgrading;however,several stains on the aluminum strip surface were also observed after the corrosion of upgraded bio-oil.Whether pitting corrosion occurred on aluminum by up-graded bio-oil needs further study.In addition to this,wealso found that the rate of weight loss of upgraded bio-oil is slightly faster than diluted bio-oil that was not esterified.This may due to an increase of the moisture content after esterification.From the point of view of chemical equilibri-um,the esterification reaction will happen given enough time at room temperature even without catalysts.The catalytic process can accelerate the potential esterification and water production,and the esterified bio-oil can be further treated by dehydration and the like.4.ConclusionsAcid number determination by potentiometric titration is an accurate method for quantifying the total content of organic acids in bio-oil,which can be used as an important index for evaluating the follow-up upgrading process.Metha-nol is more suitable than ethanol as a titration solvent.The higher the concentration of titrant,the more obvious the tit-ration end point,and the larger the sample size used,the better precision was obtained.The bio-oil was upgraded by catalytic esterification over the selected catalysts of 732-and NKC-9-type ion-exchange re-sins.After upgrading over 732resin and NKC-9resin,the acid number of bio-oil was significantly reduced by 88.54and 85.95%,respectively,which represents the conversion of organic acids to neutral esters,the heating values increased by 32.26and 31.64%,respectively,the moisture contents were lowered by 27.74and 30.87%,respectively,the densities were both lowered by 21.77%,and the viscosities were lowered by 97%approximately.Upgraded bio-oil is more stable than the original bio-oil and as stable as the diluted bio-oil that was not esterified because of the huge dilution effect of methanol.Besides,the corrosion-proof property was improved after dilution and upgrading.The ion-exchange resins catalyze the reaction and convert most of the organic acids to their neutral esters.Catalytic esterification with methanol by resin catalysts will be a simple and effective way to improve the quality of bio-oil.Acknowledgment.We are grateful for the financial support from the National Nature Science Foundation of China (90610035)and the 973R&D program(2010CB732205).Figure 6.Weight loss of aluminum strips corroded by original and upgraded bio-oils at 50°C.(14)Garcia-Perez,M.;Chaala, A.;Pakdel,H.;Kretschmer, D.;Rodrigue,D.;Roy,C.Multiphase structure of bio-oils.Energy Fuels 2006,20,364–375.。