纳米金
- 格式:ppt
- 大小:6.67 MB
- 文档页数:12
纳米金材料的制备与性能研究随着科技的不断进步,纳米材料的应用领域也在不断拓宽。
其中,纳米金材料作为一种有着独特性能的纳米材料,在能源、光电、催化等领域具有广阔的应用前景。
本文将探讨纳米金材料的制备方法以及其在性能研究方面的应用。
纳米金材料的制备有多种方法,其中较常见的是湿化学法和物理法。
湿化学法主要包括化学还原法、溶胶-凝胶法和电化学沉积法等。
化学还原法是指将金离子还原为金纳米颗粒,通过在反应溶液中加入还原剂,如氨水、甲醛等,可得到具有不同形貌和尺寸的纳米金颗粒。
溶胶-凝胶法则通过控制溶胶的成分和凝胶的温度、pH值和反应时间等参数,实现纳米金材料的制备。
电化学沉积法则是将金属离子通过外加电压的作用沉积到电极上,形成纳米金材料。
物理法主要包括溅射法、热蒸发法和激光蚀刻法等。
溅射法是将金属靶材置于真空腔内,通过高能粒子轰击金属靶材使其释放出金原子,再以惰性气体或惰性气氛控制金原子的运动,从而得到纳米金材料。
热蒸发法则是通过高温将金属材料蒸发,使其沉积在基底上形成纳米金材料。
激光蚀刻法则是利用激光束对金属材料进行蚀刻,形成纳米级小孔,然后将大孔在高温条件下迅速冷却,从而得到具有纳米尺寸的金材料。
除了制备方法外,纳米金材料的性能研究也是科学家们关注的热点。
纳米金材料由于其特殊的尺寸效应和表面效应,表现出与宏观金材料不同的物理、化学和生物学性能。
其中,表面等离子体共振现象是纳米金材料的重要性能之一。
当入射光与纳米金颗粒表面的自由电子振荡频率相匹配时,会发生等离子体共振现象,极大地放大了光的吸收和散射,从而使得纳米金材料具有优异的光学性能。
这一性能使得纳米金材料在光学传感器、光催化等领域具有广泛的应用前景。
此外,纳米金材料还具有优异的电学性能。
由于纳米金颗粒的特殊结构,其载流子具有较高的迁移率,因此纳米金材料在传感器、储能器件和显示器件等领域有着广泛的应用。
此外,纳米金材料在催化领域的应用也备受瞩目。
纳米金材料具有较大的比表面积和优异的催化活性,因此在催化剂的研究中具有广泛的应用前景。
纳米金的意思|纳米金是什么意思基本解释所谓纳米金,其实是直径为纳米级别的金颗粒,常用作免疫学检测的标记物或是生物探针。
但用于美容目前还存在争议。
纳米金-制作和大多数化学物质一样,纳米金不是天然的,需要人工制备。
一般常用氯金酸来合成,而氯金酸本身就是纯金与王水反应而成的产物。
纳米金纳米金()即指金的微小颗粒,其直径在1~100nm,具有高电子密度、介电特性和催化作用,能与多种生物大分子结合,且不影响其生物活性。
由氯金酸通过还原法可以方便地制备各种不同粒径的纳米金,其颜色依直径大小而呈红色至紫色。
纳米金-外观制备好的纳米金是有着红葡萄酒一样漂亮颜色的液体,但这仅仅是外表。
纳米金-用于美容左图:GSNO浓度与NO产生的线性相关性;右图:血管腔内纳米金颗粒诱导产生NO的示意图自“纳米金”在中国市场出现后,这一概念便被严重“复制”。
如今市面上至少有10余种品牌的纳米黄金化妆品,而各品牌的宣传资料、产品名称、功能都大致相同,价格从8000多元到10多万元不等。
根据相关纳米金网站的宣传,纳米金是经过国际世界卫生组织(WHO)食品添加剂法规委员会(CCFA)认证通过,证明是可食型安全成分。
纳米金粒径10-12nm,纯度高达99.99%,是通过美国FDA 认证的可食型绿色成分,纳米金能改善皮下循环系统,带来大量的营养成分,皮肤细胞更新速度加快,从而达到如幼儿时代的代谢功能,皮肤自然细腻、滋润、光滑。
功效通过强力加热渗压技术,让毛孔自然扩展,微小纳米金活性因子渗透至毛孔内壁,超强吸附力的纳米金将黑头、污垢全面吸附出来,并对毛孔内壁进行杀菌消毒。
冷冻离心旋出技术配合纳米金能迅速冷冻毛孔,将毛孔收缩起来,平复粗大的毛孔、粉刺。
纳米金释放出负离子,与人体正离子相呼应,促进血液循环和新陈代谢,防止毛孔再次被污垢堵塞导致黑头。
毛孔内壁被杀菌消毒,粉刺慢慢被平复。
黑头、毛孔、粉刺等彻底去除,实现零毛孔的光滑、细腻、嫩滑的完美肌肤状。
纳米金的熔点
所谓纳米金是以高纯度黄金为原料,经过特殊新加工工艺把黄金制作成粒径15nm以下,大大提高了黄金固有的特性,比如:催化效果、去除自由基效果、分散效果等等。
熔点1064.43℃、沸点:2808℃、电负性:2.54、共价半径1.3 4A、离子半径0.85 (+3) A、原子半径1.46A、原子体积10.2cc/m ol。
纳米金熔点低的原因:
1、由于纳米材料尺寸小,因而具有很高的表面能与化学活性,且具有很多特殊的功能性。
与纳米材料一样,纳米金材料也具有一系列特殊的物理、化学性质。
2、纳米金熔点下降。
这是由于纳米金微粒比表面积大,表面能及界面能高,熔化时所需内能较小,因而使纳米金熔点较低。
为什么纳米金熔点低
纳米金属为什么熔点低
从物质结构来判断,氮气在固态时属于分子晶体,铋属于金属晶体,常温下氮的单质为气体,铋的单质为固体,所以氮的熔点很低,铋的熔点较高,是因为二者晶体类型不同。
纳米金也叫金纳米粒子。
这些纳米粒子大约是人头发的千分之一的尺寸大小。
纳米金非常小,通常它们以溶胶状态存在也就意味着金纳米粒子可以悬浮在液体中。
因此,金纳米粒子也被称为金溶胶或胶体金。
纳米金并不是我们大家所熟悉的黄金首饰的金黄色。
金溶胶通常显示出透明红色、蓝色、紫红色的状态,这主要是由纳米金的纳米尺寸效应和表面等离子共振特性所决定的。
纳米尺寸效应当固体晶体材料缩减到纳米尺度时就会展现出和块体结构不一样的性质。
超顺磁性的Fe3O4以及纳米金就是很好的例子。
大块的Fe3O4是亚铁磁性的,但是纳米尺寸的Fe3O4是超顺磁性的,也就意味着当存在磁场时纳米Fe3O4表现出磁性,当移去磁场时其磁性消失,这导致超顺磁性Fe3O4对于磁场的变化非常敏感并且响应很快。
而不同尺寸和形状的纳米金可与波长范围400-1200 nm)的可见光及近红外光发生相互作用,并且导致表面等离子共振吸收或散射,从而使得纳米金表现出独特的光学特性。
例如,40nm的纳米金修饰抗体后可用于免疫层析试纸条的构建,这也是最早应用于临床的POCT技术;10nm的纳米金修饰特异性单抗构建纳米探针,可用于免疫电镜中对细胞表面的抗原进行标记和定位;金标银染技术也广泛用于免疫检测或核酸检测中的信号放大。
表面等离子共振(SPR)通常来说,表面等离子共振(SPR)有两种形式,如图1所示,传播的等离子体及局域化的表面等离子体。
当入射光与光滑金属表面相接触时会激发出金属表面的电子波,电子波会在金属表面传递,并与光耦合,这种现象被称为表面等离子极化(SPP)。
当光与金属纳米粒子相互作用时会产生局域表面等离子共振(LSPR),这主要是由于金属纳米粒子费米能级附近导带上的自由电子在入射光频电场的驱动下在金属表面发生集体振荡,产生局域表面等离激元。
当入射光的频率正好与自由电子的固有振动频率相同时,则发生共振,即局域表面等离子体共振(LSPR)。
此时,电磁场的能量被有效地转变为金属表面自由电子的集体振动能。
纳米金具有明显的表面效应、体积效应、量子效应、小尺寸效应及生物亲和性,其光学特性、电子特性、传感特性及生物化学特性成为研究热点,在超分子、生物化学等技术领域具有广泛的应用前景【lJ。
将其用于生物传感器制作,所得传感器选择性强、稳定性好且操作方法简便。
纳米金颗粒比表面积非常大,表面自由能高,酶可在纳米颗粒表面得到强有力的固定,不易渗漏,金溶胶具有很好的生物相容性,并且是电的良导体,可在酶与电极之间传递电子,显著提高酶电极的响应灵敏度,为开发研制第三代无媒介生物传感器提供可能。
金溶胶的制备主要有液相还原法、相转移法【6~8】等。
Frens[9】在1972年发展的氯金酸的柠檬酸三钠水相还原法,是制各金溶胶的经典方法,该方法成本低、设备简易、反应时间短、操作简便,更利于产业化生产。
一般用该方法制备的纳米金颗粒粒径大于12nm[101,(1)Fukumik Chayahara A,Kadono Ket a1.JAppIPhys[J],1994,75(6):3075(2)DavidocicD,TinkhamM.ApplPhysLett[J],1998,73:3959(3)PasquatoL,PancanF’ScriminPeta1.ChemCommun[J],2000,22:2253(4)AlivisatosA P’Johnsson K P'Peng Xet a1.Nature[J],1996,382:609(5)ZhangZhikun(张志锟)'Cui Zuolin(崔作林).Nano Technology andNano Materials(纳米技术与纳米材料)[M].Beijing:National Defense IndustryPress,2000(6)YonezawaT’Yasui K,KimizukaN.Langmuir[J],2001,17(2):2’7l(7)Chow M K ,Zukoski CF.J Colloid InterfaceSci[fl,1994,165(1):97(8) BrustM,WalkerM,BethellDeta1.JChemicalSociety,Chem Commun[J],1994,7:801(9)Frens Gnat Phys Sci[fl,1973,241:20(10)Chen F'Xu G Q,Hor T纳米材料”的命名出现在20世纪80年代,它是指三维空间中至少有一维处于卜lOOnm 或由它们作为单元构成的材料(13),纳米金一般为分散在水溶液中的溶胶,故又称胶体金,由于纳米粒子的表面层占很大比重,而表面原子是长程无序,而短程有序的非晶层,可以认为粒子的表面层更接近气态,而在粒子的中心存在结晶完好的周期排佰的原子。
检测纳米金的含量方法“嘿,大家都想知道怎么检测纳米金的含量呀,那我就来给好好讲讲。
”检测纳米金的含量,有几种常见的方法。
一种是紫外可见分光光度法,这就像是给纳米金做个独特的“身份鉴定”。
纳米金有它特定的吸收光谱,通过测量其在特定波长下的吸光度,就能推算出纳米金的含量。
比如说,我们在实验室里做过这样一个实验,取一定量已知浓度的纳米金溶液,用分光光度计测它在某个波长下的吸光度,然后再测未知浓度的纳米金溶液在同样波长下的吸光度,对比一下就能得出大致的含量了。
还有一种方法是电感耦合等离子体质谱法。
这个方法就很厉害啦,可以非常准确地检测出纳米金的含量,哪怕是极其微量的。
就好像是个超级放大镜,能把纳米金的细微之处都看得清清楚楚。
举个例子吧,之前我们研究一个复杂的样品,里面可能有很多其他杂质,但用这个方法就能精准地把纳米金的含量给确定下来。
另外,透射电子显微镜法也能起到检测的作用。
它能让我们直接看到纳米金的形态和大小,同时也能通过统计分析来估算含量。
就像是给纳米金拍个特写照片,能清楚地知道它长啥样,有多少。
比如在一个关于纳米金药物载体的研究中,我们就用透射电子显微镜来观察纳米金的分布和含量,为进一步的研究提供了重要的数据。
荧光分析法也能派上用场哦。
如果纳米金和某些荧光物质有特殊的相互作用,那通过检测荧光强度的变化,也能间接知道纳米金的含量。
记得有一次我们研究纳米金对某种荧光染料的影响,就是通过这种方法来检测纳米金的含量的。
这些方法各有特点和适用场景,我们在实际检测时要根据具体情况选择合适的方法。
有时候可能需要多种方法结合起来,才能得到更准确、全面的结果。
总之,检测纳米金含量是个技术活,需要我们根据实际需求和条件,灵活运用各种方法,才能得到可靠的数据。
这样大家就能更好地了解和利用纳米金啦!。
纳米金的用途纳米金是一种具有纳米级尺寸的金纳米颗粒,其尺寸通常在1-100纳米之间。
由于其特殊的尺寸效应和表面效应,纳米金材料在许多领域都有广泛的应用。
以下是纳米金的一些主要用途:1. 生物医学领域:纳米金在生物医学领域有广泛应用,例如在药物传递中扮演载药体的角色,可以有效地将药物输送至靶细胞。
此外,纳米金还可以用于光热疗法,通过激活纳米金在近红外光下的光热转化,使癌细胞受到热损伤。
此外,纳米金还可用于生物传感器和生物成像等方面,提高对组织和细胞的检测和成像能力。
2. 材料科学领域:纳米金具有较大的比表面积和优异的光学特性,可以用作增强材料的传导性和催化活性。
纳米金可以嵌入到陶瓷材料中,提高其热传导性能和机械强度。
此外,纳米金还可以用于制备高性能的传感器材料,例如气体传感器、光学传感器和生物传感器。
3. 环境应用:纳米金在环境科学领域有广泛应用,例如在水处理中,纳米金可以作为催化剂去除有害物质和污染物,例如重金属离子和有机物。
纳米金还可以用于制备高效能源材料,例如太阳能电池和燃料电池,提高能源转换效率。
4. 电子学和信息技术:纳米金可以用于制备高性能的电子器件,例如透明导电膜、有机太阳能电池和柔性电子器件。
纳米金还可以用于制备高密度的电子元件,例如纳米线和纳米颗粒晶体管。
此外,纳米金还可以用于制备纳米光学器件,例如纳米光纤和纳米光栅。
5. 其他应用:纳米金还可以用于制备高性能的涂料材料、抗菌材料和防护材料。
纳米金可以作为涂层的添加剂,提高涂层的硬度和耐磨性。
纳米金还可以用于制备纳米墨水,用于纳米印刷和柔性电子显示器等方面。
综上所述,纳米金具有广泛的应用领域,在生物医学、材料科学、环境科学、电子学和信息技术等方面都具有巨大的潜力。
随着纳米科技的不断发展,纳米金的应用前景也会越来越广阔。