S—t模型的建立与应用
- 格式:ppt
- 大小:326.50 KB
- 文档页数:20
动量定理典型应用--求解流体冲击/反冲一、模型特点、分析思路应用动量定理解决流体问题,建立“柱状模型”对于“连续”质点系发生持续作用,物体动量(或其他量)连续发生变化这类问题的处理思路是:正确选取研究对象,即选取很短时间Δt内动量(或其他量)发生变化的那部分物体作为研究对象,建立如下的“柱状模型”:在时间Δt内所选取的研究对象均分布在以S为截面积、长为vΔt的柱体内,这部分质点的质量为Δm=ρSvΔt,以这部分质量为研究对象,研究它在Δt时间内动量(或其他量)的变化情况,再根据动量定理(或其他规律)求出有关的物理量。
二、典型模型一流体类问题流体及其特点通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ分析步骤1建立“柱状”模型,沿流速v的方向选取一段柱形流体,其横截面积为S2微元研究,作用时间Δt内的一段柱形流体的长度为Δl,对应的质量为Δm=ρSvΔt 3建立方程,应用动量定理研究这段柱状流体1、超强台风山竹于2018年9月16日前后来到我国广东中部沿海登陆,其风力达到17级超强台风强度,速度60m/s左右,对固定建筑物破坏程度非常巨大。
请你根据所学物理知识推算固定建筑物所受风力(空气的压力)与速度(空气流动速度)大小关系,假设某一建筑物垂直风速方向的受力面积为S,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,风力F与风速大小v关系式为()A.F=ρSv B.F=ρSv2C.F=12ρSv3D.F=ρSv32、如图所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,底端与竖直墙壁接触。
现打开右端阀门,气体向外喷出,设喷口的面积为S,气体的密度为ρ,气体向外喷出的速度为v,则气体刚喷出时瓶底端对竖直墙面的作用力大小是()A.ρvSB.ρv2SC.12ρv2S D.ρv2S3、(2021·福建高考)福建属于台风频发地区,各类户外设施建设都要考虑台风影响。
第一章引言在过去的四十几年里,图论已经被证明是解决几何、数论、运筹学和优化等领域中各种组合问题非常有用的工具。
而匹配是图论中的一个重要内容,也是图论的一个活跃的研究领域.匹配与独立集。
横贯等概念有着密切的关系.三四十年代Hall,Tutte[1】【2】得出了二分图上完美匹配存在性的充要条件;五十年代末Berge[31等得出了最大匹配的判定条件;Kuhn,Munkres[4][51给出了二分图上的最大权匹配的一个有效算法;六十年代Edmond[S]{7]找到了一般图上最大匹配以及最大加权匹配的第一个多项式算法;Gabow[s]将Edmonds算法的复杂度从o([v14)提高到了o(Ivl3),还提出一种嵌入合并和查找技术的算法其复杂度为o(IVllEI)19】;Mieali,Vazirani[10】提出了一个最优渐进运行时间为o( ̄/丽例)的算法,不过这个算法难于理解和实现,以至从发表到证明其正确性花了近十年的时间.最大匹配、最大权匹配的启发式算法也有不少研究,DorathaE.Drake[n]等人针对加权匹配问题提出了一种效率为;复杂度为o(㈣)的算法;JonathanAronson,MartinDyer,Alan刚e=e【1目等人发展了随机贪婪算法并对其中的一些性质做了深入的探讨.本文针对三分图上的最大匹配也提出了一个启发式算法,算法能够为随后的基于拉格朗日松弛的分支定界提供一个好的初始下界.管理决策中,匹配在所谓人员分配问题和最优分配阿题中有重要应用,.还有很多问题可以化归到匹配问题.通常意义上的匹配都假定图中节点在匹配中只出现1次。
如果放宽在节点上的容量约束,允许每个节点可以在匹配中重复出现多次,就变成了6一Motching问题.PulleyBlank(1980,1981)[13】f14J对b—Macthin9作了研究;MatthiasMuller.Hannemann,AlexanderSchwartz御咧【15】从实现的角度进行了研究.以上的这些研究往往局限在二分图上,在管理决策中也的确出现了不少的问题可以归结到三分图上的匹配问题,笔者最近所作的项目中就出现了此类问题。
第三部分运筹学第四章运筹学建模4.1 运筹学概述运筹学是用数学方法研究各种系统最优化问题的学科。
其研究方法是应用数学语言来描述实际系统,建立相应的数学模型,并对模型进行研究和分析,据此求得模型的最优解;其目的是制定合理运用人力、物力和财力的最优方案;为决策者提供科学决策的依据;其研究对象是各种社会系统,可以是对新的系统进行优化设计,也可以是研究已有系统的最佳运营问题。
因此,运筹学既是应用数学,也是管理科学,同时也是系统工程的基础之一。
运筹学一词最早出现于第二次世界大战期间,当时为了急待解决作战中所遇到的许多错综复杂的战略战术问题,英美一些具有不同学科和背景的科学家,组成了许多研究小组,专门从事军事行动的优化研究。
研究的典型课题有:高射炮阵地火力的最佳配置、护航舰队规模的大小以及开展反潜艇作战的侦察等方面。
由于受到战时压力的推动,加上不同学科互相渗透而产生的协同作用,在上述几个方面的研究都卓有成效,为第二次世界大战盟军的胜利起到积极作用,也为运筹学各个分支的进一步研究打下了基础。
战后,这些科学家们转向研究在民用部门应用类似方法的可能性。
因而,促进了在民用部门中应用运筹学有关方法的研究和实践。
1947年,美国数学家G.B.Dantzig提出了求解线性规划的有效方法——单纯形法。
50年代初,应用电子计算机求解线性规划问题获得了成功。
50年代末,工业先进国家的一些大型企业也陆续应用了运筹学的方法以解决企业在生产经营活动中所出现的许多问题,取得了良好效果。
60年代中期,一些银行、医院、图书馆等都已陆续认识到运筹学对帮助改进服务功能、提高服务效率所起的作用,由此带来了运筹学在服务性行业和公用事业中的广泛应用。
电子计算机技术的迅速发展,为广泛应用运筹学方法提供了有力工具,运筹学的应用又开创了新的局面。
当前,运筹学在经济管理、生产管理、工程建设、军事作战、科学试验以及社会系统等各个领域中都得到了极为广泛的应用。
SI传染病模型1.模型的建立由题意知道:在此环境中仅存在健康者(即易感者)和已感者(即病人),且在t时刻人数分别为S(t),L(t),不考虑人口的出生与死亡,此环境中的人口数量不变N即K,于是在单位时间内每天每个病人感染的人数βS(t)L(t),它是病人的增加率,所以有:dL=β*S()t*L()t L()0=L1 (1) dt在t时刻健康者与已感者满足关系式:S()t+L ()t=K(2) 此模型满足Logistic模型,所以它的解为:L(t)=1/1+((1/L1)-1)*exp(-β*t)1.求平衡点syms r S L K yy=r*L*(K-L);solve(y)ans =SIS传染病模型1.模型假设SIS模型的假设条件1.2与SI模型相同,增加的条件为:每天被治愈的病人数占病人的总数为m ,此称为日治愈率。
病人治愈后仍然可以成为被感染的健康者,显然,平均传染期为1/m 。
2. 模型建立 此模型可以修整为:(a 代表β)()()()()***dL t a S t L t m L t dt=- ()()L t S t K+= ()01L L =求平衡点:(s, l ,k 分别代表S , L ,K )syms a t s l m k ff=a*l*(k-l)-m*l; solve(f) ans = -a*(-k+l)1.δ大于时的图像,10,0.8a a b b δ⎛⎫=== ⎪⎝⎭2.δ小于1时的图像)(0.2,0.8a b ==模型假设:在SIS 模型中我们增加:人群可分为健康者,病人,病疫免疫的移出者,且三种人群的数量分别为S ()t ,L ()t ,R ()t ;病人的日接触率和日治愈率分别为β,m 所以传染期为mβδ=1. 模型建立()()()()***dL t a S t L t m L t dt=- ()()L t S t K+= ()01L L = (1) ()()()**dS t a S t L t dt=- ()()00S K L =- (2) 求平衡点syms a t s l m k[s,l]=solve('a*l*(k-l)-m*l','-(a*s*(k-s))') s = a*k-a*l a*k-a*l l = 0 k健康者与病人数量在总人数中的比例()s t ,()i t 对时间的变化关系图为:健康者与病人各自占总人数的比例间的相互关系:。
SARS传播的数学模型摘要通过对题目附件1的SARS模型进行分析和评价,加深了对SARS的认识和了解。
根据传染病的传播特点,建立了关于SARS病人率和疑似病人率两个常微分方程模型。
以所给数据为基本依据,用Matlab软件进行数值计算,与图形模拟方法求得模型中的有关参数。
当λ1 =1.5 和λ2 =1时,理论图形与实际图形有良好的吻合,分别得到了SARS病人率和疑似病人率比较符合实际数据的变化图,能正确地预测它们的发展趋势。
他们对于模型中的参数有非常强的灵感性,λ1的值作微小的改变对于整个疫情的发展有很大的影响,所以政府采取对SARS疫情的有关措施是完全正确的。
本文重点分析了关于SARS病人率的模型一,根据求得的参数,利用相轨线理论对结果加以分析并对整个疫情作出预测,并推论出SARS 病人率关于t的表达式i(t),然后提出了对传染病的控制方案,同时列举了具体方法,并论证了方法的合理性和可行性,用其它地区的数据对模型进行检验,说明模型的参数有区域性。
关键词:SARS 微分方程曲线拟合数学模型相轨线一 、问题的提出SARS 俗称非典型肺炎,是21世纪第一个在世界范围内传播的传染病。
我国作为发展中大国深受其害:SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。
在党和政府的统一领导下,全国人民与SARS 顽强抗争,取得了可喜的阶段性胜利,并从中得到了许多重要的经验和教训,认识到在没有找出真正病因和有效治愈方法前,政府采取的强制性政策对抑制SARS 自然发展最有效办法。
而本题的目的就是要建立一个适当的模型对SARS 传播规律进行定量地分析、研究,为预测和控制SARS 蔓延提供可靠、足够的信息,无论对现在还是将来都有其重要的现实意义。
二 、模型的假设1. 地总人数N 可视为常数,即流入人口等于流出人口。
2. 据人口所处的健康状态,将人群分为:健康者,SARS 病人,退出者(被治愈者、 免疫者和死亡者)。