高频功率放大器要点
- 格式:ppt
- 大小:1.33 MB
- 文档页数:34
实验⼆丙类⾼频功率放⼤器实验要点实验三丙类⾼频功率放⼤器实验⼀ . 实验⽬的1. 通过实验,加深对于⾼频谐振功率放⼤器⼯作原理的理解。
2. 研究丙类⾼频谐振功率放⼤器的负载特性,观察三种状态的脉冲电流波形。
3. 了解基极偏置电压、集电极电压、激励电压的变化对于⼯作状态的影响。
4. 掌握丙类⾼频谐振功率放⼤器的计算与设计⽅法。
⼆ . 预习要求:1. 复习⾼频谐振功率放⼤器的⼯作原理及特点。
2. 熟悉并分析图 3所⽰的实验电路,了解电路特点。
三 . 实验仪表设备1. 双踪⽰波器2. 数字万⽤表3. TPE-GP5通⽤实验平台4. G1N 实验模块5. G2N 实验模块四 . 电路特点及实验原理简介1. 电路特点本电路的核⼼是谐振功率放⼤器,在此电路基础上,将⾳频调制信号加⼊集电极回路中,利⽤谐振功率放⼤电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成⽆线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独⽴的载波振荡源。
2. ⾼频谐振功率放⼤器的⼯作原理参见图 1。
谐振功率放⼤器是以选频⽹络为负载的功率放⼤器,它是在⽆线电发送中最为重要、最为难调的单元电路之⼀。
根据放⼤器电流导通⾓的范围可分为甲类、⼄类、丙类等类型。
丙类功率放⼤器导通⾓θ<900,集电极效率可达 80%, ⼀般⽤作末级放⼤,以获得较⼤的功率和较⾼的效率。
图 1中, V bb 为基极偏压, V cc 为集电极直流电源电压。
为了得到丙类⼯作状态, V bb 应为负值,即基极处于反向偏置。
u b 为基极激励电压。
图 2⽰出了晶体管的转移特性曲线,以便⽤折线法分析集电极电流与基极激励电压的关系。
V bz 是晶体管发射结的起始电压(或称转折电压。
由图可知,只有在 u b 的正半周,并且⼤于V bb 和 V bz 绝对值之和时,才有集电极电流流通。
即在⼀个周期内,集电极电流 i c只在 -θ~+θ时间内导通。
5.4宽带高频功率放大器以LC谐振回路为输出电路的功率放大器,因其相对通频带只有百分之几甚至千分之几,因此又称为窄带高频功率放大器。
这种放大器比较适用于固定频率或频率变换范围较小的高频设备,如专用的通讯机、微波激励源等。
除Y LC谐振回路以外,常用于高频功放电路负载还有普通变压器和传输线变压器两类。
这种以非谐振网络构成的放大器能够在很宽的波段内工作且不需调谐,称之为宽带高频功率放大器。
以高频变压器作为负载的功率放大器最高工作频率可达几百千赫至十几兆赫,但当工作频率更高时,由于线圈漏感和匝间分布电容的作用,其输出功率将急剧下将,这不符合高频电路的要求,因此很少使用。
以传输线变压器作为负载的功率放大器,上限频率可以达到几百兆赫乃至上千兆赫,它特别适合要求频率相对变化范围较大和要求迅速更换频率的发射机,而且改变工作频率时不需要对功放电路重新调谐。
本节重点分析传输线变压器的工作原理,并介绍其主要应用。
5.4.1传输线变压器1.传输线变压器的结构及工作原理传输线变压器是将传输线(双绞线、带状线、或同轴线)绕在高导磁率铁氧体的磁环上构成的。
如图5-24(a)所示为1:1传输线变压器的结构示意图。
传输线变压器是基于传输线原理和变压器原理二者相结合而产生的一种耦合元件,它是以传输线方式和变压器方式同时进行能量传输。
对于输入信号的高频频率分量是以传输线方式为主进行能量传输的;对于输入信号的低频频率分量是以变压器方式为主,频率愈低,变压器方式愈突出。
如图5-24 (b)为传输线方式的工作原理图,图中,信号电压从1、3端输入,经传输线变压器的传输,在2、4端将能量传到负载RL上。
如果信号的波长与传输线的长度相比拟,两根导线固有的分布电感和相互间的分布电容就构成了传输线的分布参数等效电路,如图5-24 (d)所示。
若认为分布参数为理想参数,信号源的功率全部被负载所吸收,而且信号的上限频率将不受漏感、分布电容及高导磁率磁芯的限制,可以达到很高。
第3章⾼频功率放⼤器详解第3章⾼频功率放⼤器⼀、本章的基本要求(1)掌握丙类谐振功率放⼤器的⼯作原理及其特点。
(2)掌握谐振功率放⼤器三种⼯作状态的特点以及负载特性;了解集电极直流电源,基极直流电源以及基极输⼊电压对⼯作状态的影响。
(3)掌握谐振功率放⼤器电路的组成,了解谐波匹配⽹络的作⽤。
(4)了解传输线变压器的⼯作原理以及阻抗变换,功率合成与分配技术⼆、重点和难点重点:(1)丙类谐振功率放⼤器的⼯作原理及其特点。
(2)谐振功率放⼤器三种⼯作状态以及负载特性。
(3)谐振功率放⼤器电路的组成。
(4)传输线变压器阻抗变换原理。
难点:(1)谐振功率放⼤器特性分析。
(2)LC⽹络的阻抗变换原理及电路参数的计算。
(3)传输线变压器功率合成与分配原理。
引⾔1、使⽤⾼频功率放⼤器的⽬的放⼤⾼频⼤信号使发射机末级获得⾜够⼤的发射功率。
2、⾼频功率信号放⼤器使⽤中需要解决的两个问题①⾼效率输出②⾼功率输出联想对⽐:⾼频功率放⼤器和低频功率放⼤器的共同特点都是输出功率⼤和⾼。
3、谐振功率放⼤器与⼩信号谐振放⼤器的异同之处相同之处:它们放⼤的信号均为⾼频信号,⽽且放⼤器的负载均为谐振回路。
不同之处:为激励信号幅度⼤⼩不同;放⼤器⼯作点不同;晶体管动态范围不同。
4、谐振功率放⼤器与⾮谐振功率放⼤器的异同共同之处:都要求输出功率⼤和效率⾼。
功率放⼤器实质上是⼀个能量转换器,把电源供给的直流能量转化为交流能量,能量转换的能⼒即为功率放⼤器的效率。
谐振功率放⼤器通常⽤来放⼤窄带⾼频信号(信号的通带宽度只有其中⼼频率的1%或更⼩),其⼯作状态通常选为丙类⼯作状态(θc<90?),为了不失真的放⼤信号,它的负载必须是谐振回路。
⾮谐振放⼤器可分为低频功率放⼤器和宽带⾼频功率放⼤器。
低频功率放⼤器的负载为⽆调谐负载,⼯作在甲类或⼄类⼯作状态;宽带⾼频功率放⼤器以宽带传输线为负载。
⼯作状态功率放⼤器⼀般分为甲类、⼄类、甲⼄类、丙类等⼯作⽅式,为了进⼀步提⾼⼯作效率还提出了丁类与戊类放⼤器。
功率放大器的设计要点与高频特性分析功率放大器是电子电路中常见的一种电子器件,用于将输入信号的功率放大到所需的输出功率。
在电子设备中,功率放大器的设计非常重要,因为它直接影响到设备的性能和效果。
本文将介绍功率放大器的设计要点,并对其高频特性进行分析。
一、功率放大器的设计要点1. 选择合适的功率管型号:在功率放大器的设计过程中,首先需要选择合适的功率管型号。
不同的功率管具有不同的工作特性和参数,如最大功率、频率响应、失真等。
设计者需要根据实际需求,选择适合的功率管型号。
2. 确定工作状态:在设计功率放大器时,需要确定工作状态。
功率放大器可以在不同的工作状态下工作,如A类、B类、AB类等。
每个工作状态都有其优缺点,需要根据实际需求和性能要求,选择合适的工作状态。
3. 确定电源电压:功率放大器的电源电压对输出功率和效果有着重要影响。
设计者需要根据实际需求和功率管的参数,合理选择电源电压,以确保功率放大器能够工作在最佳状态。
4. 确定输入输出阻抗:在功率放大器的设计中,输入输出阻抗的匹配是非常重要的。
匹配不良会导致信号反射和功率损失,影响功率放大器的效果。
设计者需要通过合适的匹配电路,确保输入输出阻抗的匹配。
二、功率放大器的高频特性分析功率放大器的高频特性分析是设计中的重要环节。
以下是几个常见的高频特性分析内容:1. 频率响应:功率放大器在不同频率下的增益和相位变化是需要关注的。
设计者需要通过测试或仿真,得到功率放大器在不同频率下的频率响应曲线,以评估其性能。
2. 频率稳定性:功率放大器的频率稳定性是指在不同工作频率下,输出功率和输出频率的稳定性。
设计者需要通过合适的电路设计和参数选择,确保功率放大器在工作频率范围内能够保持稳定的输出。
3. 带宽:功率放大器的带宽是指其能够放大信号的频率范围。
设计者需要根据实际需求和性能要求,选择合适的功率管和设计参数,以实现所需的带宽。
4. 谐波失真:功率放大器在放大信号时会产生谐波失真。