PID参数的工程整定方法
- 格式:ppt
- 大小:1.27 MB
- 文档页数:71
PID参数工程整定方法PID(比例、积分、微分)控制器是一个自动控制系统中常用的控制算法,用于调节系统的输出以达到期望的设定值。
1.经验法:经验法是一种基于经验和操作人员经验的调节方法。
通过实践经验,根据不同的系统特性,人们总结出一些定性关系,用于指导参数调节。
例如,经验法中最常用的方法之一是试控法,即通过调节P、I、D三个参数的值,使得系统输出与设定值之间的误差最小。
2. Ziegler-Nichols法:Ziegler-Nichols法是一种基于试控法的数学方法。
它通过改变PID控制器的增益参数来调整系统,使得系统的阻尼比达到临界阻尼点。
然后,根据输出的时间响应曲线,从曲线中提取出一些参数,根据这些参数计算出PID控制器的参数。
该方法简单易行,但只适用于一阶系统和二阶系统。
3.超调法:超调法是一种通过改变PID控制器的增益参数来调整系统的方法。
它通过观察系统的超调量来调整PID参数。
超调量是指系统在达到设定值之后,实际值超过设定值的幅度。
根据超调量的大小,可以调整PID控制器的参数值,以使系统达到更好的性能。
4.频率响应法:频率响应法是一种通过改变PID控制器的增益参数来调整系统的方法。
它通过对系统进行频率响应测试,获得系统的传递函数和频率响应曲线,然后根据曲线的特征确定PID参数。
该方法适用于高阶系统和非线性系统。
5.基于模型的方法:基于模型的方法是一种通过建立系统的数学模型来调整PID控制器的方法。
通过分析系统的模型,计算出最佳的PID参数,以使系统达到最佳的性能表现。
这种方法需要对系统有较好的了解和较强的数学建模能力。
需要注意的是,不同的系统和应用场景可能需要不同的PID参数整定方法。
参数整定是一个复杂的过程,通常需要多次试验和调节,根据实际情况和需求进行优化。
总之,PID参数工程整定是一个复杂的过程,需要结合实际情况和经验进行调节。
通过合理的参数设置,可以提高系统的稳定性、响应速度和抗干扰能力,实现更好的控制效果。
pid参数的工程整定方法PID控制在工程里可太常见啦,就像一个小管家,管着各种系统的运行呢。
那PID 参数的整定方法也有不少小窍门哦。
最常用的一种是经验试凑法。
这就有点像做菜的时候试味道一样。
对于比例系数P,一开始可以给个比较小的值,就像给菜加一点点盐先尝尝。
如果系统反应很慢,输出老是不能达到目标值,那就可以慢慢增加P的值,让系统反应灵敏点。
但是P也不能太大哦,太大了系统就会像个调皮的小孩,变得很不稳定,晃来晃去的。
积分系数I呢,它主要是用来消除稳态误差的。
要是系统在稳定的时候,输出和目标值还有偏差,就像走路老是走不到目的地一样,这时候就可以调整I啦。
不过I 也不能一下子调得太大,不然系统会变得很“迟钝”,反应超级慢。
微分系数D就像是一个预测小能手。
它可以根据系统的变化趋势来提前调整。
如果系统变化很缓慢,D可以小一点;要是系统变化特别快,像火箭发射似的,那D就可以适当大一点,这样就能让系统更快地稳定下来。
还有一种是临界比例度法。
先把积分和微分关掉,只调整比例系数P,让系统达到临界振荡状态,这时候的比例系数就是临界比例度啦。
然后根据一些经验公式来计算出P、I、D的值。
不过这个方法有点冒险,就像走钢丝一样,一不小心系统就可能振荡得太厉害。
衰减曲线法也挺有趣的。
让系统产生衰减振荡,根据衰减的情况来确定PID参数。
就像看波浪一样,波浪的幅度和衰减速度能告诉我们参数应该怎么调整。
在实际工程里,整定PID参数可不能太死板哦。
要根据具体的系统情况,像系统的特性、负载的变化、干扰的大小这些因素来灵活调整。
有时候可能要多试几次,就像找宝藏一样,要有耐心。
而且不同的工程师可能也有自己独特的小技巧和经验。
毕竟每个工程系统都像是一个独特的小世界,需要我们用心去找到最适合它的PID参数组合,这样系统才能乖乖听话,稳定又高效地运行啦。
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。
一般可以通过理论计算来确定,但误差太大。
目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。
各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。
若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti 就是最佳值。
如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。
由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。
显然用经验法整定的参数是准确的。
但花时间较多。
为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。
可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。
这样可大大减少现场凑试的次数。
②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB 过大,曲线漂浮较大,变化不规则,Ti 过长,曲线带有振荡分量,接近给定值很缓慢。
这样可根据曲线形状来改变PB或Ti。
③PB 过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti过短,振荡周期较长;Td太长,振荡周期最短。
④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。
这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。
(2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。
PID参数的工程整定方法1.试误法试误法是一种通过观察系统响应特性来调整PID参数的方法。
该方法主要分为两步:首先设置合理的比例增益Kp,使系统实现最佳超调;然后根据实验结果,调整积分时间Ti和微分时间Td,达到使系统快速稳定的目标。
步骤如下:1.1设置比例增益Kp,通过手动调节Kp,使系统响应产生一定的超调,并确定合适的超调量。
1.2根据超调量的大小,选择合适的积分时间Ti和微分时间Td。
-当超调较小,可以选择较大的积分时间和微分时间,以提高系统响应速度。
-当超调较大,可以选择较小的积分时间和微分时间,以减小系统超调。
2.经验公式法经验公式法是一种基于经验公式的快速整定方法,适用于一些常用的控制对象类型和工程实践中的经验总结。
它通常包括以下公式:-平稳过程:Kp=0.5Kc,Ti=3.33τ,Td=0.83τ-快速过程:Kp=0.3Kc,Ti=2τ,Td=0.5τ-慢速过程:Kp=0.2Kc,Ti=4τ,Td=τ上述公式中,Kc为临界增益,τ为对象的时间常数。
根据不同的控制对象类型,选择对应的公式进行初始参数整定,然后根据实际情况进行微调。
3. Ziegler-Nichols整定法Ziegler-Nichols整定法是一种基于系统临界增益的整定方法,该方法通过寻找系统的临界增益和周期来确定PID参数。
步骤如下:3.1将比例增益Kp调至最小值,然后逐渐增加Kp,直至系统发生持续的限幅振荡,记录此时的Kp值和周期Tp。
3.2根据所选择的整定方法,计算得到合适的PID参数:-P控制器:Kp=0.5Ku-PI控制器:Kp=0.45Ku,Ti=0.85Tp-PID控制器:Kp=0.6Ku,Ti=0.5Tp4.优化方法优化方法利用优化理论和算法,通过对系统特性的建模和参数优化求解,得到更优的PID参数配置。
常用的优化方法包括遗传算法、粒子群优化算法、模拟退火算法等。
优化方法首先需要建立系统的数学模型,并确定优化的目标函数,如稳定性、超调、控制精度等。
2.3 PID参数整定方法参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢。
微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。
2.3.1 工程整定法PID数字调节器的参数,除了比例系数K p,积分时间T i和微分时间T d外,还有1个重要参数即采样周期T。
1.采样周期T的选择确定从理论上讲,采样频率越高,失真越小。
但是,对于控制器,由于是依靠偏差信号来进行调节计算的,当采样周期T太小,偏差信号也会过小,此时计算机将失去调节作用;若采样周期T太长,则将引起误差。
因此采样周期T必须综合考虑。
采样周期的选择方法有两种,一种是计算法,另一种是经验法。
计算法由于比较复杂,特别是被控对象各环节时间常数难以确定,工程上较少用。
经验法是一种凑试法,即根据人们在控制工作实践中积累的经验以及被控对象的特点,先选择一个采样周期T,进行试验,再反复改变T,直到满意为止。
2.K p,T i,T d的选择方法1)扩充临界比例度法扩充临界比例度法是简易工程整定方法之一,用它整定K p,T i,T d的步骤如下。
选择最短采样周期T min,求出临界比例度S u和临界振荡周期T u。
具体方法是将T min输入计算机,只有P环节控制,逐渐缩小比例度,直到系统产生等幅振荡。
此时的比例度即为临界比例度S u,振荡周期称为临界振荡周期T u。
选择控制度为:(2-15)通常当控制度为1.05时,表示数字控制方式与模拟方式效果相当。
根据计算度,查表2-1可求出K p,T i,T d。
表2-1 扩充临界比例度法整定参数表2)扩充响应曲线法若已知系统的动态特性曲线,可以采用和模拟调节方法一样的响应曲线法进行整定,其步骤如下。
断开微机调节器,使系统手动工作,当系统在给定值处处于平衡后,给一阶跃输入。
传统pid参数整定方法PID控制器是控制工程中常用的一种自调控制器。
在现代工业控制中,PID控制器被广泛应用于控制系统中,其控制性能和稳定性受到普遍认可,因而成为大多数控制系统的核心控制算法。
PID控制器的参数整定是控制系统设计和调试的重点之一。
传统PID参数整定方法是指经验法、试探法和调整法等一系列基于经验的控制策略,具有简单易行、便于掌握、操作灵活的优点。
下面就传统PID参数整定方法进行详细讲解。
一、经验法经验法是由工程技术经验总结形成的整定方法。
该方法适用于比较常见、简单的控制系统。
这种方法的核心思想是根据工程经验和实际系统调试情况来确定PID参数,主要包括经验公式法和调节参数法。
1.经验公式法经验公式法是根据经验公式确定PID参数的一种方法。
常用的经验公式包括:经验整定法、奈奎斯特公式法、阶跃响应法等。
例如,经验整定法公式为:Kp=0.3(Ku/M);Ti=0.7Pu;Td=0.2Pu。
其中,Ku表示系统的临界增益,M表示系统的调节倍数,Pu表示系统的极值周期,Kp、Ti和Td分别为PID控制器的比例、积分和微分参数。
2.调节参数法调节参数法是根据实际系统调试情况和效果进行参数调整的方法。
首先,根据系统的动态特性确定Ki和Kd,并将Kp设置为一个比较小的值。
然后,利用某一输入信号,在稳态下测量系统的输出响应,并根据实际调试情况对PID参数进行调整,以达到最优的控制效果。
二、试探法试探法是指在试探过程中,根据系统目标响应特性和分析,逐步调整PID参数的方法,这种方法具有操作简单、灵活性和可靠性等优点。
常用的试探法有“逆”法、“Ziegler-Nichols”法、“Choen-Coon”法等。
1.“逆”法“逆”法是通过减少PID增益直到控制系统不再震荡的方法。
此法通常是在Ti=0时使用,其中Kp和Kd分别由经验公式和试探法获得,Kp和Kd设置小值,然后逐步增加Kp和Kd,直到出现震荡,然后缩减Kp和Kd,直到震荡结束。
PID参数的整定方法PID控制器是目前最常用的控制算法之一,其调节参数(也称为PID 参数)的合理设置对控制系统的性能起着关键作用。
下面将介绍几种常用的PID参数整定方法。
1.经验法:经验法是最为简单直接的方法,通常由经验工程师根据自身经验来设定PID参数。
这种方法适用于一些简单的控制系统,但是对于复杂的系统来说,由于经验法不能提供具体的参数值,容易出现性能较差的情况。
2. Ziegler-Nichols 整定法:Ziegler-Nichols 整定法是PID参数整定中较为经典的方法,其步骤如下:-首先将PID控制器的I和D参数设置为零。
-逐渐增大比例参数(P)直到系统出现持续且稳定的振荡。
-记录此时的比例参数为Ku。
- 根据不同的控制对象类型,Ziegler-Nichols方法会有不同的参数整定公式,常见的有:-P型系统:Kp=0.50Ku,Ti=0.50Tu,Td=0.125Tu-PI型系统:Kp=0.45Ku,Ti=0.83Tu,Td=0.125Tu-PID型系统:Kp=0.60Ku,Ti=0.50Tu,Td=0.125Tu其中Ku为临界增益值,Tu为临界周期。
3. Chien-Hrones-Reswick (CHR) 整定法:CHR整定法基于频域设计方法,通过系统的频率响应曲线来确定PID参数。
其步骤如下:-绘制系统的频率响应曲线(一些软件和仪器可以直接测量)。
-根据曲线的特征,确定比较慢的过程的时间常数τ和极点频率ωp。
-根据以下公式得到PID参数:-P参数:Kp=2/(ωpτ)-I参数:Ti=τ/2-D参数:Td=τ/8不能掉进方法的误区,如超调范围不合适,调节周期过大或周期过小时,传递函数为微分型等。
4.设计优化法:设计优化法是基于性能指标的优化算法,通过对系统的模型进行优化,得出最佳的PID参数。
这种方法较复杂,通常使用数学工具或计算机软件进行参数优化。
常见的优化算法有遗传算法、粒子群算法等。
PID参数整定方法PID(比例-积分-微分)是一种常见的控制算法,广泛应用于工业自动化领域。
在使用PID控制算法时,为了使系统能够达到良好的控制效果,需要进行参数整定。
本文将介绍几种常用的PID参数整定方法。
1.经验法:经验法是一种常见的PID参数整定方法,它基于工程师的经验和直觉。
根据控制对象的特性和要求,调整比例增益Kp、积分时间Ti和微分时间Td的值。
这种方法操作简单,但需要工程师具备一定的经验。
2. Ziegler-Nichols方法:Ziegler-Nichols方法是一种经典的PID参数整定方法,它通过试探法的方式确定参数。
具体操作步骤如下:-将积分时间Ti和微分时间Td设为0,只调整比例增益Kp。
-增加Kp,直到系统开始出现振荡。
-记下此时的Kp值,设为Ku。
-根据振荡周期Tu,计算出比例增益Kp、积分时间Ti和微分时间Td的值,即Kp=0.6Ku,Ti=0.5Tu,Td=0.125Tu。
3.系统辨识法:系统辨识法是一种通过实验数据分析来确定PID参数的方法。
步骤如下:-设定一定的输入信号,并记录系统的输入输出数据。
-通过数据处理方法,建立系统的数学模型,如传递函数或状态空间模型。
-利用系统辨识算法估计模型参数。
-根据辨识得到的模型参数,运用数学方法求解PID参数。
4.遗传算法优化法:遗传算法优化法通过模拟生物进化机制来最优解,可以用于PID参数的优化。
具体步骤如下:-通过实验数据建立系统的数学模型。
-设定适应度函数,作为评价PID参数优劣的指标。
-随机生成一组初始PID参数。
-利用遗传算法进行迭代优化,不断生成新的PID参数组合,并通过适应度函数评估其优劣。
-根据迭代次数或适应度达到一定要求时,停止优化,并得到最优PID参数。
5.自整定控制器方法:自整定控制器方法是一种通过系统自身对控制对象进行辨识和参数整定的方法。
常见的自整定控制器方法有自适应控制器和模型参考自适应控制器。
它们通过在线辨识控制对象的参数变化,并实时调整PID参数来达到控制要求。
PID控制器参数整定的一般方法:PID控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改;二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。
书上的常用口诀:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢。
微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。
个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。
P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。
3.PID参数整定⑴采样周期T符合工程准则。
(2)K p/K i/K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。
此时PID调节器的比例度为临界比例度6 k,被调参数的工作周期为为临界周期Tk。
O —■■值O -Utsu临界比例度法整定PID参数具体操作如下:1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。
2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。
3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。
4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5 次等幅振荡为止。
此时的比例度示值就是临界比例度6 k。
5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。
如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。
临界比例度法PID参数整定经验公式调节规律调节器参数6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。
多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。
衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。
纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度6s,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示4:1衰减曲线法整定PID参数具体操作如下:1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。